Unit-1

Introduction to Algorithms

Dr. K.raghava Rao
Professor in CSE
KL University
krraocse@gmail.com
http://mcadaa.blog.com

Introduction

What is Algorithm?

- It is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.
- It is thus a sequence of computational steps that transform the input into the output.
- It is a tool for solving a well - specified computational problem.
- Any special method of solving a certain kind of problem (Webster Dictionary)

Introduction

What is a Program?

- A program is the expression of an algorithm in a programming language
- a set of instructions which the computer will follow to solve a problem

Introduction

- Why DAA?

It is a learning general approaches to algorithm design.

- Divide and conquer -unit-1
- Greedy method -unit-1
- Dynamic Programming -unit-2
- Basic Search and Traversal Technique -unit-3
- Graph Theory -unit-3
- Branch and Bound-unit-4
- NP Problems -unit-5

Introduction

- Why do Analyze Algorithms?

- To Examine methods of analyzing algorithm correctness and efficiency
- Recursion equations
- Lower bound techniques
- O,Omega and Theta notations for best/worst/average case analysis
- Decide whether some problems have no solution in reasonable time
- List all permutations of n objects (takes n ! steps)
- Travelling salesman problem
- Investigate memory usage as a different measure of efficiency

Introduction

Importance of Analyzing an Algorithm

- Need to recognize limitations of various algorithms for solving a problem
- Need to understand relationship between problem size and running time
- When is a running program not good enough?
- Need to learn how to analyze an algorithm's running time without coding it.
- Need to learn techniques for writing more efficient code
- Need to recognize bottlenecks in code as well as which parts of code are easiest to optimize

Introduction

Why study algorithms and performance?

- Algorithms help us to understand scalability.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a language for talking about program behavior.
- Performance is the currency of computing.
- The lessons of program performance generalize to other computing resources.

Introduction

- What is the running time of this algorithm?

PUZZLE(x)
while x !=
if x is even
then $x=x /$
else $x=x+$

Sample run:

Exercise-1 executes the above program, find out time.

Introduction:The Selection Problem (1/2)

- Problem: given a group of n numbers, determine the $\mathrm{k}^{\text {th }}$ largest
- Algorithm
- Store numbers in an array
- Sort the array in descending order
- Return the number in position k

Introduction: The Selection Problem(2/

- Algorithm
- Store first k numbers in an array
- Sort the array in descending order
- For each remaining number, if the number is larger than the $k^{\text {th }}$ number, insert the number in the correct position of the array
- Return the number in position k

Which algorithm is better?

Introduction: Example: What is an Algorithm?

Problem: Input is a sequence of integers stored in an array. Output the minimum.

INPUT Algorithm
instance
$25,90,53,23,11,34$

Introduction: Define Problem

Problem:

- Description of Input-Output relationship.

Algorithm:

- A sequence of computational step that transform the input into the output.

Data Structure:

- An organized method of storing and retrieving data.
- Our task:
- Given a problem, design a correct and good algorithm that solves it.

Introduction: Example Algorithm A

Problem: The input is a sequence of integers stored in array. Output the minimum.

Algorithm A

$$
m \leftarrow a[1]
$$

For $i \leftarrow 2$ to size of input;
if $m>a[i]$ then $m \leftarrow a[i]$;
output m.

Introduction: Example Algorithm B

This algorithm uses two temporary arrays.

1. copy the input a to array $t 1$; assign $n \leftarrow$ size of input;
2. While $n>1$

For $i \leftarrow 1$ to $n / 2$ $t 2[i] \leftarrow \min \left(t 1\left[2^{*} i\right], t 1\left[2^{*} i+1\right]\right) ;$ copy array t2 to $t 1$;
$n \leftarrow n / 2$;
3. Output t2[1];

Introduction: Visualize Algorithm B

Example Algorithm C

Sort the input in increasing order. Return the first element of the sorted data.

Introduction: Example Algorithm D

For each element, test whether it is the minimum.

1. $\quad i \leftarrow \mathrm{O}$;

$$
\text { flag } \leftarrow \text { true }
$$

2. While flag
```
i\leftarrowi+1;
min \leftarrowa[i];
flag \longleftarrow false;
for j}\longleftarrow1 to size of inpu
    if min >a[j] then flag \leftarrow true;
```

3. Output min.

Introduction: Which algorithm is better?

The algorithms are correct, but which is the best?

- Measure the running time (number of operations needed).
- Measure the amount of memory used.
- Note that the running time of the algorithms increase as the size of the input increases.

Introduction: What do we need?

Correctness: Whether the algorithm computes the correct solution for all instances

Efficiency: Resources needed by the algorithm

1. Time: Number of steps.
2. Space: amount of memory used.

Measurement "model": Worst case, Average case and Best case.

Introduction: Time vs. Size of Input

Measurement parameterized by the size of the input.

The algorihtms A,B,C are implemented and run in a PC.
Algorithms D is implemented and run in a supercomputer.

Let $T_{k}(n)$ be the amount of time taken by the Algorithm

Introduction: Methods of Proof

Proof by Contradiction

- Assume a theorem is false; show that this assumption implies a property known to be true is false -- therefore original hypothesis must be true
- Proof by Counterexample
- Use a concrete example to show an inequality cannot hold
- Mathematical Induction
- Prove a trivial base case, assume true for k, then show hypothesis is true for $\mathrm{k}+$
- Used to prove recursive algorithms

Introduction: Review- Induction

Suppose

- $\mathrm{S}(\mathrm{k})$ is true for fixed constant k
- Often $k=0$
- $\mathrm{S}(\mathrm{n}) \rightarrow \mathrm{S}(\mathrm{n}+1)$ for all $\mathrm{n}>=\mathrm{k}$

Then $S(n)$ is true for all $n>=k$

Introduction: Proof By Induction

Claim: $S(n)$ is true for all $n>=k$

- Basis:
- Show formula is true when $n=k$
- Inductive hypothesis:
- Assume formula is true for an arbitrary n
- Step:
- Show that formula is then true for $\mathrm{n}+1$

Introduction: Induction Example- Gaussian Closed Form

Prove $1+2+3+\ldots+n=n(n+1) / 2$

- Basis:
- If $\mathrm{n}=0$, then $0=0(0+1) / 2$
- Inductive hypothesis:
- Assume $1+2+3+\ldots+n=n(n+1) / 2$
- Step (show true for $\mathrm{n}+1$):

$$
\begin{aligned}
& 1+2+\ldots+n+n+1=(1+2+\ldots+n)+(n+1) \\
& =n(n+1) / 2+n+1=[n(n+1)+2(n+1)] / 2 \\
& =(n+1)(n+2) / 2=(n+1)(n+1+1) / 2
\end{aligned}
$$

Induction Example: Geometric Closed Form

Prove $a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for all $a \neq 1$

- Basis: show that $a^{0}=\left(a^{0+1}-1\right) /(a-1)$

$$
a^{0}=1=\left(a^{1}-1\right) /(a-1)
$$

- Inductive hypothesis:
- Assume $a^{0}+a^{1}+\ldots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$
- Step (show true for $\mathrm{n}+1$):

$$
\begin{aligned}
& a^{0}+a^{1}+\ldots+a^{n+1}=a^{0}+a^{1}+\ldots+a^{n}+a^{n+1} \\
& =\left(a^{n+1}-1\right) /(a-1)+a^{n+1}=\left(a^{n+1+1}-1\right) /(a-1)
\end{aligned}
$$

Introduction: Induction

- We've been using
- Strong induction also holds
- Basis: show S(0)
- Hypothesis: assume $\mathrm{S}(\mathrm{k})$ holds for arbitrary $\mathrm{k}<=\mathrm{n}$
- Step: Show S(n+1) follows

Another variation:

- Basis: show S(0), S(1)
- Hypothesis: assume $S(\mathrm{n})$ and $\mathrm{S}(\mathrm{n}+1)$ are true
- Step: show S(n+2) follows

Introduction: Basic Recursion

- Base case: value for which function can be evaluated without recursion

Two fundamental rules

- Must always have a base case
- Each recursive call must be to a case that eventually leads toward a base case

Introduction: Bad Example of Recursion

Example of non-terminating recursive program (let $\mathrm{n}=$

```
int bad(unsigned int n)
if(n ==
        return
        else
        return(bad(n/ + ) + n-
```


Recursion(1/

Problem: write an algorithm that will strip digits from an integer and print them out one by one
void print_out(int n)
if($\mathrm{n}<$
print_digit(n); /*outputs single-digit to terminal*/ else
print_out(n/); /*print the quotient*/
print_digit(n\%); /*print the remainder*/

Introduction: Recursion(2/2

Prove by induction that the recursive printing program works:

- basis: If n has one digit, then program is correct.
- hypothesis: Print_out works for all numbers of k or fewer digits
- case $k+$: $k+$ digits can be written as the first k digits followed by the least significant digit

The number expressed by the first k digits is exactly floor(n / \quad) ? which by hypothesis prints correctly; the last digit is $\mathrm{n} \%$; so the ($\mathrm{k}+$)-digit is printed correctly By induction, all numbers are correctly printed.

Introduction: Recursion

Don't need to know how recursion is being managed

- Recursion is expensive in terms of space requirement; avoid recursion if simple loop will do
- Last two rules
- Assume all recursive calls work
- Do not duplicate work by solving identical problem in separated recursive calls
- Evaluate fib() -- use a recursion tree
$f i b(n)=f i b(n-)+f i b(n-$

Introduction: What is Algorithm Analysis?

- How to estimate the time required for an algorithm
- Techniques that drastically reduce the running time of an algorithm
- A mathemactical framwork that more rigorously describes the running time of an algorithm

Introduction: Running time for small inputs

Running times for small inputs

Introduction: Running time for moderate inputs

Running time for moderate inputs

Introduction: Important Question

- Is it always important to be on the most preferred curve?
- How much better is one curve than another?

How do we decide which curve a particular algorithm lies on?

- How do we design algorithms that avoid being on the bad curves?

Introduction: Algorithm Analysis(1/5)

- Measures the efficiency of an algorithm or its implementation as a program as the input size becomes very large

We evaluate a new algorithm by comparing its performance with that of previous approaches

- Comparisons are asymtotic analyses of classes of algorithms
- We usually analyze the time required for an algorithm and the space required for a datastructure

Introduction: Algorithm Analysis (2/5

- Many criteria affect the running time of an algorithm, including
- speed of CPU, bus and peripheral hardware
- design think time, programming time and debugging time
- language used and coding efficiency of the programmer
- quality of input (good, bad or average)

Introduction: Algorithm Analysis (/5

- Programs derived from two algorithms for solving the same problem should both be
- Machine independent
- Language independent
- Environment independent (load on the system,...)
- Amenable to mathematical study
- Realistic

Introduction: Algorithm Analysis (/5

- In lieu of some standard benchmark conditions under which two programs can be run, we estimate the algorithm's performance based on the number of key and basic operations it requires to process an input of a given size
- For a given input size n we express the time T to run the algorithm as a function $T(n)$
- Concept of growth rate allows us to compare running time of two algorithms without writing two programs and running them on the same computer

Introduction: Algorithm Analysis (/5

- Formally, let $T(A, L, M)$ be total run time for algorithm A if it were implemented with language L on machine M . Then the complexity class of algorithm A is

```
O(T(A,L ,M ) U O(T(A,L ,M )) U O(T(A,L ,M )) U ...
```

- Call the complexity class V; then the complexity of A is said to be f if $V=O(f)$
- The class of algorithms to which A belongs is said to be of at most linear/quadratic/ etc. growth in best case if the function T_{A} best(n) is such (the same also for average and worst case).

Asymptotic Performance

- In this course, we care most about asymptotic performance
- How does the algorithm behave as the problem size gets very large?
- Running time
- Memory/storage requirements
- Bandwidth/power requirements/logic gates/etc.

Asymptotic Notation

- By now you should have an intuitive feel for asymptotic (big-O) notation:
- What does $O(n)$ running time mean? $O\left(n^{2}\right)$? $O(n \log n)$?
- How does asymptotic running time relate to asymptotic memory usage?

Our first task is to define this notation more formally and completely

Analysis of Algorithms

- Analysis is performed with respect to a computational model
- We will usually use a generic uniprocessor randomaccess machine (RAM)
- All memory equally expensive to access
- No concurrent operations
- All reasonable instructions take unit time
- Except, of course, function calls
- Constant word size
- Unless we are explicitly manipulating bits

Input Size

- Time and space complexity
- This is generally a function of the input size
- E.g., sorting, multiplication
- How we characterize input size depends:
- Sorting: number of input items
- Multiplication: total number of bits
- Graph algorithms: number of nodes \& edges
- Etc

Running Time

- Number of primitive steps that are executed
- Except for time of executing a function call most statements roughly require the same amount of time.
- $y=m^{*} x+b$
- $c=5 / 9 *(t-32)$
- $z=f(x)+g(y)$
- We can be more exact if need be

Analysis

- Worst case
- Provides an upper bound on running time
- An absolute guarantee
- Average case
- Provides the expected running time
- Very useful, but treat with care: what is "average"?
- Random (equally likely) inputs
- Real-life inputs

Function of Growth rate

Function	Name
c	Constant
$\log N$	Logarithmic
$\log ^{2} N$	Log-squared
N	Linear
$N \log N$	$N \log N$
N^{2}	Quadratic
N^{3}	Cubic
2^{N}	Exponential

Functions in order of increasing growth rate

