
Unit-1

Divide and Conquer

Dr. K.RAGHAVA RAO

 Professor in CSE

 KL University

 krraocse@gmail.com
 http://mcadaa.blog.com

mailto:krraocse@gmail.com

Divide and Conquer: General Method

Definition:

Divide the problem into a number of subproblems, Conquer the

subproblems by solving them recursively. If the subproblem sizes are

small enough, solve the subproblems recursively, and then

combine these solutions to create a solution to the original

problem.

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n
(instance)

It general leads to a

recursive algorithm!

Divide and Conquer: General Method

Divide and Conquer: General Method

 Divide-and conquer is a general algorithm design paradigm:
 Divide: divide the input data S in two or more disjoint subsets S1, S2, …

 Recur: solve the subproblems recursively

 Conquer: combine the solutions for S1, S2, …, into a solution for S

 The base case for the recursion are subproblems of constant
size.Analysis can be done using recurrence equations

7 2  9 4  2 4 7 9

7  2  2 7 9  4  4 9

7  7 2  2 9  9 4  4

Divide and Conquer: General Method

Algorithm D-and-C(n: input size) {

if n ≤ n0 /* small size problem*/

Solve problem without further sub-division;

Else

{

Divide into m sub-problems;

Conquer the sub-problems by solving them

independently and recursively; /* D-and-C(n/k) */

Combine the solutions;

}

}

Advantage: straightforward and running times are often easily Determined

Divide and Conquer: General Method

Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem of size n into a parts,

where each sub-problem is of size n/b. Also, suppose that a total number of

g(n) extra operations are needed in the conquer step of the algorithm to

combine the solutions of the sub-problems into a solution of the original

problem. Let f(n) be the number of operations required to solve the problem

of size n. Then f satisfies the recurrence

relation

f(n)=a f(n/b)+g(n)

and it is called divide-and-conquer recurrence relation.

Divide and Conquer: General Method
>-The computing time of Divide and conquer is described by

recurrence relation.

>-T(n)= { g(n) n small

{ T(n1)+T(n2)+……….+T(n k) + f(n) other wise

>-T(n) is the time for Divide and Conquer on any input of size n and

g(n) is the time to compute the answer directly for small inputs.

The function of f(n) is the time for dividing P combining solutions to

subproblems.

>-For divide-and-conquer-based algorithms that produce

subproblems of the same type as the original problem, then such

algorithm described using recursion.

The complexity of many divide-and-conquer algorithms is given by

recurrence of the form.

T(n)= { T(1) n=1

{a T(n/b) + f(n) n>1 where a and b are known constants,

and n is a power of b (n=b k).

One of the methods for solving any such recurrence relation is

called substitution method.

Divide and Conquer: General Method

Divide and Conquer: General Method

Examples:

If a=2 and b=2 . Let T(1)=2 and f(n)=n. Than

T(n) = 2T(n/2) +n

=2[2T(n/4) + n/2] +n

=4T(n/4)+2n

=4[2T(n/8)+n/4] + 2n

=8T(n/8) + 3n

.

.

.

In general , T(n) = 2i T(n/2i) +in, for any log 2 n>=i>=1. In Particular ,then

T(n) = 2 log
2

n T(n/ 2 log
2

n) + n log 2 n corresponding to choice of

i= log 2 n. Thus, T(n) = n T(1) + n log 2 n = n log 2 n + 2 n.

Divide and Conquer: General Method

 Exercise for students

 Solve above recurrency relation when

1)a=1, b=2 and f(n)=cn

 2)a=5, b=4 and f(n)=cn2




3)a=28 b=3 and f(n) =cn3

Divide and Conquer: Min and Max

 The minimum of a set of elements:

 The first order statistic i = 1

 The maximum of a set of elements:

 The n-th order statistic i = n

 The median is the “halfway point” of the set

 i = (n+1)/2, is unique when n is odd

 i = (n+1)/2 = n/2 (lower median) and (n+1)/2

= n/2+1 (upper median), when n is even

Finding Minimum or Maximum

Alg.: MINIMUM(A, n)
min ← A[1]
for i ← 2 to n

do if min > A[i]
then min ← A[i]

return min

 How many comparisons are needed?

 n – 1: each element, except the minimum, must be compared to a

smaller element at least once

 The same number of comparisons are needed to find the maximum

 The algorithm is optimal with respect to the number of comparisons

performed

Simultaneous Min, Max

 Find min and max independently

 Use n – 1 comparisons for each  total of 2n – 2

 At most 3n/2 comparisons are needed

 Process elements in pairs

 Maintain the minimum and maximum of elements seen so far

 Don‟t compare each element to the minimum and maximum

separately

 Compare the elements of a pair to each other

 Compare the larger element to the maximum so far, and

compare the smaller element to the minimum so far

 This leads to only 3 comparisons for every 2 elements

Analysis of Simultaneous Min,

Max

 Setting up initial values:

 n is odd:

 n is even:

 Total number of comparisons:

 n is odd: we do 3(n-1)/2 comparisons

 n is even: we do 1 initial comparison + 3(n-2)/2 more

comparisons = 3n/2 - 2 comparisons

set both min and max to the first element

compare the first two elements, assign the

smallest one to min and the largest one to max

Example: Simultaneous Min,

Max
 n = 5 (odd), array A = {2, 7, 1, 3, 4}

1. Set min = max = 2

2. Compare elements in pairs:

– 1 < 7  compare 1 with min and 7 with max

 min = 1, max = 7

– 3 < 4  compare 3 with min and 4 with max

 min = 1, max = 7

We performed: 3(n-1)/2 = 6 comparisons

3 comparisons

3 comparisons

Example: Simultaneous Min,

Max

 n = 6 (even), array A = {2, 5, 3, 7, 1, 4}

1. Compare 2 with 5: 2 < 5

2. Set min = 2, max = 5

3. Compare elements in pairs:

– 3 < 7  compare 3 with min and 7 with max

 min = 2, max = 7

– 1 < 4  compare 1 with min and 4 with max

 min = 1, max = 7
We performed: 3n/2 - 2 = 7 comparisons

3 comparisons

3 comparisons

1 comparison

Divide and Conquer: Binary Search

Binary search method.

The basic idea is to start with an examination of the middle element of the array.

This will lead to 3 possible situations:

If this matches the target K, then search can terminate successfully, by printing out

the index of the element in the array.

On the other hand, if K<A[middle], then search can be limited to elements to the left

of A[middle]. All elements to the right of middle can be ignored.

If it turns out that K >A[middle], then further search is limited to elements to the right

of A[middle].

If all elements are exhausted and the target is not found in the array, then the

method returns a special value such as –1.

Divide and Conquer: Binary Search
Here is one version of the Binary Search function:

int BinarySearch (int A[], int n, int K)

{

int L=0, Mid, R= n-1;

while (L<=R)

{

Mid = (L +R)/2;

if (K= =A[Mid])

return Mid;

else if (K > A[Mid])

L = Mid + 1;

else

R = Mid – 1 ;

}

return –1 ;}

Let us now carry out an Analysis of this method to determine its time

complexity. Since

there are no “for” loops, we can not use summations to express the total

number of

operations. Let us examine the operations for a specific case, where the

number of

elements in the array n is 64.

When n= 64 BinarySearch is called to reduce size to n=32

When n= 32 BinarySearch is called to reduce size to n=16

When n= 16 BinarySearch is called to reduce size to n=8

When n= 8 BinarySearch is called to reduce size to n=4

When n= 4 BinarySearch is called to reduce size to n=2

When n= 2 BinarySearch is called to reduce size to n=1

Divide and Conquer: Binary Search

Thus we see that BinarySearch function is called 6 times (6 elements of

the array were

examined) for n =64.

Note that 64 = 26

Also we see that the BinarySearch function is called 5 times (5 elements

of the array

were examined) for n = 32.

Note that 32 = 25

Let us consider a more general case where n is still a power of 2. Let us

say n = 2k .

Divide and Conquer: Binary Search

Following the above argument for 64 elements, it is easily seen that after

k searches, the

while loop is executed k times and n reduces to size 1.

Let us assume that each run of the while loop involves at most 5

operations.

Thus total number of operations: 5k.

The value of k can be determined from the expression

2k = n

Taking log of both sides

Log 2 k = log n

Thus total number of operations = 5 log n.

We conclude that the time complexity of the Binary search method is

O(log n), which is much more efficient than the Linear Search method.

Divide and Conquer: Binary Search

Here is second version of the Binary Search function:

Binary-Search (A; p; q; x)

1. if p > q return -1;

2. r = b (p + q)=2 c

3. if x = A[r] return r

4. else if x < A[r] Binary-Search(A; p; r; x)

5. else Binary-Search(A; r + 1; q; x)

² The initial call is Binary-Search(A; 1; n; x).

Divide and Conquer: Binary Search

Binary Search

Data Structures Using C++

Binary Search: middle element

left + right

2
mid =

Binary Search: Example

Binary Search

Binary Search

Binary Search Tree

Binary Search Tree

Binary Search Tree

Logarithmic Time Complexity of Binary Search

P Our analysis shows that

binary search can be done in

time proportional to the log

of the number of items in the

list

P This is considered very fast

when compared to linear or

polynomial algorithms

P The table to the right

compares the number of

operations that need to be

performed for algorithms of

various time complexities

The computing time binary

search by best, average and

worst cases:

Successful searches

(1) best , (log n) average

(log n) worst

Unsuccessful searches

(log n) for best , average and

worst case

Binary Search Tree

L1.33

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

cn

cn

#leaves = n (n)

Total = (n lg n)

…

Big Oh notation
constant

f(n)=16

f(n)=27

f(n)<=16*1 where c=16 and n0=0

F(n)<=27*1 where c=27 and n0=0 so big oh notation as O(1). So f(n)=O(1).

Linear

f(n)=7n+5 find bih oh notation

f(n)=7n+5 for n>=5

7n+5<=7n+n<=8n (c=8 n0=5) , so f(n)=O(n).

Quadratic

f(n)=27n2+16n

f(n)=27n2+16n, for n2>=16n {or 16n<=n2}

27n2+16n<=27n2+n2<=28n2 (c=28, n0=16)

So f(n)= O(n2)

Big Oh notation

If we consider n<=n2 then

27n2+16n<=27n2 +16n2<=43n2 {c=43, n0=1)

So, f(n)=o(n2)

--

f(n)=27n2+16 for n>=16

27n2+16<=27n2+n

Now, for n<=n2

27n2+n<=27n2+n2<=28n2 {c=28, n0=1}

So, f(n)=O(n2)

Big Oh notation

cubic functions

f(n)=2n3+n2+2n

f(n)=2n3+n2+2n for n2>2n 2n3+n2+2n<=2n3+n2+n2<=2n3+2n2

Now for n3>=2n2

2n3+2n2<=2n3+n3<=3n3 {c=3,n0=2}

So, f(n)=O(n3)

f(n)=4n3+2n+3

f(n)=4n3+2n+3 for n>=3

f(n)=4n3+2n+3 <=4n3+2n+n<=4n3+3n for n3<=3n

4n3+3n<=4n3+n3 <=5n3 {c=5, n0=3}

So , f(n)=O(n3).

Big Oh notation

Exponential

f(n)=2pown+6npow2+3n

f(n)= 2pown+6npow2+3n for n2>=3n

2pown+6npow2+3n<=2 pow n +6npow2+npow2<=2pow n

+7npow2

for 2 pow n>=n2 (n>=4)

2pown+7npow2+2pow n+7*2pown<=8*2pown {c=8, n0=4}

So f(n)=O(2 pown)

Omega notation

Constant

f(n)=27

f(n)>=26*1 where c=26 and n0=0, so f(n)= (1)

Linear

f(n)=7n+5

7n<7n+5 for all n. {c=7} thus f(n)= (n)

Quadratic

f(n)=27n2+16n

f(n)=27n2+16n

27n2<27n2+ +16 n, for all n {c=27}

So f(n)= (n2)

Omega notation

cubic function

f(n) = 2n3+n2+2n

2n3 < 2n3+n2+2n, for all n, {c=2}

So, f(n)= (n3)

f(n)= 4n3+2n+3

4n3<4n3+2n+3, for all n {c=4}

So f(n)= (n3)

Exponential

f(n)=2n+6n2+3n

4*2n < 4*2n +3n, for all n,{c=4}, f(n)= (2n)

Theta notation

Constant

f(n)=1627

1626*1<=f(n)<=1627 c1=1626, c2=1627, and n0=0, so f(n)= (1)

Linear

f(n)=3n+5

3n<3n+5 for all „n‟, c1=3

Also

3n+5 <=4n for n>=5, c2=4 ,n0=5, thus

3n<3n+5<=4n c1=3,c2=4, n0=5

So ,f(n)= (n)

Theta notation

Quadratic

f(n)=27n2+16n+25

27n2 <27n2 +16n+25 for all n>n0 c1=27

Also

27n2+16n+25 <=28n2 c2=28, n>n0=17, thus

27n2 <27n2 +16n+25<= 28n2 , c1=27,c2=28, n>=n0=17

f(n)= (n2)

Theta notation

Cubic function

f(n)=2n3+n2+2n

2n3 < 2n3+n2+2n for all n>=n0, c1=2

Also

2n3+n2+2n<=3n3 for all n>=n0=2,c2=3

Thus

2n3 <2n3+n2+2n<=3n3

So, f(n)= (n3)

Exponential

f(n)=2n+6n2+3n

2pown< 2n+6n2+3n for all n>=n0,c1=1

Also 2n+6n2+3n for all n>=n0=4, c2=8

thus 2 pown< 2n+6n2+3n<8*2pown for all n>n0=4,c1=1,c2=8

 F(n)= (2pown)

