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Problem: Laying Telephone Wire 

Central office 
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Wiring: Naïve Approach 

Central office 

Expensive! 
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Wiring: Better Approach 

Central office 

Minimize the total length of wire connecting the customers 
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Spanning trees 

• Suppose you have a connected undirected graph 

– Connected: every node is reachable from every other node 

– Undirected: edges do not have an associated direction 

• ...then a spanning tree of the graph is a connected subgraph 

in which there are no cycles 

A connected, 

undirected graph 

Four of the spanning trees of the graph 
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Finding a spanning tree 

• To find a spanning tree of a graph, 

 pick an initial node and call it part of the spanning tree 

 do a search from the initial node: 

 each time you find a node that is not in the spanning tree, add 
to the spanning tree both the new node and the edge you 
followed to get to it 

An undirected graph Result of a BFS 

starting from top 

Result of a DFS 

starting from top 
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Minimizing costs 

• Suppose you want to supply a set of houses (say, in a new 

subdivision) with: 

– electric power 

– water 

– sewage lines 

– telephone lines 

• To keep costs down, you could connect these houses with 

a spanning tree (of, for example, power lines) 

– However, the houses are not all equal distances apart 

• To reduce costs even further, you could connect the houses 

with a minimum-cost spanning tree 
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Minimum-cost spanning trees 

• Suppose you have a connected undirected graph with a 

weight (or cost) associated with each edge 

• The cost of a spanning tree would be the sum of the costs 

of its edges 

• A minimum-cost spanning tree is a spanning tree that has 

the lowest cost 
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Greedy Approach 

• Both Prim’s and Kruskal’s algorithms are greedy 

algorithms 

 

• The greedy approach works for the MST problem; 

however, it does not work for many other problems! 
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How Can We Generate a MST?  
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Prim’s algorithm 

 T = a spanning tree containing a single node s; 
E = set of edges adjacent to s; 
while T does not contain all the nodes { 

 remove an edge (v, w) of lowest cost from E 

 if w is already in T then discard edge (v, w) 

 else { 

 add edge (v, w) and node w to T 

 add to E the edges adjacent to w 

 } 

 } 

• An edge of lowest cost can be found with a priority queue 

• Testing for a cycle is automatic 
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Prim’s Algorithm 

Initialization 

 a. Pick a vertex r to be the root 

  b. Set D(r) = 0, parent(r) = null 

 c. For all vertices v  V, v  r, set D(v) =  

 d. Insert all vertices into priority queue P,  

     using distances as the keys 
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Prim’s algorithm 
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The MST initially consists of the vertex e, and we update 

the distances and parent for its adjacent vertices 
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Prim’s algorithm 
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Prim’s algorithm 
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Prim’s algorithm 
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Prim’s algorithm 
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Running time of Prim’s algorithm 

(without heaps) 

Initialization of priority queue (array): O(|V|) 

 

Update loop:  |V| calls 

• Choosing vertex with minimum cost edge: O(|V|) 

• Updating distance values of unconnected 

vertices: each edge is considered only once 

during entire execution, for a total of O(|E|) 

updates     

Overall cost without heaps: 

 

 

O(|E| + |V| 2) 



 Minimum-cost Spanning Trees 
• Example of MCST 

– Finding a spanning tree of G with minimum cost 
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 Prim’s Algorithm 
• Example  
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Prim’s Algorithm Invariant 

• At each step, we add the edge (u,v) s.t. the weight of 

(u,v) is minimum among all edges where u is in the 

tree and v is not in the tree 

 

• Each step maintains a minimum spanning tree of the 

vertices that have been included thus far 

 

• When all vertices have been included, we have a MST 

for the graph! 
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Another Approach 
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• Create a forest of trees from the vertices 

• Repeatedly merge trees by adding “safe edges” 

until only one tree remains 

• A “safe edge” is an edge of minimum weight which 

does not create a cycle 

forest: {a}, {b}, {c}, {d}, {e} 
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Kruskal’s algorithm 
 T = empty spanning tree; 

E = set of edges; 
N = number of nodes in graph; 

 while T has fewer than N - 1 edges { 

 remove an edge (v, w) of lowest cost from E 

 if adding (v, w) to T would create a cycle 

 then discard (v, w) 

 else add (v, w) to T 

 } 

• Finding an edge of lowest cost can be done just by sorting the edges 

• Running time bounded by sorting (or findMin) 

• O(|E|log|E|), or equivalently, O(|E|log|V|) 
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Kruskal’s algorithm 

Initialization 

 a. Create a set for each vertex v  V 

 b. Initialize the set of “safe edges” A  

  comprising the MST to the empty set 

 c. Sort edges by increasing weight 
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F = {a}, {b}, {c}, {d}, {e} 

A =  

E = {(a,d), (c,d), (d,e), (a,c),  

       (b,e), (c,e), (b,d), (a,b)} 
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Kruskal’s algorithm 

E = {(a,d), (c,d), (d,e), (a,c),  

       (b,e), (c,e), (b,d), (a,b)} 

Forest 

{a}, {b}, {c}, {d}, {e} 

{a,d}, {b}, {c}, {e} 

{a,d,c}, {b}, {e} 

{a,d,c,e}, {b} 

{a,d,c,e,b} 

A 

 

{(a,d)} 

{(a,d), (c,d)} 

{(a,d), (c,d), (d,e)} 

{(a,d), (c,d), (d,e), (b,e)} 
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• After each iteration, every tree in the forest is a MST of the 

vertices it connects 

 

• Algorithm terminates when all vertices are connected into 

one tree 

Kruskal’s algorithm Invariant 



Kruskal’s Algorithm 
• Example 
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Exercise-1: compute MST for this graph using 

prim’s and kruskal’s  algorithm 
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Exercise-2: compute MST for this graph using prim’s 

and kruskal’s  algorithm 
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Exercise-3: compute MST for this graph 

using prim’s and kruskal’s  algorithm 
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 Optimal Merge Patterns 

• Problem 

– Given n sorted files, find an optimal way (i.e., requiring 

the fewest comparisons or record moves) to pairwise 

merge them into one sorted file 

– It fits ordering paradigm 

• Example 

– Three sorted files (x1,x2,x3) with lengths (30, 20, 10) 

– Solution 1: merging x1 and x2 (50 record moves), 

merging the result with x3 (60 moves)  total 110 

moves 

– Solution 2: merging x2 and x3 (30 moves), merging the 

result with x1 (60 moves)  total 90 moves 

– The solution 2 is better 



 Optimal Merge Patterns 
• A greedy method (for 2-way merge problem) 

– At each step, merge the two smallest files  

– e.g., five files with lengths (20,30,10,5,30) (Figure 4.11) 

 

 

 

 

 

 

 

 

Total number of record moves = weighted external path length 

The optimal 2-way merge pattern = binary merge tree with 

minimum weighted external path length 
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Optimal Merge Patterns 

Algorithm 

 

 

 

 

  struct treenode { 
         struct treenode *lchild, *rchild; 
         int weight; 
  }; 
  typedef struct treenode Type; 
 
  Type *Tree(int n) 
  //     list is a global list of n single node 
  //     binary trees as described above. 
  { 
         for (int i=1; i<n; i++) { 
              Type *pt = new Type; 
              // Get a new tree node. 
              pt -> lchild = Least(list); // Merge two trees with 
              pt -> rchild = Least(list); // smallest lengths. 
              pt -> weight = (pt->lchild)->weight 
                        + (pt->rchild)->weight; 
              Insert(list, *pt); 
        } 
        return (Least(list)); // Tree left in l is the merge tree. 
 } 



 Optimal Merge Patterns 
• Example 

 

 

 

 

 

 

 



 Optimal Merge Patterns 

 

 

 

 

 

 

 

 

 

Time 

– If list is kept in nondecreasing order: O(n2) 

– If list is represented as a minheap: O(n log n) 



 Optimal Merge Patterns 
• Exercise; 

• Let n=3 and (l1,l2,l3)=(5,10,3), There are n!=6 possible  

orderings. Find optimal ordering . 
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Optimal Storage on Tapes 

• There are n programs that are to be stored on a 

computer tape of length L. Associated with each 

program i is a length Li. 

• Assume the tape is initially positioned at the 

front. If the programs are stored in the order I = 

i1, i2, …, in, the time tj needed to retrieve 

program ij 

 

                            tj =  


j

1k

ik
L



4 -38 

Optimal Storage on Tapes 

• If all programs are retrieved equally often, 

then the  

mean retrieval time (MRT) = 

 

 

• This problem fits the ordering paradigm. 

Minimizing the MRT is equivalent to 

minimizing 

  

d(I)  = 




n
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Optimal Storage on Tapes 

  Example-1. n=3  (l1,l2,l3)=(5,10,3) 3!=6 total combinations 

    L1    l2         l3         = l1+(l1+l2)+(l1+l2+l3)  = 5+15+18  = 38/3=12.6 

                                                   n                              3 

     L1    l3         l2         = l1+(l1+l3)+(l1+l2+l3)  = 5+8+18  = 31/3=10.3 

                                                   n                              3 

     L2    l1         l3         = l2+(l2+l1)+(l2+l1+l3)  = 10+15+18  = 43/3=14.3 

                                                      n                          3 

     L2    l3         l1         =  10+13+18  = 41/3=13.6 

                                              3    

     L3    l1         l2         =  3+8+18  = 29/3=9.6 min 

                                               3    

     L3    l2         l1         =  3+13+18  = 34/3=11.3 min 

                                              3                  permutation at (3,1,2) 
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• n = 4, (p1, p2, p3, p4) = (100,10,15,27)  

          (d1, d2, d3, d4) = (2, 1, 2, 1) 

Feasible solution Processing sequence value 

1 (1,2) 2,1 110 

2 (1,3) 1,3 or 3, 1 115 

3 (1,4) 4, 1 127 

4 (2,3) 2, 3 25 

5 (3,4) 4,3 42 

6 (1) 1 100 

7 (2) 2 10 

8 (3) 3 15 

9 (4) 4 27 
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Example 

• Let n = 3, (L1,L2,L3) = (5,10,3). 6 possible 

orderings. The optimal is 3,1,2 

 
Ordering I d(I) 

1,2,3 5+5+10+5+10+3   = 38 

1,3,2 5+5+3+5+3+10     = 31 

2,1,3 10+10+5+10+5+3 = 43 

2,3,1 10+10+3+10+3+5 = 41 

3,1,2 3+3+5+3+5+10     = 29 

3,2,1, 3+3+10+3+10+5   = 34 



Optimal Storage on Tapes 

• Exercise-1 

• N=4 (l1,l2,l3,l4)=(2,4,6,8) . Find  optimal storage 

on tapes. 

• Answer permutation is at (1,2,3,4) 
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TVSP(Tree Vertex Splitting Problem) 
Let T=(V,E,W) be a directed tree. 

A weighted tree  can be used to model a distribution  network in which 

electrical signals are transmitted.   

Nodes in the tree correspond to receiving stations & edges correspond to 

transmission lines.  

In the process of transmission  some loss is occurred. Each edge in the tree is 

labeled  with the loss that occurs in traversing that edge.  

The network model may not able tolerate losses beyond a certain level. In 

places where the loss exceeds the tolerance value boosters have to be placed. 

 

Given a networks and tolerance value , the TVSP problem is to determine an 

optimal placement of boosters. The boosters can only placed  at the nodes of 

the tree.                  d(u) = Max { d(v) + w(Parent(u), u)} 

                    d(u) – delay of node          v-set of all edges & v belongs to child(u) 

                     δ tolerance value 43 



TVSP(Tree Vertex Splitting Problem) 
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TVSP(Tree Vertex Splitting Problem) 
• If d(u)>= δ  than place the booster.  

 d(7)= max{0+w(4,7)}=1 

d(8)=max{0+w(4,8)}=4   

  d(9)= max{0+ w(6,9)}=2 

d(10)= max{0+w(6,10)}=3     d(5)=max{0+e(3.3)}=1 

d(4)= max{1+w(2,4), 4+w(2,4)}=max{1+2,4+3}=6> δ ->booster 

d(6)=max{2+w(3,6),3+w(3,6)}=max{2+3,3+3}=6> δ->booster 

d(2)=max{6+w(1,2)}=max{6+4)=10> δ->booster 

d(3)=max{1+w(1,3), 6+w(1,3)}=max{3,8}=8> δ ->booster 

 

Note: No need to find tolerance value for node 1 because from source only 

power is transmitting  
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 Single-source Shortest Paths 
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Single-source Shortest Paths 

•  Let G=(V,E) be a directed graph and a main function is 

C(e)(c=cost,e=edge) for the edges of graph ‘G’  and a source 

vertex it will represented with V0  the vertices represents cities and 

weights represents distance between 2 cities. 

• The objective of the problem find shortest path from source to 

destination. 

• The length of path is defined to be sum of weights of edges on the 

path. 

• S[i]=T if vertex i present in set ‘s’ 

• S[i]=F if vertex i is not present in set ‘s’ 

• Formula  

• Min {distance[w],distance[u]+cost[u,w]} 

 u-recently visited node  w-unvisited node  
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Single-source Shortest Paths 

• Step-1  s[1] 

• s[1]=T        dist[2]=10 

• s[2]=F        dist[3]=α 

• s[3]=F         dist[4]= α 

• s[4]=F         dist[5]= α 

• s[5]=F          dist[6]= 30 

• s[6]=F           dist[7]= α 

• S[7]=F 

• Step-2  s[1,2] the visited nodes 

• W={3,4,5,6,7} unvisited nodes 

• U={2} recently visited node 
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• s[1]=T        w=3 

• s[2]=T        dist[3]=α 

• s[3]=F         min {dist[w], dist[u]+cost(u,w)} 

• s[4]=F         min {dist[3], dist[2]+cost(2,3)} 

• s[5]=F          min{α, 10+20}= 30 

• s[6]=F           w=4 dist[4]= α 

• S[7]=F          min{dist(4),dist(2)+cost(2,4)} 

•                       min{α,10+ α}= α 

W=5 dist[5]= α       min{dist(5),dist(2)+cost(2,5)}  

                                 min{α,10+ α}= α 
49 

 Single-source Shortest Paths 



• W=6 dist[6]=30 

• Min{dist(6), dist(2)+cost(2,6)}=min{30,10+ α}=30 

• W=7, dist(7)= α   min{dist(7),dist(2)+cost(2,7)} 

• min{α,10+ α}= α let min. cost is 30 at both 3 and 6 but  

• Recently visited node 2 have only direct way to 3, so consider 3 is min cost 

node from 2. 

• Step-3     w=4,5,6,7 

• s[1]=T    s={1,2,3} w=4 ,dist[4]= α 

• s[2]=T    min{dist[4],dist[3]+cost(3.4)}=min{α,30+15}=45 

• s[3]=T    w=5, dist[5]= α min{dist(5), dist(3)+cost(3,5)} 

• s[4]=F    min{α,30+5}=35 similarily we obtain  

• s[5]=F    w=6, dist(6)=30   w=7 ,dist[7]= α so min cost is 30 at w=6 but   

• s[6]=F    no path from 3 so we consider 5 node so visited nodes 1,2,3, 5 

• S[7]=F 
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• Step-4   w=4,6,7   s={1,2,3,5} 

• s[1]=T   w=4, dist[4]=45 min {dist[4], dist[5]+cost(5,4)} 

• s[2]=T                              min{45,35+ α}=45 

• s[3]=T   w=6,dist[6]=30 min{dist[6],dist[5]+cost(5,6)} 

• s[4]=F                              min{30, 35+ α}=30 

• s[5]=T   w=7,dist[7]= α min{dist[7],dist[5]+cost(5,7)} 

• s[6]=F                             min{α, 35+7}=42  

• S[7]=F  here min cost is 30 at 6 node but there is no path 

from 5 yo 6, so we consider 7 , 1,2,3,5,7 nodes visited. 

• Therefore the graph traveled from source to destination 

• Single source shortest path is drawn in next slide. 
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•    
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 Single-source Shortest Paths 
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 Single-source Shortest Paths 

• Design of greedy algorithm 

– Building the shortest paths one by one, in nondecreasing order of 

path lengths 

• e.g., in next slide figure 

– 14: 10 

– 145: 25 

– … 

• We need to determine 1) the next vertex to which a shortest path must be 

generated  and 2) a shortest path to this vertex. 

– Notations 

• S = set of vertices (including v0 ) to which the shortest paths have already 

been generated 

• dist(w) = length of shortest path starting from v0, going through only those 

vertices that are in S, and ending at w 

 



 Single-source Shortest Paths 

• Design of greedy algorithm (Continued) 

– Three observations  

 

• If the next shortest path is to vertex u, then the path begins at v0, 

ends at u, and goes through only those vertices that are in S. 

 

• The destination of the next path generated must be that of vertex u 

which has the minimum distance, dist(u), among all vertices not in 

S. 

 

• Having selected a vertex u as in observation 2 and generated the 

shortest v0 to u path, vertex u becomes a member of S. 

 

 



Single-source Shortest Paths 

• Example 
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DIJKSTRA’S SHORTEST PATH ALGORITHM 

Procedure SHORT-PATHS (v, cost, Dist, n) 

// Dist (j) is the length of the shortest path from v to j in the //graph 
G with  n vertices; Dist (v) = 0 // 

Boolean S(1:n); real cost (1:n,1:n), Dist (1:n); integer u, v, n, num, i, 
w  

// S(i) = 0 if i is not in S and s(i) =1 if it is in S// 

// cost (i, j) = + if edge (i, j) is not there// 

// cost (i,j) = 0  if i = j; cost (i, j) = weight of < i, j >  // 

for i1 to do // initialize S to empty // 

S(i) 0; Dist (i) cost(v, i)  

repeat 
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DIJKSTRA’S SHORTEST PATH ALGORITHM 

(Contd..) 

// initially for no vertex shortest path is available// 

S (v)1; dist(v)0// Put v in set S // 

for num2 to n-1 do // determine n-1 paths from// //vertex v // 

choose u such that Dist (u)=min{dist(w)} and S(w)=0  

S(u)1 // Put vertex u in S // 

Dist(w)min (dist(w),Dist(u) + cost (u,w)) 

Repeat 

repeat 

end SHORT - PATHS  

Overall run time of algorithm is O((n+|E|) log n) 



Single-source Shortest Paths 
• Example 

 



 Single-source Shortest Paths 
• Example 

 



Single-source Shortest Paths 

60 

The Algorithm in action,  
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on the graph below. 

Single-source Shortest Paths 

Exercise 

 


