Greedy Method

Minimum Cost Spanning Trees \&Single source shortest path

Dr. K.RAGHAVA RAO
Professor in CSE
KL University
krraocse@gmail.com
http://mcadaa.blog.com

Problem: Laying Telephone Wire

Wiring: Naïve Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting the customers

Spanning trees

- Suppose you have a connected undirected graph
- Connected: every node is reachable from every other node
- Undirected: edges do not have an associated direction
- ...then a spanning tree of the graph is a connected subgraph in which there are no cycles

A connected, undirected graph

Four of the spanning trees of the graph

> -

Finding a spanning tree

- To find a spanning tree of a graph, pick an initial node and call it part of the spanning tree do a search from the initial node:
each time you find a node that is not in the spanning tree, add to the spanning tree both the new node and the edge you followed to get to it

An undirected graph

Result of a BFS starting from top

Result of a DFS starting from top

Minimizing costs

- Suppose you want to supply a set of houses (say, in a new subdivision) with:
- electric power
- water
- sewage lines
- telephone lines
- To keep costs down, you could connect these houses with a spanning tree (of, for example, power lines)
- However, the houses are not all equal distances apart
- To reduce costs even further, you could connect the houses with a minimum-cost spanning tree

Minimum-cost spanning trees

- Suppose you have a connected undirected graph with a weight (or cost) associated with each edge
- The cost of a spanning tree would be the sum of the costs of its edges
- A minimum-cost spanning tree is a spanning tree that has the lowest cost

A connected, undirected graph

A minimum-cost spanning tree

Greedy Approach

- Both Prim's and Kruskal's algorithms are greedy algorithms
- The greedy approach works for the MST problem; however, it does not work for many other problems!

How Can We Generate a MST?

Prim's algorithm

```
T = a spanning tree containing a single node s;
E = set of edges adjacent to s;
while T does not contain all the nodes {
        remove an edge ( }v,w\mathrm{ w) of lowest cost from E
        if w is already in T then discard edge (v, w)
        else {
        add edge (v, w) and node w to T
        add to E the edges adjacent to w
        }
}
```

- An edge of lowest cost can be found with a priority queue
- Testing for a cycle is automatic

Prim's Algorithm

Initialization

a. Pick a vertex r to be the root
b. Set $D(r)=0$, parent $(r)=$ null
c. For all vertices $v \in V, v \neq r, \operatorname{set} D(v)=\infty$
d. Insert all vertices into priority queue P, using distances as the keys

Vertex Parent

e	a	b	c	d
0	∞	∞	∞	∞

Prim's algorithm

The MST initially consists of the vertex e, and we update the distances and parent for its adjacent vertices

Prim's algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm

Running time of Prim's algorithm (without heaps)

Initialization of priority queue (array): $\mathrm{O}(|V|)$
Update loop: $|\boldsymbol{V}|$ calls

- Choosing vertex with minimum cost edge: $\mathrm{O}(|V|)$
- Updating distance values of unconnected vertices: each edge is considered only once during entire execution, for a total of $\mathrm{O}(|E|)$ updates
Overall cost without heaps: $\mathrm{O}\left(|E|+|V|^{2}\right)$

Minimum-cost Spanning Trees

- Example of MCST
- Finding a spanning tree of G with minimum cost

(a)

(b)

Prim's Algorithm

- Example

(5)
(4)

Prim's Algorithm Invariant

- At each step, we add the edge $(\boldsymbol{u}, \boldsymbol{v})$ s.t. the weight of $(\boldsymbol{u}, \boldsymbol{v})$ is minimum among all edges where \boldsymbol{u} is in the tree and v is not in the tree
- Each step maintains a minimum spanning tree of the vertices that have been included thus far
- When all vertices have been included, we have a MST for the graph!

Another Approach

- Create a forest of trees from the vertices
- Repeatedly merge trees by adding "safe edges" until only one tree remains
- A "safe edge" is an edge of minimum weight which does not create a cycle

forest: $\{a\},\{b\},\{c\},\{d\},\{e\}$

Kruskal's algorithm

T = empty spanning tree;
E = set of edges;
$\mathrm{N}=$ number of nodes in graph; while T has fewer than $N-1$ edges \{
remove an edge (v, w) of lowest cost from E
if adding (v, w) to T would create a cycle
then discard (v, w)
else add (v, w) to T
\}

- Finding an edge of lowest cost can be done just by sorting the edges
- Running time bounded by sorting (or findMin)
- $\mathrm{O}(|E| \log |E|)$, or equivalently, $\mathrm{O}(|E| \log |V|)$

Kruskal's algorithm

Initialization

a. Create a set for each vertex $\boldsymbol{v} \in \boldsymbol{V}$
b. Initialize the set of "safe edges" A comprising the MST to the empty set
c. Sort edges by increasing weight

$$
\begin{aligned}
& F=\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{e}\} \\
& A=\varnothing \\
& E=\{(\mathrm{a}, \mathrm{~d}),(\mathrm{c}, \mathrm{~d}),(\mathrm{d}, \mathrm{e}),(\mathrm{a}, \mathrm{c}), \\
&(\mathrm{b}, \mathrm{e}),(\mathrm{c}, \mathrm{e}),(\mathrm{b}, \mathrm{~d}),(\mathrm{a}, \mathrm{~b})\}
\end{aligned}
$$

Kruskal's algorithm

$$
\begin{aligned}
E=\{ & (a, d),(c, d),(d, e),(d, c), \\
& (b, e),(c, e),(b, d),(a, b)\}
\end{aligned}
$$

Forest
$\stackrel{A}{\varnothing}$
$\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{e}\} \quad\{(\mathrm{a}, \mathrm{d})\}$
$\{\mathrm{a}, \mathrm{d}, \mathrm{c}\},\{\mathrm{b}\},\{\mathrm{e}\} \quad\{(\mathrm{a}, \mathrm{d}),(\mathrm{c}, \mathrm{d})\}$
$\{\mathrm{a}, \mathrm{d}, \mathrm{c}, \mathrm{e}\},\{\mathrm{b}\} \quad\{(\mathrm{a}, \mathrm{d}),(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{e})\}$
$\{\mathrm{a}, \mathrm{d}, \mathrm{c}, \mathrm{e}, \mathrm{b}\} \quad\{(\mathrm{a}, \mathrm{d}),(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{e}),(\mathrm{b}, \mathrm{e})\}$

Kruskal's algorithm Invariant

- After each iteration, every tree in the forest is a MST of the vertices it connects
- Algorithm terminates when all vertices are connected into one tree

Kruskal's Algorithm

- Example

Exercise-1: compute MST for this graph using prim's and kruskal's algorithm

Mst cost is 25 pair 5,6

$$
1-6-5-4-3-2-7
$$

Exercise-2: compute MST for this graph using prim's and kruskal's algorithm

Exercise-3: compute MST for this graph using prim's and kruskal's algorithm

Optimal Merge Patterns

- Problem
- Given n sorted files, find an optimal way (i.e., requiring the fewest comparisons or record moves) to pairwise merge them into one sorted file
- It fits ordering paradigm
- Example
- Three sorted files $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ with lengths $(30,20,10)$
- Solution 1: merging x_{1} and x_{2} (50 record moves), merging the result with $x_{3}(60$ moves $) \rightarrow$ total 110 moves
- Solution 2: merging x_{2} and x_{3} (30 moves), merging the result with X_{1} (60 moves) \rightarrow total 90 moves
- The solution 2 is better

Optimal Merge Patterns

- A greedy method (for 2-way merge problem)
- At each step, merge the two smallest files
- e.g., five files with lengths (20,30,10,5,30) (Figure 4.11)

Total nurnter of record moves = weighted external path length
The optimal 2-way merge pattern = binary merge tree with minimum weighted external path length

Optimal Merge Patterns

Algorithm

struct treenode \{
struct treenode *lchild, *rchild; int weight;
\};
typedef struct treenode Type;
Type *Tree(int n)
// list is a global list of n single node
// binary trees as described above.
\{

```
for (int i=1; i<n; i++) {
    Type *pt = new Type;
        // Get a new tree node.
        pt -> lchild = Least(list); // Merge two trees with
        pt -> rchild = Least(list); // smallest lengths.
        pt -> weight = (pt->lchild)-> weight
                        + (pt->rchild)->weight;
        Insert(list, *pt);
    }
    return (Least(list)); // Tree left in l is the merge tree.
```

\}

Optimal Merge Patterns

- Example

3

Optimal Merge Patterns

Time

- If list is kept in nondecreasing order: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- If list is represented as a minheap: $O(n \log n)$

Optimal Merge Patterns

- Exercise;
- Let $\mathrm{n}=3$ and $(11,12,13)=(5,10,3)$, There are $\mathrm{n}!=6$ possible orderings. Find optimal ordering .

Optimal Storage on Tapes

- There are n programs that are to be stored on a computer tape of length L. Associated with each program i is a length L_{i}.
- Assume the tape is initially positioned at the front. If the programs are stored in the order $\mathrm{I}=$ $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{n}}$, the time t_{j} needed to retrieve program i_{j}

$$
\mathrm{t}_{\mathrm{j}}=\quad \sum_{\mathrm{k}=1}^{\mathrm{j}} \mathrm{~L}_{\mathrm{i}_{\mathrm{k}}}
$$

Optimal Storage on Tapes

- If all programs are retrieved equally often, then the mean retrieval time $($ MRT $)=\frac{1}{n} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{j}}$
- This problem fits the ordering paradigm. Minimizing the MRT is equivalent to minimizing
$a(0)=\sum \sum_{i}^{2}$

Optimal Storage on Tapes

- $\mathrm{n}=4,\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}\right)=(100,10,15,27)$

$$
\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}\right)=(2,1,2,1)
$$

	Feasible solution	Processing sequence	value
1	$(1,2)$	2,1	110
2	$(1,3)$	1,3 or 3,1	115
3	$(1,4)$	4,1	127
4	$(2,3)$	2,3	25
5	$(3,4)$	4,3	42
6	(1)	1	100
7	(2)	2	10
8	(3)	3	15
9	(4)	4	27

Example

- Let $\mathrm{n}=3,\left(\mathrm{~L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right)=(5,10,3) .6$ possible orderings. The optimal is $3,1,2$
Ordering I $\mid d(I)$

| $1,2,3$ | $5+5+10+5+10+3=38$ |
| :--- | :--- | :--- |
| $1,3,2$ | $5+5+3+5+3+10=31$ |
| $2,1,3$ | $10+10+5+10+5+3=43$ |
| $2,3,1$ | $10+10+3+10+3+5=41$ |
| $3,1,2$ | $3+3+5+3+5+10=29$ |
| $3,2,1$, | $3+3+10+3+10+5=34$ |

Optimal Storage on Tapes

- Exercise-1
- $\mathrm{N}=4(11,12,13,14)=(2,4,6,8)$. Find optimal storage on tapes.
- Answer permutation is at $(1,2,3,4)$

TVSP(Tree Vertex Splitting Problem)

Let $\mathrm{T}=(\mathrm{V}, \mathrm{E}, \mathrm{W})$ be a directed tree.
A weighted tree can be used to model a distribution network in which electrical signals are transmitted.
Nodes in the tree correspond to receiving stations \& edges correspond to transmission lines.
In the process of transmission some loss is occurred. Each edge in the tree is labeled with the loss that occurs in traversing that edge.
The network model may not able tolerate losses beyond a certain level. In places where the loss exceeds the tolerance value boosters have to be placed.

Given a networks and tolerance value, the TVSP problem is to determine an optimal placement of boosters. The boosters can only placed at the nodes of the tree.

$$
\mathrm{d}(\mathrm{u})=\operatorname{Max}\{\mathrm{d}(\mathrm{v})+\mathrm{w}(\operatorname{Parent}(\mathrm{u}), \mathrm{u})\}
$$

$\mathrm{d}(\mathrm{u})$ - delay of node $\quad \mathrm{v}$-set of all edges $\& \mathrm{v}$ belongs to child(u) δ tolerance value

TVSP(Tree Vertex Splitting Problem)

TVSP(Tree Vertex Splitting Problem)

- If $\mathrm{d}(\mathrm{u})>=\delta$ than place the booster.

$$
\begin{aligned}
d(7) & =\max \{0+w(4,7)\}=1 \\
d(8) & =\max \{0+w(4,8)\}=4 \\
d(9) & =\max \{0+\mathrm{w}(6,9)\}=2 \\
d(10) & =\max \{0+w(6,10)\}=3 \quad \mathrm{~d}(5)=\max \{0+e(3.3)\}=1 \\
d(4) & =\max \{1+w(2,4), 4+w(2,4)\}=\max \{1+2,4+3\}=6>\delta->\text { booster } \\
d(6) & =\max \{2+w(3,6), 3+w(3,6)\}=\max \{2+3,3+3\}=6>\delta->\text { booster } \\
d(2) & =\max \{6+w(1,2)\}=\max \{6+4)=10>\delta->\text { booster } \\
d(3) & =\max \{1+w(1,3), 6+w(1,3)\}=\max \{3,8\}=8>\delta->\text { booster }
\end{aligned}
$$

Note: No need to find tolerance value for node 1 because from source only power is transmitting

Single-source Shortest Paths

Single-source Shortest Paths

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a directed graph and a main function is
$\mathrm{C}(\mathrm{e})(\mathrm{c}=$ cost, $\mathrm{e}=\mathrm{edge})$ for the edges of graph ' G ' and a source vertex it will represented with V_{0} the vertices represents cities and weights represents distance between 2 cities.
- The objective of the problem find shortest path from source to destination.
- The length of path is defined to be sum of weights of edges on the path.
- $\mathrm{S}[\mathrm{i}]=\mathrm{T}$ if vertex i present in set 's'
- S[i]=F if vertex i is not present in set ' s '
- Formula
- Min \{distance[w],distance[u]+cost[u,w]\}
u-recently visited node w-unvisited node

Single-source Shortest Paths

- Step-1 s[1]
- $s[1]=T \quad \operatorname{dist}[2]=10$
- $s[2]=F \quad \operatorname{dist}[3]=\alpha$
- $\mathrm{s}[3]=\mathrm{F} \quad \operatorname{dist}[4]=\alpha$
- $\mathrm{s}[4]=\mathrm{F} \quad \operatorname{dist}[5]=\alpha$
- $s[5]=F \quad$ dist[6] $=30$
- $s[6]=F \quad \operatorname{dist}[7]=\alpha$
- $S[7]=F$
- Step-2 $\mathrm{s}[1,2]$ the visited nodes
- $\mathrm{W}=\{3,4,5,6,7\}$ unvisited nodes
- $\mathrm{U}=\{2\}$ recently visited node

Single-source Shortest Paths

- $s[1]=T \quad w=3$
- $\mathrm{s}[2]=\mathrm{T} \quad \operatorname{dist}[3]=\alpha$
- s[3]=F $\quad \min \{\operatorname{dist}[w], \operatorname{dist}[u]+\operatorname{cost}(u, w)\}$
- $s[4]=F \quad \min \{\operatorname{dist}[3], \operatorname{dist}[2]+\operatorname{cost}(2,3)\}$ $\min \{\alpha, 10+20\}=30$
$\mathrm{w}=4 \operatorname{dist[4]=\alpha }$
$\min \{\operatorname{dist}(4), \operatorname{dist}(2)+\operatorname{cost}(2,4)\}$
$\min \{\alpha, 10+\alpha\}=\alpha$
$\mathrm{W}=5 \operatorname{dist}[5]=\alpha \quad \min \{\operatorname{dist}(5), \operatorname{dist}(2)+\operatorname{cost}(2,5)\}$ $\min \{\alpha, 10+\alpha\}=\alpha$

Single-source Shortest Paths

- $\mathrm{W}=6$ dist[6]=30
- $\operatorname{Min}\{\operatorname{dist}(6), \operatorname{dist}(2)+\operatorname{cost}(2,6)\}=\min \{30,10+\alpha\}=30$
- $W=7, \operatorname{dist}(7)=\alpha \min \{\operatorname{dist}(7), \operatorname{dist}(2)+\operatorname{cost}(2,7)\}$
- $\min \{\alpha, 10+\alpha\}=\alpha$ let min. cost is 30 at both 3 and 6 but
- Recently visited node 2 have only direct way to 3 , so consider 3 is min cost node from 2.
- Step-3 $\quad \mathrm{w}=4,5,6,7$
- $s[1]=T \quad s=\{1,2,3\} \mathrm{w}=4$, dist[4]= α
- $\mathrm{s}[2]=\mathrm{T} \quad \min \{\operatorname{dist}[4], \operatorname{dist}[3]+\operatorname{cost}(3.4)\}=\min \{\alpha, 30+15\}=45$
- $s[3]=T \quad w=5, \operatorname{dist}[5]=\alpha \min \{\operatorname{dist}(5), \operatorname{dist}(3)+\operatorname{cost}(3,5)\}$
- $s[4]=F \quad \min \{\alpha, 30+5\}=35$ similarily we obtain
- $\mathrm{s}[5]=\mathrm{F} \quad \mathrm{w}=6, \operatorname{dist}(6)=30 \mathrm{w}=7$, $\operatorname{dist}[7]=\alpha$ so min cost is 30 at $\mathrm{w}=6$ but
- $s[6]=F$ no path from 3 so we consider 5 node so visited nodes 1,2,3, 5
- $S[7]=F$

Single-source Shortest Paths

- Step-4 $\mid w=4,6,7 \quad s=\{1,2,3,5\}$
- $s[1]=T \quad w=4, \operatorname{dist}[4]=45 \min \{\operatorname{dist}[4], \operatorname{dist}[5]+\operatorname{cost}(5,4)\}$
- s[2]=T
- $\mathrm{s}[3]=\mathrm{T}$
- s[4]=F
- $s[5]=T$
- s[6]=F
- $S[7]=F$ from 5 yo 6 , so we consider $7,1,2,3,5,7$ nodes visited.
- Therefore the graph traveled from source to destination
- Single source shortest path is drawn in next slide.

Single-source Shortest Paths

Exercise

$\mathrm{V} 0=1$
$\mathrm{Vd}=5$

Single-source Shortest Paths

- Design of greedy algorithm
- Building the shortest paths one by one, in nondecreasing order of path lengths
- e.g., in next slide figure
$-1 \rightarrow 4$: 10
$-1 \rightarrow 4 \rightarrow 5: 25$
- ...
- We need to determine 1) the next vertex to which a shortest path must be generated and 2) a shortest path to this vertex.
- Notations
- $S=$ set of vertices (including v_{0}) to which the shortest paths have already been generated
- $\operatorname{dist}(w)=$ length of shortest path starting from v_{0}, going through only those vertices that are in S, and ending at w

Single-source Shortest Paths

- Design of greedy algorithm (Continued)
- Three observations
- If the next shortest path is to vertex u, then the path begins at v_{0}, ends at u, and goes through only those vertices that are in S.
- The destination of the next path generated must be that of vertex u which has the minimum distance, $\operatorname{dist}(u)$, among all vertices not in S.
- Having selected a vertex u as in observation 2 and generated the shortest v_{0} to u path, vertex u becomes a member of S.

Single-source Shortest Paths

- Example

(a) Graph

	Path
1) 1,4	Length
2) $1,4,5$	10
3) $1,4,5,2$	45
4) 1,3	45

(b) Shortest paths from 1

DIJKSTRA'S SHORTEST PATH ALGORITHM

Procedure SHORT-PATHS (v, cost, Dist, n)
// Dist (j) is the length of the shortest path from v to j in the //graph G with n vertices; Dist (v) $=0 / /$
Boolean $\mathrm{S}(1: \mathrm{n})$; real cost (1:n,1:n), Dist (1:n); integer u, v, n, num, i , w
$/ / S(\mathrm{i})=0$ if i is not in S and $\mathrm{s}(\mathrm{i})=1$ if it is in $\mathrm{S} / /$
$/ / \operatorname{cost}(i, j)=+\alpha$ if edge (i, j) is not there $/ /$
$/ / \operatorname{cost}(i, j)=0$ if $\mathrm{i}=\mathrm{j}$; cost $(\mathrm{i}, \mathrm{j})=$ weight of $\langle\mathrm{i}, \mathrm{j}\rangle / /$
for $\mathrm{i} \leftarrow 1$ to do // initialize S to empty //
$S(i) \leftarrow 0$; Dist $(i) \leftarrow \operatorname{cost}(v, i)$
repeat

DIJKSTRA'S SHORTEST PATH ALGORITHM (Contd..)

// initially for no vertex shortest path is available//
$S(\mathrm{v}) \leftarrow 1$; dist $(\mathrm{v})<0 / /$ Put v in set $\mathrm{S} / /$
for num <2 to $\mathrm{n}-1$ do // determine n-1 paths from// //vertex v // choose u such that $\operatorname{Dist}(u)=\min \{\operatorname{dist}(w)\}$ and $S(w)=0$
$\mathrm{S}(\mathrm{u}) \leftarrow 1 / /$ Put vertex u in $\mathrm{S} / /$
$\operatorname{Dist}(\mathrm{w})<\min (\operatorname{dist}(\mathrm{w}), \operatorname{Dist}(\mathrm{u})+\operatorname{cost}(\mathrm{u}, \mathrm{w}))$
Repeat
repeat
end SHORT - PATHS
Overall run time of algorithm is $\mathrm{O}((\mathrm{n}+|\mathrm{E}|) \log \mathrm{n})$

Single-source Shortest Paths

- Example

(a) Digraph

	1	2	3	4		6	7	8
1	0							
2	300	0						
3	100	800	0					
4			1200	0				
5				1500	0	250		
6				1000		0	900	1400
7							0	1000
8	1700							0

(b) Length-adjacency matrix

Single-source Shortest Paths

- Example

Iteration	S	Vertex selected	Distance							
			LA	SF	DEN	CHI	BOST	NY	MIA	NO
			[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Initial	--	---	+ +	$+\infty$	$+\infty$	1500	0	250	$+\infty$	+
1	\{5\}	6	$+\infty$	$+\infty$	$+\infty$	1250	0	250	1150	1650
2	\{5,6\}	7	$+\infty$	$+\infty$	$+\infty$	1250	0	250	1150	1650
3	\{5,6,7)	4	+ ${ }^{\circ}$	$+\infty$	2450	1250	0	250	1150	1650
4	(5,6,7,4)	8	3350	+	2450	1250	0	250	1150	1650
5	\{5,6,7,4,8\}	3	3350	3250	2450	1250	0	250	1150	1650
6	$\begin{aligned} & \{5,6,7,4,8,3\} \\ & \{5,6,7,4,8,3,2\} \end{aligned}$	2	3350	3250	2450	1250	0	250	1150	1650

Single-source Shortest Paths

The Algorithm in action,

(a) The ascrapls

$$
\begin{aligned}
& \alpha(C-A-B)+W / B C=6 \\
& \operatorname{cR(-1.A)}+4 V(-A C)=5 \\
& 4(-1 \cdot-1)+W(-1+5=9 \\
& \text { Seferce } \boldsymbol{H} \text { mex. }
\end{aligned}
$$

(b) An intermediake step

(e) An interrnediate step: CH was considered. bue noe ehosen, to repince $C f f$ as a candidater.

Single-source Shortest Paths

Exercise
Write Trace execution of Dijkstra's algorithm on the graph below.

