
Greedy Method

Minimum Cost Spanning Trees

&Single source shortest path

Dr. K.RAGHAVA RAO

Professor in CSE

KL University

krraocse@gmail.com
http://mcadaa.blog.com

mailto:krraocse@gmail.com

2

Problem: Laying Telephone Wire

Central office

3

Wiring: Naïve Approach

Central office

Expensive!

4

Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers

5

Spanning trees

• Suppose you have a connected undirected graph

– Connected: every node is reachable from every other node

– Undirected: edges do not have an associated direction

• ...then a spanning tree of the graph is a connected subgraph

in which there are no cycles

A connected,

undirected graph

Four of the spanning trees of the graph

6

Finding a spanning tree

• To find a spanning tree of a graph,

 pick an initial node and call it part of the spanning tree

 do a search from the initial node:

 each time you find a node that is not in the spanning tree, add
to the spanning tree both the new node and the edge you
followed to get to it

An undirected graph Result of a BFS

starting from top

Result of a DFS

starting from top

7

Minimizing costs

• Suppose you want to supply a set of houses (say, in a new

subdivision) with:

– electric power

– water

– sewage lines

– telephone lines

• To keep costs down, you could connect these houses with

a spanning tree (of, for example, power lines)

– However, the houses are not all equal distances apart

• To reduce costs even further, you could connect the houses

with a minimum-cost spanning tree

8

Minimum-cost spanning trees

• Suppose you have a connected undirected graph with a

weight (or cost) associated with each edge

• The cost of a spanning tree would be the sum of the costs

of its edges

• A minimum-cost spanning tree is a spanning tree that has

the lowest cost

A B

E D

F C

16

19

21 11

33 14

18
10

6

5

A connected, undirected graph

A B

E D

F C

16

11

18

6

5

A minimum-cost spanning tree

9

Greedy Approach

• Both Prim’s and Kruskal’s algorithms are greedy

algorithms

• The greedy approach works for the MST problem;

however, it does not work for many other problems!

10

How Can We Generate a MST?

a

c
e

d

b
2

4 5

9

6

4

5

5

a

c
e

d

b
2

4 5

9

6

4

5

5

11

Prim’s algorithm

 T = a spanning tree containing a single node s;
E = set of edges adjacent to s;
while T does not contain all the nodes {

 remove an edge (v, w) of lowest cost from E

 if w is already in T then discard edge (v, w)

 else {

 add edge (v, w) and node w to T

 add to E the edges adjacent to w

 }

 }

• An edge of lowest cost can be found with a priority queue

• Testing for a cycle is automatic

12

Prim’s Algorithm

Initialization

 a. Pick a vertex r to be the root

 b. Set D(r) = 0, parent(r) = null

 c. For all vertices v V, v r, set D(v) =

 d. Insert all vertices into priority queue P,

 using distances as the keys

a

c
e

d

b
2

4 5

9

6

4

5

5

e a b c d

0

Vertex Parent

 e -

13

Prim’s algorithm

a

c
e

d

b
2

4 5

9

6

4

5

5

d b c a

4 5 5

Vertex Parent

 e -

 b e

 c e

 d e

The MST initially consists of the vertex e, and we update

the distances and parent for its adjacent vertices

Vertex Parent

 e -

 b -

 c -

 d -

d b c a

e

0

14

Prim’s algorithm

a

c
e

d

b
2

4 5

9

6

4

5

5

a c b

2 4 5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

d b c a

4 5 5

Vertex Parent

 e -

 b e

 c e

 d e

15

Prim’s algorithm

a

c
e

d

b
2

4 5

9

6

4

5

5

c b

4 5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

a c b

2 4 5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

16

Prim’s algorithm

a

c
e

d

b
2

4 5

9

6

4

5

5

b

5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

c b

4 5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

17

Prim’s algorithm

Vertex Parent

 e -

 b e

 c d

 d e

 a d

a

c
e

d

b
2

4 5

9

6

4

5

5

The final minimum spanning tree

b

5

Vertex Parent

 e -

 b e

 c d

 d e

 a d

18

Running time of Prim’s algorithm

(without heaps)

Initialization of priority queue (array): O(|V|)

Update loop: |V| calls

• Choosing vertex with minimum cost edge: O(|V|)

• Updating distance values of unconnected

vertices: each edge is considered only once

during entire execution, for a total of O(|E|)

updates

Overall cost without heaps:

O(|E| + |V| 2)

 Minimum-cost Spanning Trees
• Example of MCST

– Finding a spanning tree of G with minimum cost

1

2

7 6 3

5
4

10

28

14 16

25
24

18

22

12

1

2

7 6 3

5
4

10
14 16

25

22

12

(a) (b)

 Prim’s Algorithm
• Example

1

2

7 6 3

5
4

10

1

2

7 6 3

5
4

10
14 16

25

22

12

1

2

7 6 3

5
4

10

25

22

1

2

7 6 3

5
4

10
16

25

22

12

1

2

7 6 3

5
4

10

25

22

12

1

2

7 6 3

5
4

10

25

(a) (b) (c)

(d) (e) (f)

21

Prim’s Algorithm Invariant

• At each step, we add the edge (u,v) s.t. the weight of

(u,v) is minimum among all edges where u is in the

tree and v is not in the tree

• Each step maintains a minimum spanning tree of the

vertices that have been included thus far

• When all vertices have been included, we have a MST

for the graph!

22

Another Approach

a

c
e

d

b
2

4 5

9

6

4

5

5

• Create a forest of trees from the vertices

• Repeatedly merge trees by adding “safe edges”

until only one tree remains

• A “safe edge” is an edge of minimum weight which

does not create a cycle

forest: {a}, {b}, {c}, {d}, {e}

23

Kruskal’s algorithm
 T = empty spanning tree;

E = set of edges;
N = number of nodes in graph;

 while T has fewer than N - 1 edges {

 remove an edge (v, w) of lowest cost from E

 if adding (v, w) to T would create a cycle

 then discard (v, w)

 else add (v, w) to T

 }

• Finding an edge of lowest cost can be done just by sorting the edges

• Running time bounded by sorting (or findMin)

• O(|E|log|E|), or equivalently, O(|E|log|V|)

24

Kruskal’s algorithm

Initialization

 a. Create a set for each vertex v V

 b. Initialize the set of “safe edges” A

 comprising the MST to the empty set

 c. Sort edges by increasing weight

a

c
e

d

b
2

4 5

9

6

4

5

5

F = {a}, {b}, {c}, {d}, {e}

A =

E = {(a,d), (c,d), (d,e), (a,c),

 (b,e), (c,e), (b,d), (a,b)}

25

Kruskal’s algorithm

E = {(a,d), (c,d), (d,e), (a,c),

 (b,e), (c,e), (b,d), (a,b)}

Forest

{a}, {b}, {c}, {d}, {e}

{a,d}, {b}, {c}, {e}

{a,d,c}, {b}, {e}

{a,d,c,e}, {b}

{a,d,c,e,b}

A

{(a,d)}

{(a,d), (c,d)}

{(a,d), (c,d), (d,e)}

{(a,d), (c,d), (d,e), (b,e)}

a

c
e

d

b
2

4 5

9

6

4

5

5

26

• After each iteration, every tree in the forest is a MST of the

vertices it connects

• Algorithm terminates when all vertices are connected into

one tree

Kruskal’s algorithm Invariant

Kruskal’s Algorithm
• Example

1

2

7 6 3

5
4

1

2

7 6 3

5
4

10
14 16

22

12

1

2

7 6 3

5
4

10

1

2

7 6 3

5
4

10
16

12

1

2

7 6 3

5
4

10

12

1

2

7 6 3

5
4

10

(a) (b) (c)

(d) (e) (f)

12

14 14

Exercise-1: compute MST for this graph using

prim’s and kruskal’s algorithm

28

1

6

5

7

2

3

4

25 28

14

24 25

22

18

12

16

Mst cost is 25 pair 5,6

1-6-5-4-3-2-7

29

Exercise-2: compute MST for this graph using prim’s

and kruskal’s algorithm

2

 10 50

 1 40 3

 45 35

 5

 30 25

 55

 4 6

 20

30

Exercise-3: compute MST for this graph

using prim’s and kruskal’s algorithm

 10

 1 2

 25 50

 30 45 40 35 3

 4 5

 55 15

 20 6

 Optimal Merge Patterns

• Problem

– Given n sorted files, find an optimal way (i.e., requiring

the fewest comparisons or record moves) to pairwise

merge them into one sorted file

– It fits ordering paradigm

• Example

– Three sorted files (x1,x2,x3) with lengths (30, 20, 10)

– Solution 1: merging x1 and x2 (50 record moves),

merging the result with x3 (60 moves) total 110

moves

– Solution 2: merging x2 and x3 (30 moves), merging the

result with x1 (60 moves) total 90 moves

– The solution 2 is better

 Optimal Merge Patterns
• A greedy method (for 2-way merge problem)

– At each step, merge the two smallest files

– e.g., five files with lengths (20,30,10,5,30) (Figure 4.11)

Total number of record moves = weighted external path length

The optimal 2-way merge pattern = binary merge tree with

minimum weighted external path length

95

60 35

15 20 30 30

10 5

z4

z2

z1

z3

x1

x3 x4

x5 x2

n

i

iiqd
1

Optimal Merge Patterns

Algorithm

 struct treenode {
 struct treenode *lchild, *rchild;
 int weight;
 };
 typedef struct treenode Type;

 Type *Tree(int n)
 // list is a global list of n single node
 // binary trees as described above.
 {
 for (int i=1; i<n; i++) {
 Type *pt = new Type;
 // Get a new tree node.
 pt -> lchild = Least(list); // Merge two trees with
 pt -> rchild = Least(list); // smallest lengths.
 pt -> weight = (pt->lchild)->weight
 + (pt->rchild)->weight;
 Insert(list, *pt);
 }
 return (Least(list)); // Tree left in l is the merge tree.
 }

 Optimal Merge Patterns
• Example

 Optimal Merge Patterns

Time

– If list is kept in nondecreasing order: O(n2)

– If list is represented as a minheap: O(n log n)

 Optimal Merge Patterns
• Exercise;

• Let n=3 and (l1,l2,l3)=(5,10,3), There are n!=6 possible

orderings. Find optimal ordering .

36

4 -37

Optimal Storage on Tapes

• There are n programs that are to be stored on a

computer tape of length L. Associated with each

program i is a length Li.

• Assume the tape is initially positioned at the

front. If the programs are stored in the order I =

i1, i2, …, in, the time tj needed to retrieve

program ij

 tj =

j

1k

ik
L

4 -38

Optimal Storage on Tapes

• If all programs are retrieved equally often,

then the

mean retrieval time (MRT) =

• This problem fits the ordering paradigm.

Minimizing the MRT is equivalent to

minimizing

d(I) =

n

1j

jt
n

1

n

1j

j

1k

ik
L

Optimal Storage on Tapes

 Example-1. n=3 (l1,l2,l3)=(5,10,3) 3!=6 total combinations

 L1 l2 l3 = l1+(l1+l2)+(l1+l2+l3) = 5+15+18 = 38/3=12.6

 n 3

 L1 l3 l2 = l1+(l1+l3)+(l1+l2+l3) = 5+8+18 = 31/3=10.3

 n 3

 L2 l1 l3 = l2+(l2+l1)+(l2+l1+l3) = 10+15+18 = 43/3=14.3

 n 3

 L2 l3 l1 = 10+13+18 = 41/3=13.6

 3

 L3 l1 l2 = 3+8+18 = 29/3=9.6 min

 3

 L3 l2 l1 = 3+13+18 = 34/3=11.3 min

 3 permutation at (3,1,2)

39

4 -40

• n = 4, (p1, p2, p3, p4) = (100,10,15,27)

 (d1, d2, d3, d4) = (2, 1, 2, 1)

Feasible solution Processing sequence value

1 (1,2) 2,1 110

2 (1,3) 1,3 or 3, 1 115

3 (1,4) 4, 1 127

4 (2,3) 2, 3 25

5 (3,4) 4,3 42

6 (1) 1 100

7 (2) 2 10

8 (3) 3 15

9 (4) 4 27

4 -41

Example

• Let n = 3, (L1,L2,L3) = (5,10,3). 6 possible

orderings. The optimal is 3,1,2

Ordering I d(I)

1,2,3 5+5+10+5+10+3 = 38

1,3,2 5+5+3+5+3+10 = 31

2,1,3 10+10+5+10+5+3 = 43

2,3,1 10+10+3+10+3+5 = 41

3,1,2 3+3+5+3+5+10 = 29

3,2,1, 3+3+10+3+10+5 = 34

Optimal Storage on Tapes

• Exercise-1

• N=4 (l1,l2,l3,l4)=(2,4,6,8) . Find optimal storage

on tapes.

• Answer permutation is at (1,2,3,4)

42

TVSP(Tree Vertex Splitting Problem)
Let T=(V,E,W) be a directed tree.

A weighted tree can be used to model a distribution network in which

electrical signals are transmitted.

Nodes in the tree correspond to receiving stations & edges correspond to

transmission lines.

In the process of transmission some loss is occurred. Each edge in the tree is

labeled with the loss that occurs in traversing that edge.

The network model may not able tolerate losses beyond a certain level. In

places where the loss exceeds the tolerance value boosters have to be placed.

Given a networks and tolerance value , the TVSP problem is to determine an

optimal placement of boosters. The boosters can only placed at the nodes of

the tree. d(u) = Max { d(v) + w(Parent(u), u)}

 d(u) – delay of node v-set of all edges & v belongs to child(u)

 δ tolerance value 43

TVSP(Tree Vertex Splitting Problem)

44

1

2 3

4 5 6

9 10 7 8

4 2

2 1 3

1 4
2 3

TVSP(Tree Vertex Splitting Problem)
• If d(u)>= δ than place the booster.

 d(7)= max{0+w(4,7)}=1

d(8)=max{0+w(4,8)}=4

 d(9)= max{0+ w(6,9)}=2

d(10)= max{0+w(6,10)}=3 d(5)=max{0+e(3.3)}=1

d(4)= max{1+w(2,4), 4+w(2,4)}=max{1+2,4+3}=6> δ ->booster

d(6)=max{2+w(3,6),3+w(3,6)}=max{2+3,3+3}=6> δ->booster

d(2)=max{6+w(1,2)}=max{6+4)=10> δ->booster

d(3)=max{1+w(1,3), 6+w(1,3)}=max{3,8}=8> δ ->booster

Note: No need to find tolerance value for node 1 because from source only

power is transmitting

45

46

 Single-source Shortest Paths

1 6

2

7

3

4

5

10

30

35 25

20

20

5

7 12 15

Single-source Shortest Paths

• Let G=(V,E) be a directed graph and a main function is

C(e)(c=cost,e=edge) for the edges of graph ‘G’ and a source

vertex it will represented with V0 the vertices represents cities and

weights represents distance between 2 cities.

• The objective of the problem find shortest path from source to

destination.

• The length of path is defined to be sum of weights of edges on the

path.

• S[i]=T if vertex i present in set ‘s’

• S[i]=F if vertex i is not present in set ‘s’

• Formula

• Min {distance[w],distance[u]+cost[u,w]}

 u-recently visited node w-unvisited node

47

Single-source Shortest Paths

• Step-1 s[1]

• s[1]=T dist[2]=10

• s[2]=F dist[3]=α

• s[3]=F dist[4]= α

• s[4]=F dist[5]= α

• s[5]=F dist[6]= 30

• s[6]=F dist[7]= α

• S[7]=F

• Step-2 s[1,2] the visited nodes

• W={3,4,5,6,7} unvisited nodes

• U={2} recently visited node

48

• s[1]=T w=3

• s[2]=T dist[3]=α

• s[3]=F min {dist[w], dist[u]+cost(u,w)}

• s[4]=F min {dist[3], dist[2]+cost(2,3)}

• s[5]=F min{α, 10+20}= 30

• s[6]=F w=4 dist[4]= α

• S[7]=F min{dist(4),dist(2)+cost(2,4)}

• min{α,10+ α}= α

W=5 dist[5]= α min{dist(5),dist(2)+cost(2,5)}

 min{α,10+ α}= α
49

 Single-source Shortest Paths

• W=6 dist[6]=30

• Min{dist(6), dist(2)+cost(2,6)}=min{30,10+ α}=30

• W=7, dist(7)= α min{dist(7),dist(2)+cost(2,7)}

• min{α,10+ α}= α let min. cost is 30 at both 3 and 6 but

• Recently visited node 2 have only direct way to 3, so consider 3 is min cost

node from 2.

• Step-3 w=4,5,6,7

• s[1]=T s={1,2,3} w=4 ,dist[4]= α

• s[2]=T min{dist[4],dist[3]+cost(3.4)}=min{α,30+15}=45

• s[3]=T w=5, dist[5]= α min{dist(5), dist(3)+cost(3,5)}

• s[4]=F min{α,30+5}=35 similarily we obtain

• s[5]=F w=6, dist(6)=30 w=7 ,dist[7]= α so min cost is 30 at w=6 but

• s[6]=F no path from 3 so we consider 5 node so visited nodes 1,2,3, 5

• S[7]=F

 50

 Single-source Shortest Paths

• Step-4 w=4,6,7 s={1,2,3,5}

• s[1]=T w=4, dist[4]=45 min {dist[4], dist[5]+cost(5,4)}

• s[2]=T min{45,35+ α}=45

• s[3]=T w=6,dist[6]=30 min{dist[6],dist[5]+cost(5,6)}

• s[4]=F min{30, 35+ α}=30

• s[5]=T w=7,dist[7]= α min{dist[7],dist[5]+cost(5,7)}

• s[6]=F min{α, 35+7}=42

• S[7]=F here min cost is 30 at 6 node but there is no path

from 5 yo 6, so we consider 7 , 1,2,3,5,7 nodes visited.

• Therefore the graph traveled from source to destination

• Single source shortest path is drawn in next slide.

51

 Single-source Shortest Paths

•

52

 Single-source Shortest Paths

1

2
3

5

7
10

20 5

7

Min. cost is 42

Exercise

1 2 3

5 6 4

V0=1

Vd=5

 Single-source Shortest Paths

• Design of greedy algorithm

– Building the shortest paths one by one, in nondecreasing order of

path lengths

• e.g., in next slide figure

– 14: 10

– 145: 25

– …

• We need to determine 1) the next vertex to which a shortest path must be

generated and 2) a shortest path to this vertex.

– Notations

• S = set of vertices (including v0) to which the shortest paths have already

been generated

• dist(w) = length of shortest path starting from v0, going through only those

vertices that are in S, and ending at w

 Single-source Shortest Paths

• Design of greedy algorithm (Continued)

– Three observations

• If the next shortest path is to vertex u, then the path begins at v0,

ends at u, and goes through only those vertices that are in S.

• The destination of the next path generated must be that of vertex u

which has the minimum distance, dist(u), among all vertices not in

S.

• Having selected a vertex u as in observation 2 and generated the

shortest v0 to u path, vertex u becomes a member of S.

Single-source Shortest Paths

• Example

56

DIJKSTRA’S SHORTEST PATH ALGORITHM

Procedure SHORT-PATHS (v, cost, Dist, n)

// Dist (j) is the length of the shortest path from v to j in the //graph
G with n vertices; Dist (v) = 0 //

Boolean S(1:n); real cost (1:n,1:n), Dist (1:n); integer u, v, n, num, i,
w

// S(i) = 0 if i is not in S and s(i) =1 if it is in S//

// cost (i, j) = + if edge (i, j) is not there//

// cost (i,j) = 0 if i = j; cost (i, j) = weight of < i, j > //

for i1 to do // initialize S to empty //

S(i) 0; Dist (i) cost(v, i)

repeat

57

DIJKSTRA’S SHORTEST PATH ALGORITHM

(Contd..)

// initially for no vertex shortest path is available//

S (v)1; dist(v)0// Put v in set S //

for num2 to n-1 do // determine n-1 paths from// //vertex v //

choose u such that Dist (u)=min{dist(w)} and S(w)=0

S(u)1 // Put vertex u in S //

Dist(w)min (dist(w),Dist(u) + cost (u,w))

Repeat

repeat

end SHORT - PATHS

Overall run time of algorithm is O((n+|E|) log n)

Single-source Shortest Paths
• Example

 Single-source Shortest Paths
• Example

Single-source Shortest Paths

60

The Algorithm in action,

a

b

c

d

e 12

10

3
6

2

9
2

4 6

S 8

Write Trace execution of Dijkstra’s algorithm

on the graph below.

Single-source Shortest Paths

Exercise

