## Asymptotic Notation

Dr. K.RAGHAVARAO
Professor in CSE
KL University
krraocse@gmail.com
http://mcadaa.blog.com

## Introduction:Asymptotic Notation

- Definition: Asymptotic complexity is a way of expressing the main component of the cost of an algorithm, using idealized units of computational work.
- Consider, for example, the algorithm for sorting a deck of cards, which proceeds by repeatedly searching through the deck for the lowest card.
- A problem may have numerous algorithmic solutions. In order to choose the best algorithm for a particular task, you need to be able to judge how long a particular solution will take to run. Or, more accurately, you need to be able to judge how long two solutions will take to run, and choose the better of the two. You don't need to know how many minutes and seconds they will take, but you do need some way to compare algorithms against one another.


## Asymptotic Complexity

- Running time of an algorithm as a function of input size $n$ for large $n$.
- Expressed using only the highest-order term in the expression for the exact running time.
- Instead of exact running time, say $\mathrm{Q}\left(n^{2}\right)$.
- Describes behavior of function in the limit.
$\bullet$ Written using Asymptotic Notation.


## Asymptotic Notation

- Q, O, W, o, w
- Defined for functions over the natural numbers.
- Ex: $f(n)=Q\left(n^{2}\right)$.
- Describes how $f(n)$ grows in comparison to $n^{2}$.
- Define a set of functions; in practice used to compare two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.


## $\Theta$-notation

For function $g(n)$, we define $\Theta(g(n))$, big-Theta of $n$, as the set:
$\Theta(g(n))=\{f(n):$
$\exists$ positive constants $c_{1}, c_{2}$, and $n_{0}$, such that $\forall n \geq n_{0}$,
we have $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
\}
Intuitively: Set of all functions that have the same rate of growth as $\mathrm{g}(\mathrm{n})$.
 $\mathrm{g}(\mathrm{n})$ is an asymptotically tight bound for $\mathrm{f}(\mathrm{n})$.

## $\Theta$-notation

For function $g(n)$, we define $\Theta(g(n))$, big-Theta of $n$, as the set:

## $\Theta(g(n))=\{f(n):$

$\exists$ positive constants $c_{1}, c_{2}$, and $n_{0}$, such that $\forall n \geq n_{0}$,
we have $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$

Technically, $f(n) \in \Theta(g(n))$.
Older usage, $f(n)=\Theta(g(n))$. Both accepted.

$f(n)$ and $g(n)$ are nonnegative, for large $n$.

## Examples

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants $c_{1}, c_{2}$, and $n_{0}$, such that $\left.\forall n \geq n_{0}, \quad 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$
$3 n+2=\Theta(n)$ as $3 n+2>=3 n$ for all $n>=2$ and $3 n+2<=4 n$ for all $n>=2$,
So c1=3 and c2=4 and $n_{0}=2$. So, $3 n+3=\Theta(n)$,
$10 n^{2}+4 n+2=\Theta\left(n^{2}\right), 6^{*} 2^{n}+n^{2}=\Theta\left(2^{n}\right)$ and
$10 * \log n+4=\Theta(\log n)$.
$3 n+2 \# \Theta(1), 3 n+3 \# \Theta\left(n^{2}\right), 10 n^{2}+4 n+2 \# \Theta(n), 10 n^{2}+4 n+2 \# \Theta(1)$

## Example

- $10 n^{2}-3 n=\Theta\left(n^{2}\right)$
- What constants for $n_{0}, c_{1}$, and $c_{2}$ will work?
- Make $c_{1}$ a little smaller than the leading coefficient, and $c_{2}$ a little bigger.
- To compare orders of growth, look at the leading term.
- Exercise: Prove that $n^{2} / 2-3 n=\Theta\left(n^{2}\right)$


## Example

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants $c_{1}, c_{2}$, and $n_{0}$, such that $\left.\forall n \geq n_{0}, \quad 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

- Is $3 n^{3} \in \Theta\left(n^{4}\right) ? ?$
- How about $2^{2 n} \in \Theta\left(2^{n}\right) ?$ ?


## $\underline{O \text {-notation }}$

For function $g(n)$, we define $O(g(n))$, big-O of $n$, as the set:

$$
\begin{aligned}
& O(g(n))=\{f(n) \text { : } \\
& \exists \text { positive constants } c \text { and } n_{0}, \\
& \text { such that } \forall n \geq n_{0}, \\
& \text { we have } 0 \leq f(n) \leq \operatorname{cg}(n)\}
\end{aligned}
$$

Intuitively: Set of all functions whose rate of growth is the same as or lower than that of $g(n)$.
$g(n)$ is an asymptotic upper bound for $f(n)$.

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n)) . \\
& \Theta(g(n)) \subset O(g(n)) .
\end{aligned}
$$

## Asymptotic Notation (O)

- Examples
- $3 n+2=O(n) \quad / * 3 n+2 \leq 4 n$ for $n \geq 2 * /$
- $3 n+3=O(n) \quad / * 3 n+3 \leq 4 n$ for $n \geq 3 * /$
- $100 \mathrm{n}+6=\mathrm{O}(\mathrm{n}) \quad / * 100 \mathrm{n}+6 \leq 101 \mathrm{n}$ for $\mathrm{n} \geq 10 * /$
- $10 n^{2}+4 n+2=O\left(n^{2}\right) / * 10 n^{2}+4 n+2 \leq 11 n^{2}$ for $n \geq 5 * /$
- $6 * 2^{n}+n^{2}=\mathrm{O}\left(2^{\mathrm{n}}\right) / * 6^{*} 2^{\mathrm{n}}+\mathrm{n}^{2} \leq 7 * 2^{\mathrm{n}}$ for $\mathrm{n} \geq 4 * / *$


## More Big-Oh Examples

-7n-2
$7 \mathrm{n}-2$ is $\mathrm{O}(\mathrm{n})$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $7 \mathrm{n}-2 \leq \mathrm{c} \bullet \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n}_{0}$ this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$
$\square 3 n^{3}+20 n^{2}+5$
$3 \mathrm{n}^{3}+20 \mathrm{n}^{2}+5$ is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $3 \mathrm{n}^{3}+20 \mathrm{n}^{2}+5 \leq \mathrm{c} \cdot \mathrm{n}^{3}$ for $\mathrm{n} \geq \mathrm{n}_{0}$
this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$

- $3 \log n+\log \log n$
$3 \log n+\log \log n$ is $O(\log n)$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $3 \log \mathrm{n}+\log \log \mathrm{n} \leq \mathrm{c} \cdot \log \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n}_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=2$


## Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
* The statement " $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ " means that the growth rate of $\boldsymbol{f}(\boldsymbol{n})$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
- We can use the big-Oh notation to rank functions according to their growth rate

|  | $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ | $\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$ |
| :--- | :---: | :---: |
| $\boldsymbol{g}(\boldsymbol{n})$ grows more | Yes | No |
| $\boldsymbol{f}(\boldsymbol{n})$ grows more | No | Yes |
| Same growth | Yes | Yes |
| 12 |  |  |

## Big-Oh Rules

- If is $\boldsymbol{f}(\boldsymbol{n})$ a polynomial of degree $\boldsymbol{d}$, then $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "


## Relatives of Big-Oh

- big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$


## big-Theta

- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c ">0$ and an integer constant $n_{0} \geq 1$ such that $c^{\prime} \cdot g(n) \leq f(n) \leq c " \cdot g(n)$ for $n \geq n_{0}$
* little-oh
- $\mathrm{f}(\mathrm{n})$ is $\mathrm{o}(\mathrm{g}(\mathrm{n}))$ if, for any constant $\mathrm{c}>0$, there is an integer constant $\mathrm{n}_{0}>0$ such that $\mathrm{f}(\mathrm{n})<\mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
- little-omega
- $\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if, for any constant $\mathrm{c}>0$, there is an integer constant $\mathrm{n}_{0}>0$ such that $\mathrm{f}(\mathrm{n})>\mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$


## Intuition for Asymptotic Notation



Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$ big-Omega
- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n})$ ) if $\mathrm{f}(\mathrm{n})$ is asymptotically greater than or equal to $\mathrm{g}(\mathrm{n})$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
little-oh
- $f(n)$ is $o(g(n))$ if $f(n)$ is asymptotically strictly less than $g(n)$
little-omega
- $\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if is asymptotically strictly greater than $\mathrm{g}(\mathrm{n})$


## Example Uses of the Relatives of Big-Oh

- $5 \mathrm{n}^{2}$ is $\Omega\left(\mathrm{n}^{2}\right)$
$\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
let $\mathrm{c}=5$ and $\mathrm{n}_{0}=1$
- $\mathbf{5 n}^{\mathbf{2}}$ is $\Omega(\mathrm{n})$
$\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
let $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$
- $\mathbf{5 n}^{\mathbf{2}}$ is $\boldsymbol{\omega}(\mathrm{n})$
$\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if, for any constant $\mathrm{c}>0$, there is an integer constant $\mathrm{n}_{0}>$
0 such that $\mathrm{f}(\mathrm{n})>\mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
need $5 \mathrm{n}_{0}{ }^{2}>\mathrm{c} \bullet \mathrm{n}_{0} \rightarrow$ given c , the $\mathrm{n}_{0}$ that satifies this is $\mathrm{n}_{0}>\mathrm{c} / 5>0$
- $\mathrm{O}(1)$ : constant
- O(n): linear
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ : quadratic
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ : cubic
- $\mathrm{O}\left(2^{\mathrm{n}}\right)$ : exponential
- O(logn)
- O(nlogn)
*Figure 1.7:Function values (p.38)

| Instance chanateristic in |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | Name | 1 | 2 | $\dagger$ | 3 | 16 | 32 |
| 1 | Cunstant | 1 | 1 | 1 | I | 1 | 1 |
| $\log n$ | Logarithmic | 0 | 1 | 2 | 3 | 4 | 5 |
| $n$ | Lineat | 1 | 2 | 4 | 8 | 16 | 32 |
| $n \log n$ | Log tuear | 0 | 2 | 8 | 24 | 64 | (14) |
| $n^{2}$ | Quadratic | 1 | 4 | 16 | 64 | 256 | 1024 |
| $n^{3}$ | Cabic | 1 | 8 | 64 | 512 | 40\%6 | 32768 |
| $2^{\prime \prime}$ | Expocatial | 2 | 4 | 16 | 256 | 6.5936 | 424967296 |
| n! | Factorial | 1 | 2 | 24 | 40326 | $20927 / 89888000$ | $26313 \times 10^{3+}$ |

*Figure 1.8:Plot of function values(p.39)


## *Figure 1.9:Times on a 1 billion instruction per second computer(p.40)

|  | Time for $f(n)$ instructions on a $10^{9}$ instr/sec computer |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $f(n)=n$ | $f(n)=\log _{2} n$ | $f(n)=n^{2}$ | $f(n)=n^{3}$ | $f(n)=n^{4}$ | $f(n)=n^{10}$ | $f(n)=2^{n}$ |
| 10 | $.01 \mu \mathrm{~s}$ | $.03 \mu \mathrm{~s}$ | $.1 \mu \mathrm{~s}$ | $1 \mu \mathrm{~s}$ | $10 \mu \mathrm{~s}$ | 10 sec | $1 \mu \mathrm{~s}$ |
| 20 | $.02 \mu \mathrm{~s}$ | $.09 \mu \mathrm{~s}$ | $.4 \mu \mathrm{~s}$ | $8 \mu \mathrm{~s}$ | $160 \mu \mathrm{~s}$ | 2.84 hr | 1 ms |
| 30 | $.03 \mu \mathrm{~s}$ | $.15 \mu \mathrm{~s}$ | $.9 \mu \mathrm{~s}$ | $27 \mu \mathrm{~s}$ | $810 \mu \mathrm{~s}$ | 6.83 d | 1 sec |
| 40 | $.04 \mu \mathrm{~s}$ | $.21 \mu \mathrm{~s}$ | $1.6 \mu \mathrm{~s}$ | $64 \mu \mathrm{~s}$ | 2.56 ms | 121.36 d | 18.3 min |
| 50 | $.05 \mu \mathrm{~s}$ | $.28 \mu \mathrm{~s}$ | $2.5 \mu \mathrm{~s}$ | $125 \mu \mathrm{~s}$ | 6.25 ms | 3.1 yr | 13 d |
| 100 | $.10 \mu \mathrm{~s}$ | $.66 \mu \mathrm{~s}$ | $10 \mu \mathrm{~s}$ | 1 ms | 100 ms | 3171 yr | $4 * 10^{13} \mathrm{yr}$ |
| 1,000 | $1.00 \mu \mathrm{~s}$ | $9.96 \mu \mathrm{~s}$ | 1 ms | 1 sec | 16.67 min | $3.17 * 10^{13} \mathrm{yr}$ | $32 * 10^{283} \mathrm{yr}$ |
| 10,000 | $10.00 \mu \mathrm{~s}$ | $130.03 \mu \mathrm{~s}$ | 100 ms | 16.67 min | 115.7 d | $3.17 * 10^{23} \mathrm{yr}$ |  |
| 100,000 | $100.00 \mu \mathrm{~s}$ | 1.66 ms | 10 sec | 11.57 d | 3171 yr | $3.17 * 10^{33} \mathrm{yr}$ |  |
| $1,000,000$ | 1.00 ms | 19.92 ms | 16.67 min | 31.71 yr | $3.17 * 10^{7} \mathrm{yr}$ | $3.17 * 10^{43} \mathrm{yr}$ |  |

$$
\begin{aligned}
\mu s & =\text { microsecond }=10^{-6} \text { seconds } \\
\mathrm{ms} & =\text { millisecond }=10^{-3} \text { seconds } \\
\mathrm{sec} & =\text { seconds } \\
\mathrm{min} & =\text { minutes } \\
\mathrm{hr} & =\text { hours } \\
\mathrm{d} & =\text { days } \\
\mathrm{yr} & =\text { years }
\end{aligned}
$$

## Examples

$O(g(n))=\left\{f(n): \exists\right.$ positive constants $c$ and $n_{0}$, such that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n) \leq \operatorname{cg}(n)\right\}$

- Any linear function $a n+b$ is in $O\left(n^{2}\right)$. How?
- Show that $3 n^{3}=O\left(n^{4}\right)$ for appropriate $c$ and $n_{0}$.


## $\Omega$-notation

For function $g(n)$, we define $\Omega(g(n))$, big-Omega of $n$, as the set:

## $\Omega(g(n))=\{f(n):$

$\exists$ positive constants $c$ and $n_{0}$, such that $\forall n \geq n_{0}$,
we have $0 \leq \operatorname{cg}(n) \leq f(n)\}$
Intuitively: Set of all functions whose rate of growth is the same as or higher than that of $g(n)$.

$g(n)$ is an asymptotic lower bound for $f(n)$.

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \Rightarrow f(n)=\Omega(g(n)) . \\
& \Theta(g(n)) \subset \Omega(g(n)) .
\end{aligned}
$$

## Examples

$\Omega(g(n))=\left\{f(n): \exists\right.$ positive constants $c$ and $n_{0}$, such that $\forall n \geq$ $n_{0}$, we have $\left.0 \leq \operatorname{cg}(n) \leq f(n)\right\}$

- $3 n+2=\Omega(n)$ as $3 n+2>=3 n$ for $n>=1$
- $3 n+3=\Omega(n)$ as $3 n+3>=3 n$ for $n>=1$
- $10 n^{2}+4 n+2=\Omega\left(n^{2}\right)$ as $10 n^{2}+4 n+2>=n 2$ for $n>=1$ $6^{*} 2^{n}+n^{2}=\Omega\left(n^{2}\right)$ as $6^{*} 2^{n}+n^{2}>=2^{n}$ for $n>=1$.
$10 n^{2}+4 n+2=\Omega(n)$ and $10 n^{2}+4 n+2=\Omega(1)$
$6 * 2^{n}+n^{2}=\Omega\left(n^{2}\right), 6 * 2^{n}+n^{2}=\Omega(n)$ also $6^{*} 2^{n}+n^{2}=\Omega(1)$


## Relations Between $\Theta, O, \Omega$





## Relations Between $\Theta, \Omega, O$

Theorem : For any two functions $g(n)$ and $f(n)$,

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \text { iff } \\
& f(n)=O(g(n)) \text { and } f(n)=\Omega(g(n)) .
\end{aligned}
$$

- I.e., $\Theta(g(n))=O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.


## Running Times

- "Running time is $O(f(n))$ " $\Rightarrow$ Worst case is $O(f(n))$
- $O(f(n))$ bound on the worst-case running time $\Rightarrow$ $O(f(n))$ bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time $\nRightarrow$ $\Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n)) " \Rightarrow$ Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))$ "
- Means worst-case running time is given by some unspecified function $g(n) \in \Omega(f(n))$.


## Asymptotic Notation in Equations

- Can use asymptotic notation in equations to replace expressions containing lower-order terms.
- For example,

$$
\begin{aligned}
& 4 n^{3}+3 n^{2}+2 n+1=4 n^{3}+3 n^{2}+\Theta(n) \\
& =4 n^{3}+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right) . \text { How to interpret? }
\end{aligned}
$$

- In equations, $\Theta(f(n))$ always stands for an anonymous function $g(n) \in \Theta(f(n))$
- In the example above, $\Theta\left(n^{2}\right)$ stands for $3 n^{2}+2 n+1$.


## Little o-notation

For a given function $g(n)$, the set little- $o$ :

$$
\begin{aligned}
& o(g(n))=\{f(n): \forall c>0, \exists \boldsymbol{n}_{0}>\mathbf{0} \text { such that } \\
&\left.\forall n \geq n_{0} \text {, we have } 0 \leq f(n)<c g(n)\right\} .
\end{aligned}
$$

$f(n)$ becomes insignificant relative to $g(n)$ as $n$ approaches infinity:

$$
\lim _{n \rightarrow \infty}[f(n) / g(n)]=0
$$

$g(n)$ is an upper bound for $f(n)$ that is not asymptotically tight.
Observe the difference in this definition from previous ones. Why?

## Little $\omega$-notation

For a given function $g(n)$, the set little-omega:

$$
\begin{aligned}
\omega(g(n))= & \left\{f(n): \forall c>0, \exists \boldsymbol{n}_{0}>\mathbf{0}\right. \text { such that } \\
& \left.\forall n \geq n_{0}, \text { we have } 0 \leq \operatorname{cg}(n)<f(n)\right\} .
\end{aligned}
$$

$f(n)$ becomes arbitrarily large relative to $g(n)$ as $n$ approaches infinity:

$$
\lim _{n \rightarrow \infty}[f(n) / g(n)]=\infty .
$$

$g(n)$ is a lower bound for $f(n)$ that is not asymptotically tight.

