Unit-1 Divide and Conquer

- Dr. k.raghava Rao
- Professor in CSE
- KL University
- krraocse@gmail.com
- http://mcadaa.blog.com

Divide-and-Conquer

- Divide the problem into a number of subproblems.
-Conquer the subproblems by solving them recursively. If the
subproblem sizes are small enough, solve the subproblems in a
straightforward manner.

Divide-and-Conquer

- Combine the solutions to the subproblems into the
solution for the original problem.

Merge Sort Algorithm

Divide: Divide the n-element sequence into two
subsequences of $\mathrm{n} / 2$ elements each.

Conquer: Sort the two subsequences recursively using
merge sort.
Combine: Merge the two sorted sequences.

How to merge two sorted sequences

-We have two subarrays $A[p . . q]$ and $A[q+1 . . r]$ in sorted order.

- Merge sort algorithm merges them to form a single
sorted subarray that replaces the current subarray A[p..r]

To sort the entire sequence $A[1$.. $n]$, make the initial call to the procedure MERGE$\operatorname{SORT}(A, 1, n)$. MERGE-SORT $(A, p, r)\{$

1. IF $p<r$
2. $\operatorname{THEN} q=\operatorname{FLOOR}[(p+r) / 2]$
3. MERGESORT (A, p, q)
4. $\operatorname{MERGE} \operatorname{SORT}(\mathrm{A}, q+1, r)$
5. MERGE (A, p, q, r) // Conquer step.

The pseudocode of the MERGE procedure is as follow:

```
MERGE (A, p, q, r)
1. }\mp@subsup{n}{1}{}\leftarrowq-p+
2. }\mp@subsup{n}{2}{}\leftarrowr-
3. Create arrays L[1 . . n + 1] and R[1 .
. n2 + 1]
4. FOR i\leftarrow1 TO n+
5. DO L[i]\leftarrow\textrm{A}[p+i-1]
6. FOR j\leftarrow1 TO n2
7. DOR[]}\leftarrow\textrm{A}[q+j
8. }\textrm{L}[\mp@subsup{n}{1}{}+1]\leftarrow
9. }\textrm{R}[\mp@subsup{n}{2}{}+1]\leftarrow
10. i}\leftarrow<
11. }j\leftarrow
12. FOR }k\leftarrowp\mathrm{ TO r
13. DO IF L[i] < R[ ]
14. THEN A [k]}\leftarrowL[
15. }i\leftarrowi+
16. ELSE A[k]\leftarrowR[j]
17.
    j\leftarrowj+1
```


Merge Sort

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
- each node represents a recursive call of merge-sort and stores
- unsorted sequence before the execution and its partition
- sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 0 or 1

Execution Example

- Partition

Execution Example (cont.)

- Recursive call, partition

Execution Example (cont.)

- Recursive call, partition

Execution Example (cont.)

- Recursive call, base case

Execution Example (cont.)

- Recursive call, base case

Execution Example (cont.)

- Merge

Execution Example (cont.)

- Recursive call, ..., base case, merge

Execution Example (cont.)

- Merge

Execution Example (cont.)

- Recursive call, ..., merge, merge

Execution Example (cont.)

- Merge

Analyzing Divide-and-Conquer Algorithm

When an algorithm contains a recursive call to
itself, its running time can be described by a
recurrence equation or recurrence which
describes the running time

Analysis of Merge-Sort

- The height \boldsymbol{h} of the merge-sort tree is $\boldsymbol{O}(\log \boldsymbol{n})$
- at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth \boldsymbol{i} is $\boldsymbol{O}(\boldsymbol{n})$
- we partition and merge 2^{i} sequences of size $n / 2^{i}$
- we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ depth \#seqs size

21

Recurrence

If the problem size is small enough, say
$\mathrm{n}<=\mathrm{c}$ for some constant c , the
straightforward solution takes constant
time, can be written as $\theta(1)$.

Recurrence

If we have a subproblems, each of which is
$1 / b$ the size of the original. $D(n)$ time to
divide the problem and $\mathrm{C}(\mathrm{n})$ time to
combine the solution.

Recurrence

The recurrence

$T(n)=$

$$
\begin{cases}\theta(1) & \text { if } \mathrm{n}<=\mathrm{c} \\ \mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{D}(\mathrm{n})+\mathrm{C}(\mathrm{n}) & \text { otherwise }\end{cases}
$$

Recurrence

Divide: The divide step computes the middle of the subarray which takes constant time, $D(n)=\theta(1)$

Recurrence

Conquer: We recursively solve two
subproblems, each of size $\mathrm{n} / 2$, which
contributes $2 \mathrm{~T}(\mathrm{n} / 2)$ to the running time.

Recurrence

Combine: Merge procedure takes $\theta(\mathrm{n})$ time
on an n-element subarray. $C(n)=\theta(n)$

The recurrence
$T(n)= \begin{cases}\theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\theta(n) & \text { if } n>1\end{cases}$

Recurrence

Let us rewrite the recurrence
$T(n)= \begin{cases}c & \text { if } n=1 \\ 2 T(n / 2)+c n & \text { if } n>1\end{cases}$
C represents the time required to solve
problems of size 1

A Recursion Tree for the Recurrence

$\mathrm{T}(\mathrm{n})$

A Recursion Tree for the Recurrence

A Recursion Tree for the

Recurrence

A Recursion Tree for the Recurrence

- In the above recursion tree, each level has cost cn.
- The top level has cost $c n$.
- The next level down has 2 subproblems, each contributing cost $\mathrm{cn} / 2$.
- The next level has 4 subproblems, each contributing cost cn/4.
- Each time we go down one level, the number of subproblems doubles but the cost per subproblem halves. Therefore, cost per level stays the same.
- The height of this recursion tree is $\log n$ and there are $\log n+1$ levels.

Total Running Time

- A tree for a problem size of 2^{i} has $\log 2^{i}+1=i+1$ levels.
- The fully expanded tree recursion tree has $\log \mathrm{n}+1$ levels. When $\mathrm{n}=1$ than 1 level $\log 1=0$, so correct number of levels $\log n+1$.
- Because we assume that the problem size is a power of 2 , the next problem size up after 2^{i} is $2^{i}+1$. A tree for a problem size of $2^{i}+1$ has one more level than the size- 2^{i} tree implying $i+2$ levels.
- Since $\log 2^{i}+1=i+2$, we are done with the inductive argument.
- Total cost is sum of costs at each level of the tree. Since we have $\log n+1$ levels, each costing $c n$, the total cost is $c n \log n+c n$.
- Ignore low-order term of $c n$ and constant coeffcient c, and we have, $\Theta(n \log n)$

Total Running Time

The fully expanded tree has $\lg n+1$ levels and each level contributes a total cost of cn.

Therefore $T(n)=c n \log n+c n=\theta(n \log n)$

Growth of Functions

We look at input sizes large enough to
make only the order of growth of the
running time relevant.

