
23 March 2012

Asymptotic Notation

Dr. K.RAGHAVA RAO

Professor in CSE

KL University

krraocse@gmail.com
http://mcadaa.blog.com

mailto:krraocse@gmail.com

asymp - 1

Introduction:Asymptotic Notation

 Definition: Asymptotic complexity is a way of expressing the
main component of the cost of an algorithm, using idealized
units of computational work.

 Consider, for example, the algorithm for sorting a deck of
cards, which proceeds by repeatedly searching through the
deck for the lowest card.

 A problem may have numerous algorithmic solutions. In order to choose the
best algorithm for a particular task, you need to be able to judge how long a
particular solution will take to run. Or, more accurately, you need to be able
to judge how long two solutions will take to run, and choose the better of
the two. You don't need to know how many minutes and seconds they will
take, but you do need some way to compare algorithms against one

another.

asymp - 2

Asymptotic Complexity

 Running time of an algorithm as a function of
input size n for large n.

 Expressed using only the highest-order term in
the expression for the exact running time.

 Instead of exact running time, say Q(n2).

 Describes behavior of function in the limit.

 Written using Asymptotic Notation.

asymp - 3

Asymptotic Notation

 Q, O, W, o, w

 Defined for functions over the natural numbers.

 Ex: f(n) = Q(n2).

 Describes how f(n) grows in comparison to n2.

 Define a set of functions; in practice used to compare
two function sizes.

 The notations describe different rate-of-growth
relations between the defining function and the
defined set of functions.

asymp - 4

-notation

(g(n)) = {f(n) :

positive constants c1, c2, and n0,

such that n n0,

we have 0 c1g(n) f(n) c2g(n)

}

For function g(n), we define (g(n)),
big-Theta of n, as the set:

g(n) is an asymptotically tight bound for f(n).

Intuitively: Set of all functions that
have the same rate of growth as g(n).

asymp - 5

-notation

(g(n)) = {f(n) :

positive constants c1, c2, and n0,

such that n n0,

we have 0 c1g(n) f(n) c2g(n)

}

For function g(n), we define (g(n)), big-Theta of n, as the set:

Technically, f(n) (g(n)).

Older usage, f(n) = (g(n)).

Both accepted.

f(n) and g(n) are nonnegative, for large n.

asymp - 6

Examples

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

3n+2 = (n) as 3n+2>=3n for all n>=2 and 3n+2<=4n for all n>=2,

So c1=3 and c2=4 and n0=2. So,3n+3= (n),

10n2+4n+2= (n2) ,6*2n+n2= (2n) and

10*log n+4= (log n).

3n+2# (1), 3n+3# (n2), 10n2+4n+2# (n), 10n2+4n+2# (1)

asymp - 7

Example

 10n2 - 3n = (n2)

 What constants for n0, c1, and c2 will work?

 Make c1 a little smaller than the leading
coefficient, and c2 a little bigger.

 To compare orders of growth, look at the
leading term.

 Exercise: Prove that n2/2-3n= (n2)

asymp - 8

Example

 Is 3n3 (n4) ??

 How about 22n (2n)??

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

asymp - 9

O-notation

O(g(n)) = {f(n) :

positive constants c and n0,

such that n n0,

we have 0 f(n) cg(n) }

For function g(n), we define O(g(n)), big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n).

Intuitively: Set of all functions

whose rate of growth is the same as

or lower than that of g(n).

f(n) = (g(n)) f(n) = O(g(n)).

(g(n)) O(g(n)).

asymp - 10
10

Asymptotic Notation (O)

 Examples

 3n+2=O(n) /* 3n+2 4n for n 2 */

 3n+3=O(n) /* 3n+3 4n for n 3 */

 100n+6=O(n) /* 100n+6 101n for n 10 */

 10n2+4n+2=O(n2) /* 10n2+4n+2 11n2 for n 5 */

 6*2n+n2=O(2n) /* 6*2n+n2 7*2n for n 4 */*

asymp - 11
11

More Big-Oh Examples

7n-2
7n-2 is O(n)

need c > 0 and n0 1 such that 7n-2 c•n for n n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0 1 such that 3n3 + 20n2 + 5 c•n3 for n n0

this is true for c = 4 and n0 = 21

 3 log n + log log n

3 log n + log log n is O(log n)

need c > 0 and n0 1 such that 3 log n + log log n c•log n for n n0

this is true for c = 4 and n0 = 2

asymp - 12
12

Big-Oh and Growth Rate

 The big-Oh notation gives an upper bound on the growth

rate of a function

 The statement “f(n) is O(g(n))” means that the growth rate

of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions according

to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

asymp - 13
13

Big-Oh Rules

 If is f(n) a polynomial of degree d, then f(n) is

O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

 Use the smallest possible class of functions

 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class

 Say “3n 5 is O(n)” instead of “3n 5 is O(3n)”

asymp - 14
14

Relatives of Big-Oh

big-Omega

 f(n) is (g(n)) if there is a constant c > 0

and an integer constant n0 1 such that

f(n) c•g(n) for n n0

big-Theta

 f(n) is (g(n)) if there are constants c’ > 0 and c’’ > 0 and an integer
constant n0 1 such that c’•g(n) f(n) c’’•g(n) for n n0

little-oh

 f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant n0 > 0
such that f(n) < c•g(n) for n n0

little-omega

 f(n) is (g(n)) if, for any constant c > 0, there is an integer constant n0 > 0
such that f(n) > c•g(n) for n n0

asymp - 15
15

Intuition for Asymptotic

Notation

Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

 f(n) is (g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta

 f(n) is (g(n)) if f(n) is asymptotically equal to g(n)

little-oh

 f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega

 f(n) is (g(n)) if is asymptotically strictly greater than g(n)

asymp - 16
16

Example Uses of the

Relatives of Big-Oh

f(n) is (g(n)) if, for any constant c > 0, there is an integer constant n0 >
0 such that f(n) > c•g(n) for n n0

need 5n0
2 > c•n0 given c, the n0 that satifies this is n0 > c/5 > 0

 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0 1
such that f(n) c•g(n) for n n0

let c = 1 and n0 = 1

 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0 1
such that f(n) c•g(n) for n n0

let c = 5 and n0 = 1

 5n2 is (n2)

asymp - 17

 O(1): constant

 O(n): linear

 O(n2): quadratic

 O(n3): cubic

 O(2n): exponential

 O(logn)

 O(nlogn)

asymp - 18

*Figure 1.7:Function values (p.38)

asymp - 19

*Figure 1.8:Plot of function values(p.39)

nlogn

n

logn

asymp - 20

*Figure 1.9:Times on a 1 billion instruction per second computer(p.40)

asymp - 21

Examples

 Any linear function an + b is in O(n2). How?

 Show that 3n3=O(n4) for appropriate c and n0.

O(g(n)) = {f(n) : positive constants c and n0,

such that n n0, we have 0 f(n) cg(n) }

asymp - 22

-notation

g(n) is an asymptotic lower bound for f(n).

Intuitively: Set of all functions

whose rate of growth is the same

as or higher than that of g(n).

f(n) = (g(n)) f(n) = (g(n)).

(g(n)) (g(n)).

(g(n)) = {f(n) :

positive constants c and n0,

such that n n0,

we have 0 cg(n) f(n)}

For function g(n), we define (g(n)), big-Omega of n, as the set:

asymp - 23

Examples

 3n+2= (n) as 3n+2>=3n for n>=1

 3n+3= (n) as 3n+3>=3n for n>=1

 10n2 +4n+2= (n2) as 10n2 +4n+2>=n2 for n>=1

6*2n +n 2 = (n2) as 6*2n +n2>=2n for n>=1.

10n2+4n+2= (n) and 10n2+4n+2= (1)

6*2n+n2= (n2), 6*2n+n2= (n) also 6*2n+n2= (1)

(g(n)) = {f(n) : positive constants c and n0, such that n

n0, we have 0 cg(n) f(n)}

asymp - 24

Relations Between , O,

asymp - 25

Relations Between , , O

 I.e., (g(n)) = O(g(n)) (g(n))

 In practice, asymptotically tight bounds are

obtained from asymptotic upper and lower bounds.

Theorem : For any two functions g(n) and f(n),

f(n) = (g(n)) iff

f(n) = O(g(n)) and f(n) = (g(n)).

asymp - 26 Comp 122

Running Times

 “Running time is O(f(n))” Worst case is O(f(n))

 O(f(n)) bound on the worst-case running time
O(f(n)) bound on the running time of every input.

 (f(n)) bound on the worst-case running time
(f(n)) bound on the running time of every input.

 “Running time is (f(n))” Best case is (f(n))

 Can still say “Worst-case running time is (f(n))”

 Means worst-case running time is given by some
unspecified function g(n) (f(n)).

asymp - 27

Asymptotic Notation in Equations

 Can use asymptotic notation in equations to
replace expressions containing lower-order terms.

 For example,

4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + (n)

= 4n3 + (n2) = (n3). How to interpret?

 In equations, (f(n)) always stands for an
anonymous function g(n) (f(n))

 In the example above, (n2) stands for
3n2 + 2n + 1.

asymp - 28

Little o-notation

f(n) becomes insignificant relative to g(n) as n
approaches infinity:

lim [f(n) / g(n)] = 0
n

g(n) is an upper bound for f(n) that is not
asymptotically tight.

Observe the difference in this definition from previous
ones. Why?

o(g(n)) = {f(n): c > 0, n0 > 0 such that
n n0, we have 0 f(n) < cg(n)}.

For a given function g(n), the set little-o:

asymp - 29

(g(n)) = {f(n): c > 0, n0 > 0 such that

n n0, we have 0 cg(n) < f(n)}.

–notation

f(n) becomes arbitrarily large relative to g(n) as n

approaches infinity:

lim [f(n) / g(n)] = .
n

g(n) is a lower bound for f(n) that is not

asymptotically tight.

For a given function g(n), the set little-omega:

Little

