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Divide-and-Conquer

• Divide the problem into a number of subproblems.

•Conquer the subproblems by solving them recursively. If the 

subproblem sizes are small enough, solve the subproblems in a 

straightforward manner.



Divide-and-Conquer

• Combine the solutions to the subproblems into the 

solution for the original problem.



Merge Sort Algorithm

Divide: Divide the n-element sequence into two 

subsequences of n/2 elements each.

Conquer: Sort the two subsequences recursively using 

merge sort.

Combine: Merge the two sorted sequences.



How to merge two sorted 

sequences

•We have two subarrays A[p..q] and A[q+1..r] in sorted 

order.

• Merge sort algorithm merges them to form a single 

sorted subarray that replaces the current subarray A[p..r]



To sort the entire sequence A[1 .. n], make the initial call to the procedure MERGE-

SORT (A, 1, n).

MERGE-SORT (A, p, r){

1. IF p < r // Check for base case

2. THEN q = FLOOR[(p + r)/2] // Divide step

3. MERGESORT (A, p, q) // Conquer step.

4. MERGE SORT(A, q + 1, r) // Conquer step.

5. MERGE (A, p, q, r) // Conquer step.

}



The pseudocode of the MERGE 

procedure is as follow:

MERGE (A, p, q, r )

1. n1 ← q − p + 1

2. n2 ← r − q

3. Create arrays L[1 . . n1 + 1] and R[1 . 

. n2 + 1]

4. FOR i ← 1 TO n1

5. DO L[i] ← A[p + i − 1]

6. FOR j ← 1 TO n2

7. DO R[j] ← A[q + j ]

8. L[n1 + 1] ← ∞

9. R[n2 + 1] ← ∞

10. i ← 1

11. j ← 1

12. FOR k ← p TO r

13. DO IF L[i ] ≤ R[ j]

14. THEN A[k] ← L[i]

15. i ← i + 1

16. ELSE A[k] ← R[j]

17. j ← j + 1



Merge Sort

7  2  9  4   2  4  7  9

7  2   2  7 9  4   4  9

7  7 2  2 9  9 4  4
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Merge-Sort Tree

• An execution of merge-sort is depicted by a binary tree
– each node represents a recursive call of merge-sort and stores

• unsorted sequence before the execution and its partition

• sorted sequence at the end of the execution

– the root is the initial call 

– the leaves are calls on subsequences of size 0 or 1

7  2  9  4   2  4  7  9

7  2   2  7 9  4   4  9

7  7 2  2 9  9 4  4
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Execution Example

• Partition

7  2  9  4   2  4  7  9 3  8  6  1   1  3  8  6

7  2   2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, partition

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2   2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, partition

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, base case

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, base case

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4   4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, …, base case, merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4  4  9 3  8   3  8 6  1   1  6

7  7 2  2 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9

9  9 4  4
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Execution Example (cont.)

• Merge

7  2  9  4  2  4  7  9 3  8  6  1   1  3  8  6

7  2  2  7 9  4  4  9 3  8   3  8 6  1   1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, …, merge, merge

7  2  9  4  2  4  7  9 3  8  6  1  1  3  6  8

7  2  2  7 9  4  4  9 3  8  3  8 6  1  1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Merge

7  2  9  4  2  4  7  9 3  8  6  1  1  3  6  8

7  2  2  7 9  4  4  9 3  8  3  8 6  1  1  6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7  2  9  4  3  8  6  1  1  2  3  4  6  7  8  9



Analyzing Divide-and-Conquer 

Algorithm

When an algorithm contains a recursive call to

itself, its running time can be described by a

recurrence equation or recurrence which

describes the running time
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Analysis of Merge-Sort

• The height h of the merge-sort tree is O(log n)

– at each recursive call we divide in half the sequence, 

• The overall amount or work done at the nodes of depth i is O(n)

– we partition and merge 2i sequences of size n/2i

– we make 2i+1 recursive calls

• Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …



Recurrence

If the problem size is small enough, say 

n<=c for some constant c, the 

straightforward solution takes constant 

time, can be written as θ(1). 



Recurrence

If we have a subproblems, each of which is 

1/b the size of the original. D(n) time to 

divide the problem  and C(n) time to 

combine the solution.



Recurrence

The recurrence

T(n)= 

θ(1)                                  if n <= c

aT(n/b) + D(n) + C(n)       otherwise



Recurrence

Divide: The divide step computes the 

middle of the subarray which takes 

constant time, D(n)=θ(1)



Recurrence

Conquer: We recursively solve two 

subproblems, each of size n/2, which 

contributes 2T(n/2) to the running time.



Recurrence

Combine: Merge procedure takes θ(n) time 

on an n-element subarray. C(n)=θ(n)

The recurrence

T(n)= θ(1)                        if n=1

2T(n/2) + θ(n)         if n>1



Recurrence

Let us rewrite the recurrence

T(n)=

C represents the time required to solve 

problems of size 1

C                   if n=1

2T(n/2) + cn  if n>1



A Recursion Tree for the 

Recurrence
T(n)

Cn

T(n/2) T(n/2)



A Recursion Tree for the 

Recurrence

Cn

Cn/2
Cn/2

T(n/4) T(n/4) T(n/4) T(n/4)



A Recursion Tree for the 

Recurrence
C(n)

Cn/2
Cn/2

Cn/4 Cn/4 Cn/4 Cn/4

C C C C C C C

cn

cn

cn

cn

lg n



A Recursion Tree for the 

Recurrence
• In the above recursion tree, each level has cost cn.

• The top level has cost cn.

• The next level down has 2 subproblems, each contributing cost cn/2.

• The next level has 4 subproblems, each contributing cost cn/4.

• Each time we go down one level, the number of subproblems doubles but 
the cost per subproblem halves. Therefore, cost per level stays the same.

• The height of this recursion tree is log n and there are log n + 1 levels.



Total Running Time
• A tree for a problem size of 2i has log 2i + 1 = i +1 levels.

• The fully expanded tree recursion tree has log n+1 levels. When n=1 than 1 
level log 1=0, so correct number of levels log n+1.

• Because we assume that the problem size is a power of 2, the next problem 
size up after 2i is 2i + 1. A tree for a problem size of 2i + 1 has one more 
level than the size-2i tree implying i + 2 levels. 

• Since log 2i + 1 = i + 2, we are done with the inductive argument.

• Total cost is sum of costs at each level of the tree. Since we have log n +1 

levels, each costing cn, the total cost is cn log n + cn. 

• Ignore low-order term of cn and constant coeffcient c, and we have,

Θ(n log n)



Total Running Time

The fully expanded tree has lg n +1 levels and 

each level contributes a total cost of cn. 

Therefore T(n)= cn log n + cn = θ(nlog n)



Growth of Functions

We look at input sizes large enough to 

make only the order of growth of the 

running time relevant.


