Asymptotic Notation

Dr. KRAGHAVA RAO

Professor in CSE

KL University
krraocse@gmail.com
http://mcadaa.blog.com

23 March 2012

mailto:krraocse@gmail.com

|Introduction:Asymptotic Notation

= Definition: Asymptotic complexity is a way of expressing the
main component of the cost of an algorithm, using idealized
units of computational work.

¢ Consider, for example, the algorithm for sorting a deck of
cards, which proceeds by repeatedly searching through the
deck for the lowest card.

¢ A problem may have numerous algorithmic solutions. In order to choose the
best algorithm for a particular task, you need to be able to judge how long a
particular solution will take to run. Or, more accurately, you need to be able
to judge how long two solutions will take to run, and choose the better of
the two. You don't need to know how many minutes and seconds they will
take, but you do need some way to compare algorithms against one

another.
asymp -1

Asymptotic Complexity

¢ Running time of an algorithm as a function of
input size n for large n.

¢ Expressed using only the highest-order term in
the expression for the exact running time.

¢ Instead of exact running time, say Q(n?).

¢ Describes behavior of function in the limit.

¢ Written using Asymptotic Notation.

asymp -

asymp - 3

Asymptotic Notation

% Q; Or Wl o,w
¢ Defined for functions over the natural numbers.
¢ Ex: f(n) = Q(n?).

¢ Describes how f(n) grows in comparison to n?.

¢ Define a set of functions; in practice used to compare
two function sizes.

¢ The notations describe different rate-of-growth
relations between the defining function and the
defined set of functions.

®-notation

For function g(n), we define ®(g(n)),
big-Theta of n, as the set: cr2(n)

®(g(n)) = {f(n) :
3 positive constants c,, ¢,, and n,
such that vn > n,, crg(n)

we have 0 < c,g(n) < f(n) < c,g(n)
}

Intuitively: Set of all functions that

f(n)

n

n
have the same rate of growth as g(n). " f(n) = 0O(g(n))

g(n) is an asymptotically tight bound for f(n).

asymp - 4

®-notation

For function g(n), we define ®(g(n)), big-Theta of n, as the set:

®(g(n)) = {f(n) :
3 positive constants c,, C,, and n,
such that vn > n,,

we have 0 < ¢,g(n) < f(n) <c,g(n)

}

Technically, f(n) € ®(g(n)).
Older usage, f(n) = ®(g(n)).
Both accepted.

c28(n)

f(n)

c18(n)

n

no

f(n) =0((gn))

f(n) and g(n) are nonnegative, for large n.

asymp - 5

Examples

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that vn> n,, 0<c,g(n) < f(n) <c,g(n)}

3n+2 = ®(n) as 3n+2>=3n for all n>=2 and 3n+2<=4n for all n>=2,
So c1=3 and c2=4 and n,=2. S0,3n+3= O(Nn),
10n%+4n+2= ®(n?) ,6*2"+n*= ®(2") and

10*log n+4= B(log n).

3n+2# ©(1), 3n+3# O(n?), 10n*+4n+2# G(n), 10n°+4n+2# O(1)

asymp - 6

Example

¢ 10n? - 3n = ©(n?)
+ What constants for n,, c,, and ¢, will work?

+ Make c, a little smaller than the leading
coefficient, and c, a little bigger.

* To compare orders of growth, look at the
leading term.

¢ Exercise: Prove that n?/2-3n= ©(n?)

asymp - 7

Example

®(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that vn> n,, 0<c,g(n) < f(n) <c,g(n)}

¢ |s 3n3 € O(n*) ??
* How about 22"e ®(2")??

asymp - 8

O-notation
For function g(n), we define O(g(n)), big-O of n, as the set:

O(g(m) = 1f(n) : cg(n)
3 positive constants ¢ and n,
such that vn > n,,

we have 0 < f(n) < cg(n) }

Intuitively: Set of all functions
whose rate of growth is the same as

or lower than that of g(n). nlo !
f(n) =0(g(n))

g(n) 1s an asymptotic upper bound for f(n).

f(n) = ®(g(n)) = 1(n) = O(g(n)).
®(g(n)) < O(g(n)).

asymp - 9

Asymptotic Notation (O)

+ Examples
¢ 3n+2=0(n) [* 3n+2<4n for n>2 */
¢ 3n+3=0(n) [* 3n+3<4n for n>3 */
¢+ 100n+6=0(n) /* 100n+6<101n for n>10 */
¢ 10n%+4n+2=0(n?) /* 10n?+4n+2<11n? for n>5 */
¢ 6*%2"+n°=0(2") /* 6*2"+n? <7*2" for n>4 */*

asymp - 10 10

More Big-Oh Examples

¢ /n-2
7n-2 is O(n)
need ¢ > 0 and ny > 1 such that 7n-2 < cen for n > n,
thisis true forc=7and ny=1

m3n3+20n°+5
3n3 + 20n? + 5 is O(n?)
need ¢ > 0 and n, > 1 such that 3n3 + 20n% + 5 < cen for n > n,
this is true for c =4 and n, = 21

m 3logn+loglogn

3 logn + log log nis O(log n)
need ¢ > 0 and ny > 1 such that 3 log n + log log n < celog n for n > n,

this is true forc=4and n, = 2
11

asymp - 11

Big-Oh and Growth Rate

+ The big-Oh notation gives an upper bound on the growth
rate of a function

¢ The statement “f(n) i1s O(g(n))” means that the growth rate
of f(n) is no more than the growth rate of g(n)

+ We can use the big-Oh notation to rank functions according
to their growth rate

f(n)1s O(g(n)) | 9(n)is O(f(n))
g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes
12

asymp - 12

Big-Oh Rules

+ Ifis f(n) a polynomial of degree d, then f(n) Is
O(n9), i.e.,
1. Drop lower-order terms
2. Drop constant factors

+ Use the smallest possible class of functions
¢ Say “2nis O(n)” instead of “2n is O(n?%)”
+ Use the simplest expression of the class
¢ Say “3n + 51s O(n)” instead of “3n + 5 1s O(3n)”

13

asymp - 13

Relatives of Big-Oh

big-Omega
m f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, > 1 such that
f(n) > ceg(n) forn>n,
big-Theta

m f(n) is ®(g(n)) if there are constants ¢’ > 0 and ¢ > 0 and an integer
constant ny > 1 such that ¢’+g(n) < f(n) <c”’<g(n) forn >n,

little-oh

= f(n) is o(g(n)) if, for any constant ¢ > 0, there is an integer constant n, > 0
such that f(n) < ceg(n) for n > n,

little-omega

= f(n) is o(g(n)) If, for any constant ¢ > 0, there is an integer constant n, > 0
such that f(n) > ceg(n) for n > n,

14

asymp - 14

Intuition for Asymptotic

Notation

Big-Oh

m f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
big-Omega

m f(n) is Q(g(n)) if f(n) is asymptotically greater than or equal to g(n)
big-Theta

n f(n) is ®(g(n)) if f(n) is asymptotically equal to g(n)

little-oh

m f(n) is o(g(n)) If f(n) is asymptotically strictly less than g(n)
little-omega

m f(n) is w(g(n)) If is asymptotically strictly greater than g(n)

15

asymp - 15

Example Uses of the
Relatives of Big-Oh

m 5n?is Q(n?)
f(n) 1s Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=5and n, =1
m 5n?is Q(n)
f(n) 1s Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=1andn,=1
m 5n?is w(n)
f(n) is w(g(n)) if, for any constant ¢ > 0O, there is an integer constant n, >
0 such that f(n) > ceg(n) forn>n,
need 5n,° > ceny — given c, the n, that satifies this isny > c¢/5> 0

16

asymp - 16

asymp - 17

¢ O(1): constant

¢ O(n): linear

¢ O(n?): quadratic
¢ O(n3): cubic

* O(2"): exponential
* O(logn)

+ O(nlogn)

asymp - 18

*Figure 1.7:Function values (p.38)

Instance charactenste o

nlogn Log bnear

Time | Name

| Cunstant
log n | Logarithmic
N Linea

e Quadric
ne Cubk

2" | Exposential
il | Factorial

—— - —)

1 2 4 8 1
e T TR 1
o1) y
| 2 & B 16
02 § M b4

i 16 6 256
| N M SR 406
14 16 2% 65536
12

40326 W2LTE9R880N0

LY.
10}
124
208

420496729
26312 x 1P

*Figure 1.8:Plot of function values(p.39)

\O

<0

B o
/;:3// - = S
| e F Bopa
— S =
, o o e
S e S PNGOL IS (et aieg s b Ses s e R 6T
|

asymp - 19

asymp - 20

*Figure 1.9:Times on a 1 billion instruction per second computer(p.40)

Time for f (n) instructions on a 107 instr/sec computer

n fm)=n | f@)=logon | f(n)=n® | f(m)=n> | f(n)=n* f (n)=n" f (n)=2"
10 Olps .03us Jdps 1us 10us 10sec lus
20 02us .09us Aus 8us 160us 2.84hr Ims
30 03us A5us Ous 27us 810us 6.83d 1sec
40 04y 21ps 1.6ps 64415 2.56ms 121.36d 18.3min
50 .05us 28us 2.5us 125us 6.25ms 3.1yr 13d
100 10ps 66415 10ps Ims 100ms 3171yr 45103 yr
1,000 1.00ps 9.96s Ims 1sec 16.67min | 3.17¢108yr | 32%10%3yr
10,000 | 10.00ps | 130.03us 100ms | 16.67min 115.7d 3.17%10%yr
100,000 | 100.00us 1.66ms 10sec | 11.57d 3171yr | 3.17%10%yr
1,000,000 1.00ms 19.92ms | 16.67min | 31.71yr | 3.17*107yr | 3.17%x10%yr

Ws = microsecond = 107 seconds
ms = millisecond = 10~ seconds

sec = seconds
min = minutes

hr = hours
d = days
yr = years

Examples

O(g(n)) = {f(n) : 3 positive constants ¢ and n,,
such that Vn > n,, we have 0 < f(n) <cg(n) }

* Any linear function an + b is in O(n?%). How?
+ Show that 3n3=0(n*) for appropriate ¢ and n,,.

asymp - 21

() -notation

For function g(n), we define Q(g(n)), big-Omega of n, as the set:

Q(g(n)) = {f(n) :
3 positive constants ¢ and n,
such that vn > n,,

we have 0 < cg(n) < f(n)}

Intuitively: Set of all functions
whose rate of growth is the same
as or higher than that of g(n).

f(n)

n

"0 fn) = Qgn))

g(n) is an asymptotic lower bound for f(n).

f(n) = ®(g(n)) = 1(n) = Q(g(n)).

®(g(n)) <Q(g(n)).

asymp - 22

Examples

Q(g(n)) = {f(n) : 3 positive constants ¢ and n,, such that ¥n >
Ny, We have 0 < cg(n) <f(n)}

¢ 3n+2=C)(n) as 3n+2>=3n for n>=1

¢ 3n+3= Q(n) as 3n+3>=3n for n>=1

¢ 10n? +4n+2= Q(n?) as 10n? +4n+2>=n2 for n>=1
6*2" +n 2 = Q(n?) as 6*2" +n2>=2" for n>=1.

10n°+4n+2=Q(n) and 10n+4n+2= (1)
6*2"+n?=Q(n?), 6*2"+n?=Q(n) also 6*2"+n?= (1)

asymp - 23

Relations Between ®, O, Q)

c28(n)

f(n)

crg(n)

no

asymp - 24

n

f(n)=0(g(n))

"ty = 0(g(n)

cg(n)

f(n)

n

") = Qgm)

n

Relations Between ®, O3, O

Theorem : For any two functions g(n) and f(n),
f(n) = ©(g(Nn)) Iff
f(n) = O(g(n)) and 1(n) = Q(g(n)).

¢ l.e, ©(g(n)) = O(g(n)) N Q(g(n))

+ |n practice, asymptotically tight bounds are
obtained from asymptotic upper and lower bounds.

asymp - 25

Running Times

¢ “Running time is O(f(n))” = Worst case is O(f(n))
¢ O(f(n)) bound on the worst-case running time =

O(f(n)) bound on the running time of every input.

¢ ©O(f(n)) bound on the worst-case running time =
®(f(n)) bound on the running time of every Input.

¢ “Running time is Q(f(n))” = Best case is Q(f(n))
¢ Can still say “Worst-case running time is Q(f(n))”

¢+ Means worst-case running time is given by some
unspecified function g(n) € Q(f(n)).

asymp - 26 Comp 122

Asymptotic Notation In Equations

+ Can use asymptotic notation in equations to
replace expressions containing lower-order terms.
* For example,
4n3 +3n%+2n + 1 =4n3+ 3n% + ©(n)
= 4n3 + ®(n?) = ©(n3). How to interpret?
* |n equations, ®(f(n)) always stands for an
anonymous function g(n) € ©(f(n))

¢+ In the example above, ®(n?) stands for
3n?+2n+ 1.

asymp - 27

Little 0-notation
For a given function g(n), the set little-o:

o(g(n)) ={f(n): ¥ ¢ >0, 3 ny> 0 such that
V¥ n > n,, we have 0 < f(n) <cg(n)}.

f(n) becomes insignificant relative to g(n) as n
approaches infinity:

lim [f(n) / g(n)] = O

N—>co

g(n) Is an upper bound for f(n) that Is not
asymptotically tight.

Observe the difference in this definition from previous
ones. Why?

asymp - 28

Little w —notation
For a given function g(n), the set little-omega:

Xg(n)) = {f(n): ¥V ¢ >0, 3 n, > 0 such that
V¥ n = ng, we have 0 < cg(n) < f(n)}.

f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity:

lim [i(n) /.g(n)] = e

g(n) is a lower bound for f(n) that is not
asymptotically tight.

asymp - 29

