Asymptotic Notation

Dr. K.RAGHAVA RAO Professor in CSE KL University <u>krraocse@gmail.com</u> http://mcadaa.blog.com

23 March 2012

Introduction: Asymptotic Notation

- <u>Definition:</u> Asymptotic complexity is a way of expressing the main component of the cost of an algorithm, using idealized units of computational work.
- Consider, for example, the algorithm for sorting a deck of cards, which proceeds by repeatedly searching through the deck for the lowest card.
- A problem may have numerous algorithmic solutions. In order to choose the best algorithm for a particular task, you need to be able to judge how long a particular solution will take to run. Or, more accurately, you need to be able to judge how long two solutions will take to run, and choose the better of the two. You don't need to know how many minutes and seconds they will take, but you do need some way to compare algorithms against one another.

Asymptotic Complexity

 Running time of an algorithm as a function of input size *n* for large *n*.

- Expressed using only the highest-order term in the expression for the exact running time.
 - Instead of exact running time, say Q(n²).
- Describes behavior of function in the limit.

• Written using **Asymptotic Notation**.

Asymptotic Notation

- Q, O, W, o, w
- Defined for functions over the natural numbers.
 - **Ex:** $f(n) = Q(n^2)$.
 - Describes how f(n) grows in comparison to n^2 .
- Define a *set* of functions; in practice used to compare two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

<u> Θ -notation</u>

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

$$\begin{split} \Theta(g(n)) &= \{f(n) :\\ \exists \text{ positive constants } c_1, c_2, \text{ and } n_{0,} \\ \text{such that } \forall n \geq n_0, \\ \text{we have } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \\ \} \end{split}$$

Intuitively: Set of all functions that have the same rate of growth as g(n).

g(n) is an asymptotically tight bound for f(n).

<u> Θ -notation</u>

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

 $\Theta(g(n)) = \{f(n) :$ $\exists \text{ positive constants } c_1, c_2, \text{ and } n_{0,}$ such that $\forall n \ge n_0$, we have $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ } Technically, $f(n) \in \Theta(g(n))$.

Older usage, $f(n) \in \Theta(g(n))$. Both accepted.

f(n) and g(n) are nonnegative, for large n.

Examples

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, \quad 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$

 $3n+2 = \Theta(n)$ as 3n+2 >= 3n for all n >= 2 and 3n+2 <= 4n for all n >= 2,

So c1=3 and c2=4 and $n_0=2$. So, $3n+3=\Theta(n)$,

 $10n^2+4n+2=\Theta(n^2), 6*2^n+n^2=\Theta(2^n)$ and

 $10*\log n+4=\Theta(\log n)$.

 $3n+2\# \Theta(1), 3n+3\# \Theta(n^2), 10n^2+4n+2\# \Theta(n), 10n^2+4n+2\# \Theta(1)$

Example

- $10n^2 3n = \Theta(n^2)$
- What constants for n_0 , c_1 , and c_2 will work?
- Make c₁ a little smaller than the leading coefficient, and c₂ a little bigger.
- To compare orders of growth, look at the leading term.
- Exercise: Prove that $n^2/2 3n = \Theta(n^2)$

Example

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, \quad 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$

- Is $3n^3 \in \Theta(n^4)$??
- How about $2^{2n} \in \Theta(2^n)$??

O-notation

For function g(n), we define O(g(n)), big-O of *n*, as the set:

 $O(g(n)) = \{f(n) :$ $\exists \text{ positive constants } c \text{ and } n_{0,}$ such that $\forall n \ge n_0$, we have $0 \le f(n) \le cg(n) \}$

Intuitively: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).

g(n) is an *asymptotic upper bound* for f(n).

$$\begin{split} f(n) &= \Theta(g(n)) \Rightarrow f(n) = O(g(n)).\\ \Theta(g(n)) &\subset O(g(n)). \end{split}$$

Asymptotic Notation (O)

• Examples

- 3n+2=O(n) /* $3n+2\leq 4n$ for $n\geq 2$ */
- 3n+3=O(n) /* $3n+3\leq 4n$ for $n\geq 3$ */
- 100n+6=O(n) /* 100n+6≤101n for n≥10 */
- $10n^2+4n+2=O(n^2) /* 10n^2+4n+2 \le 11n^2$ for $n \ge 5 */$
- $6*2^{n}+n^{2}=O(2^{n}) /* 6*2^{n}+n^{2} \le 7*2^{n}$ for $n \ge 4 */*$

More Big-Oh Examples

♦ 7n-2

7n-2 is O(n) need c > 0 and $n_0 \ge 1$ such that 7n-2 \le c•n for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$

$and 3n^3 + 20n^2 + 5$

 $3n^3 + 20n^2 + 5$ is O(n³)

need c>0 and $n_0\geq 1$ such that $3n^3+20n^2+5\leq c\bullet n^3$ for $n\geq n_0$ this is true for c=4 and $n_0=21$

$\blacksquare 3 \log n + \log \log n$

 $\begin{aligned} 3 \ \text{log } n + \text{log } \text{log } n \text{ is } O(\text{log } n) \\ need \ c > 0 \ \text{and } n_0 \ge 1 \ \text{such that } 3 \ \text{log } n + \text{log } \text{log } n \le c \text{-log } n \ \text{for } n \ge n_0 \\ \text{this is true for } c = 4 \ \text{and } n_0 = 2 \end{aligned}$

11

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$	
g(n) grows more	Yes	No	
<i>f</i> (<i>n</i>) grows more	No	Yes	
Same growth	Yes	Yes	

- If is *f*(*n*) a polynomial of degree *d*, then *f*(*n*) is
 O(*n^d*), i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Relatives of Big-Oh

big-Omega

 f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n₀ ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n₀

f(n) is Θ(g(n)) if there are constants c' > 0 and c" > 0 and an integer constant n₀ ≥ 1 such that c'•g(n) ≤ f(n) ≤ c"•g(n) for n ≥ n₀

🕨 little-oh

f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant n₀ > 0 such that f(n) < c•g(n) for n ≥ n₀

🔶 little-omega

f(n) is ω(g(n)) if, for any constant c > 0, there is an integer constant n₀ > 0 such that f(n) > c•g(n) for n ≥ n₀

Big-Oh

• f(n) is O(g(n)) if f(n) is asymptotically **less than or equal** to g(n)

big-Omega

- f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)
 big-Theta
- f(n) is $\Theta(g(n))$ if f(n) is asymptotically **equal** to g(n)

little-oh

• f(n) is o(g(n)) if f(n) is asymptotically **strictly less** than g(n)

little-omega

• f(n) is ω(g(n)) if is asymptotically **strictly greater** than g(n)

Example Uses of the Relatives of Big-Oh

• $5n^2$ is $\Omega(n^2)$

 $\begin{array}{l} f(n) \text{ is } \Omega(g(n)) \text{ if there is a constant } c > 0 \text{ and an integer constant } n_0 \geq 1 \\ \text{ such that } f(n) \geq c \bullet g(n) \text{ for } n \geq n_0 \end{array}$

let c = 5 and $n_0 = 1$

• $5n^2$ is $\Omega(n)$

 $\begin{array}{l} f(n) \text{ is } \Omega(g(n)) \text{ if there is a constant } c > 0 \text{ and an integer constant } n_0 \geq 1 \\ \text{ such that } f(n) \geq c \bullet g(n) \text{ for } n \geq n_0 \end{array}$

let c = 1 and $n_0 = 1$

• $5n^2$ is $\omega(n)$

f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 > 0$ such that $f(n) > c \cdot g(n)$ for $n \ge n_0$

need $5n_0^2 > c \cdot n_0 \rightarrow \text{given c}$, the n_0 that satisfies this is $n_0 > c/5 > 0$

- O(1): constant
- O(n): linear
- O(n²): quadratic
- $O(n^3)$: cubic
- O(2ⁿ): exponential
- O(logn)
- O(nlogn)

***Figure 1.7:**Function values (p.38)

Instance characteristic n									
Time	Name	1	2	4	8	16	32		
1	Constant	1	1	1	I	1	1		
log n	Logarithmic	0	1	2	3	4	5		
n	Linear	I.	2	4	8	16	32		
$n \log n$	Log linear	0	2	8	24	64	160		
n^2	Quadratic	1	4	16	64	256	1024		
n ³	Cubic	1	8	64	512	4096	32768		
2"	Exponential	2	4	16	256	65536	4294967296		
<i>n</i> !	Factorial	1	2	24	40326	20922789888000	26313 x 10 ⁵³		

***Figure 1.8:**Plot of function values(p.39)

***Figure 1.9:**Times on a 1 billion instruction per second computer(p.40)

$n \qquad f(n)=n$	Time for $f(n)$ instructions on a 10 ⁹ instr/sec computer								
	$f(n) = \log_2 n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=n^4$	$f(n)=n^{10}$	$f(n)=2^n$			
10	.01µs	.03µs	.1µs	1µs	10µs	10sec	1µs		
20	.02µs	.09µs	.4µs	8µs	160µs	2.84hr	1ms		
30	.03µs	.15µs	.9µs	27µs	810µs	6.83d	1sec		
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3min		
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d		
100	.10µs	.66µs	10µs	1ms	100ms	3171yr	4*10 ¹³ yr		
1,000	1.00µs	9.96µs	1ms	1sec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr		
10,000	10.00µs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr			
100,000	100.00µs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr			
,000,000	1.00ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr			

```
\mu s = microsecond = 10<sup>-6</sup> seconds
ms = millisecond = 10<sup>-3</sup> seconds
sec = seconds
min = minutes
hr = hours
d = days
yr = years
```

Examples

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le f(n) \le cg(n) \}$

- Any linear *function* an + b is in $O(n^2)$. **How?**
- Show that $3n^3 = O(n^4)$ for appropriate *c* and n_0 .

Ω -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of n, as the set:

 $\Omega(g(n)) = \{f(n) : \\ \exists \text{ positive constants } c \text{ and } n_{0,} \\ \text{such that } \forall n \ge n_0, \end{cases}$

we have $0 \le cg(n) \le f(n)$

Intuitively: Set of all functions whose *rate of growth* is the same as or higher than that of g(n).

g(n) is an asymptotic lower bound for f(n). $f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$ $\Theta(g(n)) \subset \Omega(g(n)).$

Examples

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le cg(n) \le f(n)\}$

- $3n+2=\Omega(n)$ as 3n+2>=3n for n>=1
- $3n+3=\Omega(n)$ as 3n+3>=3n for n>=1
- $10n^2 + 4n + 2 = \Omega(n^2)$ as $10n^2 + 4n + 2 > = n2$ for n > = 1 $6*2^n + n^2 = \Omega(n^2)$ as $6*2^n + n^2 > = 2^n$ for n > = 1.

 $10n^2+4n+2=\Omega(n)$ and $10n^2+4n+2=\Omega(1)$ $6*2^n+n^2=\Omega(n^2), 6*2^n+n^2=\Omega(n)$ also $6*2^n+n^2=\Omega(1)$

Relations Between Θ , O, Ω

Relations Between Θ , Ω , O

Theorem : For any two functions
$$g(n)$$
 and $f(n)$,
 $f(n) = \Theta(g(n))$ iff
 $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

• I.e.,
$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

• In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Running Times

- "Running time is O(f(n))" \Rightarrow Worst case is O(f(n))
- O(f(n)) bound on the worst-case running time ⇒
 O(f(n)) bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time \Rightarrow $\Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n))$ " \Rightarrow Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))$ "
 - Means worst-case running time is given by some unspecified function g(n) ∈ Ω(f(n)).

Asymptotic Notation in Equations

- Can use asymptotic notation in equations to replace expressions containing lower-order terms.
- For example,

 $4n^3 + 3n^2 + 2n + 1 = 4n^3 + 3n^2 + \Theta(n)$ = $4n^3 + \Theta(n^2) = \Theta(n^3)$. How to interpret?

- In equations, $\Theta(f(n))$ always stands for an *anonymous function* $g(n) \in \Theta(f(n))$
 - In the example above, $\Theta(n^2)$ stands for $3n^2 + 2n + 1$.

Little o-notation

For a given function g(n), the set little-o:

$o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that} \\ \forall n \ge n_0, \text{ we have } 0 \le f(n) < cg(n)\}.$

f(n) becomes insignificant relative to g(n) as n approaches infinity:

 $\lim_{n\to\infty} [f(n) / g(n)] = 0$

g(n) is an *upper bound* for f(n) that is not asymptotically tight.

Observe the difference in this definition from previous ones. <u>Why?</u>

Little *@*-notation

For a given function g(n), the set little-omega:

$$\mathcal{O}(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that} \\ \forall n \ge n_0, \text{ we have } 0 \le cg(n) < f(n)\}$$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity: $\lim_{n \to \infty} [f(n) / g(n)] = \infty.$

g(n) is a *lower bound* for f(n) that is not asymptotically tight.