
Unit-1

Divide and Conquer

• Dr. K.RAGHAVA RAO

• Professor in CSE

• KL University

• krraocse@gmail.com
• http://mcadaa.blog.com

mailto:krraocse@gmail.com

Divide-and-Conquer

• Divide the problem into a number of subproblems.

•Conquer the subproblems by solving them recursively. If the

subproblem sizes are small enough, solve the subproblems in a

straightforward manner.

Divide-and-Conquer

• Combine the solutions to the subproblems into the

solution for the original problem.

Merge Sort Algorithm

Divide: Divide the n-element sequence into two

subsequences of n/2 elements each.

Conquer: Sort the two subsequences recursively using

merge sort.

Combine: Merge the two sorted sequences.

How to merge two sorted

sequences

•We have two subarrays A[p..q] and A[q+1..r] in sorted

order.

• Merge sort algorithm merges them to form a single

sorted subarray that replaces the current subarray A[p..r]

To sort the entire sequence A[1 .. n], make the initial call to the procedure MERGE-

SORT (A, 1, n).

MERGE-SORT (A, p, r){

1. IF p < r // Check for base case

2. THEN q = FLOOR[(p + r)/2] // Divide step

3. MERGESORT (A, p, q) // Conquer step.

4. MERGE SORT(A, q + 1, r) // Conquer step.

5. MERGE (A, p, q, r) // Conquer step.

}

The pseudocode of the MERGE

procedure is as follow:

MERGE (A, p, q, r)

1. n1 ← q − p + 1

2. n2 ← r − q

3. Create arrays L[1 . . n1 + 1] and R[1 .

. n2 + 1]

4. FOR i ← 1 TO n1

5. DO L[i] ← A[p + i − 1]

6. FOR j ← 1 TO n2

7. DO R[j] ← A[q + j]

8. L[n1 + 1] ← ∞

9. R[n2 + 1] ← ∞

10. i ← 1

11. j ← 1

12. FOR k ← p TO r

13. DO IF L[i] ≤ R[j]

14. THEN A[k] ← L[i]

15. i ← i + 1

16. ELSE A[k] ← R[j]

17. j ← j + 1

Merge Sort

7 2 9 4 2 4 7 9

7 2 2 7 9 4 4 9

7 7 2 2 9 9 4 4

Merge Sort9

Merge-Sort Tree

• An execution of merge-sort is depicted by a binary tree
– each node represents a recursive call of merge-sort and stores

• unsorted sequence before the execution and its partition

• sorted sequence at the end of the execution

– the root is the initial call

– the leaves are calls on subsequences of size 0 or 1

7 2 9 4 2 4 7 9

7 2 2 7 9 4 4 9

7 7 2 2 9 9 4 4

Merge Sort10

Execution Example

• Partition

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Merge Sort11

Execution Example (cont.)

• Recursive call, partition

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Merge Sort12

Execution Example (cont.)

• Recursive call, partition

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Merge Sort13

Execution Example (cont.)

• Recursive call, base case

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Merge Sort14

Execution Example (cont.)

• Recursive call, base case

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Merge Sort15

Execution Example (cont.)

• Merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Merge Sort16

Execution Example (cont.)

• Recursive call, …, base case, merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

9 9 4 4

Merge Sort17

Execution Example (cont.)

• Merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 8 6

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Merge Sort18

Execution Example (cont.)

• Recursive call, …, merge, merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 6 8

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Merge Sort19

Execution Example (cont.)

• Merge

7 2 9 4 2 4 7 9 3 8 6 1 1 3 6 8

7 2 2 7 9 4 4 9 3 8 3 8 6 1 1 6

7 7 2 2 9 9 4 4 3 3 8 8 6 6 1 1

7 2 9 4 3 8 6 1 1 2 3 4 6 7 8 9

Analyzing Divide-and-Conquer

Algorithm

When an algorithm contains a recursive call to

itself, its running time can be described by a

recurrence equation or recurrence which

describes the running time

Merge Sort21

Analysis of Merge-Sort

• The height h of the merge-sort tree is O(log n)

– at each recursive call we divide in half the sequence,

• The overall amount or work done at the nodes of depth i is O(n)

– we partition and merge 2i sequences of size n/2i

– we make 2i+1 recursive calls

• Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

Recurrence

If the problem size is small enough, say

n<=c for some constant c, the

straightforward solution takes constant

time, can be written as θ(1).

Recurrence

If we have a subproblems, each of which is

1/b the size of the original. D(n) time to

divide the problem and C(n) time to

combine the solution.

Recurrence

The recurrence

T(n)=

θ(1) if n <= c

aT(n/b) + D(n) + C(n) otherwise

Recurrence

Divide: The divide step computes the

middle of the subarray which takes

constant time, D(n)=θ(1)

Recurrence

Conquer: We recursively solve two

subproblems, each of size n/2, which

contributes 2T(n/2) to the running time.

Recurrence

Combine: Merge procedure takes θ(n) time

on an n-element subarray. C(n)=θ(n)

The recurrence

T(n)= θ(1) if n=1

2T(n/2) + θ(n) if n>1

Recurrence

Let us rewrite the recurrence

T(n)=

C represents the time required to solve

problems of size 1

C if n=1

2T(n/2) + cn if n>1

A Recursion Tree for the

Recurrence
T(n)

Cn

T(n/2) T(n/2)

A Recursion Tree for the

Recurrence

Cn

Cn/2
Cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

A Recursion Tree for the

Recurrence
C(n)

Cn/2
Cn/2

Cn/4 Cn/4 Cn/4 Cn/4

C C C C C C C

cn

cn

cn

cn

lg n

A Recursion Tree for the

Recurrence
• In the above recursion tree, each level has cost cn.

• The top level has cost cn.

• The next level down has 2 subproblems, each contributing cost cn/2.

• The next level has 4 subproblems, each contributing cost cn/4.

• Each time we go down one level, the number of subproblems doubles but
the cost per subproblem halves. Therefore, cost per level stays the same.

• The height of this recursion tree is log n and there are log n + 1 levels.

Total Running Time
• A tree for a problem size of 2i has log 2i + 1 = i +1 levels.

• The fully expanded tree recursion tree has log n+1 levels. When n=1 than 1
level log 1=0, so correct number of levels log n+1.

• Because we assume that the problem size is a power of 2, the next problem
size up after 2i is 2i + 1. A tree for a problem size of 2i + 1 has one more
level than the size-2i tree implying i + 2 levels.

• Since log 2i + 1 = i + 2, we are done with the inductive argument.

• Total cost is sum of costs at each level of the tree. Since we have log n +1

levels, each costing cn, the total cost is cn log n + cn.

• Ignore low-order term of cn and constant coeffcient c, and we have,

Θ(n log n)

Total Running Time

The fully expanded tree has lg n +1 levels and

each level contributes a total cost of cn.

Therefore T(n)= cn log n + cn = θ(nlog n)

Growth of Functions

We look at input sizes large enough to

make only the order of growth of the

running time relevant.

