UNIT-1 DIVIDE AND CONQUER

Dr. K. Raghava Rao
Professor inCSE,
Dept. of MCA, KL University
krraocse@gmail.com
http://mcadaa.blog.com

BASIC IDEA

$>$ Pick one element in the array, which will be the pivot.
> Make one pass through the array, called a partition step, re-arranging the entries so that:

- entries smaller than the pivot are to the left of the pivot.
- entries larger than the pivot are to the right

BASIC IDEA

$>$ Recursively apply quicksort to the part of the array that is to the left of the pivot, and to the part on its right.
$>$ No merge step, at the end all the elements are in the proper order

CHOOSING THE PIVOT

Some fixed element: e.g. the first, the

 last, the one in the middle.Bad choice - may turn to be the smallest or the largest element, then one of the partitions will be empty

Randomly chosen (by random generator) - still a bad choice

CHOOSING THE PIVOT

The median of the array
(if the array has N numbers, the median is the [N/2] largest number).

This is difficult to compute - increases the complexity.

CHOOSING THE PIVOT

The median-of-three choice: take the first, the last and the middle element.

Choose the median of these three elements.

QUICK SORT

- Result:
- All elements to the left of pivot are smaller or equal than pivot, and
- All elements to the right of pivot are greater or equal than pivot
- pivot in correct place in sorted array/list
- Need: Clever split procedure (Hoare)

QUICK SORT

Divide: Partition into subarrays (sub-lists)

Conquer: Recursively sort 2 subarrays

Combine: Trivial

QUICKSORT (HOARE 1962)

Problem: Sort n keys in nondecreasing order
Inputs: Positive integer n, array of keys S indexed from 1 to n
Output: The array S containing the keys in nondecreasing order.
quicksort (low, high)

1. if high > low
2. then partition(low, high, pivotIndex)
3. quicksort(low, pivotIndex -1)
4. quicksort(pivotIndex +1 , high)

PARTITION ARRAY FOR QUICKSORT

partition (low, high, pivot)

1. pivotitem $=S[$ low]
2. $k=$ low
3. for $j=l o w+1$ to high
4. do if $S[j]<$ pivotitem
5. then $k=k+1$
6. exchange $S[j$] and $S[k$]
7. pivot = k
8. exchange $S[l o w]$ and $S[p i v o t]$

QUICK-SORT

- Quick-sort is a randomized sorting algorithm based on the
 divide-and-conquer paradigm:
- Divide: pick a random element \boldsymbol{x} (called pivot) and partition S into
- L elements less than \boldsymbol{x}

- \boldsymbol{E} elements equal \boldsymbol{x}
- \boldsymbol{G} elements greater than \boldsymbol{x}
- Recur: sort \boldsymbol{L} and \boldsymbol{G}
- Conquer: join $\boldsymbol{L}, \boldsymbol{E}$ and \boldsymbol{G}

PARTITION

- We partition an input sequence as follows:
- We remove, in turn, each element y from S and
- We insert y into $\boldsymbol{L}, \boldsymbol{E}$ or \boldsymbol{G}, depending on the result of the comparison with the pivot \boldsymbol{x}
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $\boldsymbol{O}(1)$ time
- Thus, the partition step of quick-sort takes $\boldsymbol{O}(n)$ time

QUICK-SORT TREE

- An execution of quick-sort is depicted by a binary tree
- Each node represents a recursive call of quick-sort and stores
- Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

EXECUTION EXAMPLE

- Pivot selection

EXECUTION EXAMPLE (CONT.)

- Partition, recursive call, pivot selection

EXECUTION EXAMPLE (CONT.)

- Partition, recursive call, base case

EXECUTION EXAMPLE (CONT.)

- Recursive call, ..., base case, join

EXECUTION EXAMPLE (CONT.)

- Recursive call, pivot selection

EXECUTION EXAMPLE (CONT.)

- Partition, ..., recursive call, base case

EXECUTION EXAMPLE (CONT.)

- Join, join

EXAMPLE

We are given array of n integers to sort:

40	20	10	80	60	50	7	30	100

PICK PIVOT ELEMENT

There are a number of ways to pick the pivot element. In this example, we will use the first element in the array:

40	20	10	80	60	50	7	30	100

PARTITIONING ARRAY

Given a pivot, partition the elements of the array such that the resulting array consists of:

1. One sub-array that contains elements >= pivot
2. Another sub-array that contains elements $<$ pivot

The sub-arrays are stored in the original data array.

Partitioning loops through, swapping elements below/above pivot.

PARTITION RESULT

7	20	10	30	40	50	60	80	100
[0] [1] [2] [3] [4]				[5] [6] [7] [8]				
	= da	[pivot				[pi		

RECURSION: QUICKSORT SUB-ARRAYS

QUICKSORT: WORST CASE

- Assume first element is chosen as pivot.
- Assume we get array that is already in order:

COMPLEXITY OF QUICK SORT

If we have an array of equal elements, the array index will never increment i or decrement j, and will do infinite swaps.
i and j will never cross.

COMPLEXITY OF QUICK SORT

Worst Case: O(N²)

This happens when the pivot is the smallest (or the largest) element.

Then one of the partitions is empty, and we repeat recursively the procedure for N -1 elements.

WORST-CASE RUNNING TIME

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of \boldsymbol{L} and \boldsymbol{G} has size $\boldsymbol{n}-1$ and the other has size 0
- The running time is proportional to the sum

$$
n+(n-1)+\ldots+2+1
$$

- Thus, the worst-case running time of quick-sort is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ depth time

$$
n-1 \quad 1
$$

WORST-CASE ANALYSIS

The pivot is the smallest (or the largest) element $T(N)=T(N-1)+C N, N>1$
Telescoping:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{~N}-1)=\mathrm{T}(\mathrm{~N}-2)+\mathrm{c}(\mathrm{~N}-1) \\
& \mathrm{T}(\mathrm{~N}-2)=\mathrm{T}(\mathrm{~N}-3)+\mathrm{c}(\mathrm{~N}-2) \\
& \mathrm{T}(\mathrm{~N}-3)=\mathrm{T}(\mathrm{~N}-4)+\mathrm{c}(\mathrm{~N}-3) \\
& \cdots \cdots \cdots \cdots \\
& \mathrm{T}(2)=\mathrm{T}(1)+\mathrm{c} .2
\end{aligned}
$$

WORST-CASE ANALYSIS

$\mathrm{T}(\mathrm{N})+\mathrm{T}(\mathrm{N}-1)+\mathrm{T}(\mathrm{N}-2)+\ldots+\mathrm{T}(2)=$
$=T(N-1)+T(N-2)+\ldots+T(2)+T(1)+$
$\mathrm{c}(\mathrm{N})+\mathrm{c}(\mathrm{N}-1)+\mathrm{c}(\mathrm{N}-2)+\ldots+\mathrm{c} .2$
$T(N)=T(1)+$
c times (the sum of 2 thru N)
$=\mathrm{T}(1)+\mathrm{c}(\mathrm{N}(\mathrm{N}+1) / 2-1)=\mathbf{O}\left(\mathbf{N}^{2}\right)$

COMPLEXITY OF QUICK SORT

 Average-case O(N logN)
Best-case O(NlogN)

The pivot is the median of the array, the left and the right parts have same size. There are logN partitions, and to obtain each partitions we do \mathbf{N} comparisons (and not more than $\mathbf{N} / 2$ swaps). Hence the complexity is $0(N \log N)$

BEST CASE ANALYSIS

$T(N)=T(\mathbf{i})+T(N-i-1)+C N$
The time to sort the file is equal to

- the time to sort the left partition with i elements, plus
- the time to sort the right partition with N - $\mathrm{i}-1$ elements, plus
the time to build the partitions.

BEST-CASE ANALYSIS

The pivot is in the middle $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{cN}$

Divide by N :

$$
T(N) / N=T(N / 2) /(N / 2)+c
$$

BEST-CASE ANALYSIS

Telescoping:

$$
\begin{array}{ll}
\mathrm{T}(\mathrm{~N}) / \mathrm{N} & =\mathrm{T}(\mathrm{~N} / 2) /(\mathrm{N} / 2)+\mathrm{c} \\
\mathrm{~T}(\mathrm{~N} / 2) /(\mathrm{N} / 2) & =\mathrm{T}(\mathrm{~N} / 4) /(\mathrm{N} / 4)+\mathrm{c} \\
\mathrm{~T}(\mathrm{~N} / 4) /(\mathrm{N} / 4) & =\mathrm{T}(\mathrm{~N} / 8) /(\mathrm{N} / 8)+\mathrm{c}
\end{array}
$$

$$
\mathrm{T}(2) / 2=\mathrm{T}(1) /(1)+\mathrm{c}
$$

BEST-CASE ANALYSIS

Add all equations:

$\mathrm{T}(\mathrm{N}) / \mathrm{N}+\mathrm{T}(\mathrm{N} / 2) /(\mathrm{N} / 2)+\mathrm{T}(\mathrm{N} / 4) /(\mathrm{N} / 4)$ $+\ldots .+\mathrm{T}(2) / 2=$
$=(N / 2) /(N / 2)+T(N / 4) /(N / 4)+\ldots+$ $\mathrm{T}(1) /(1)+\mathrm{c} \cdot \log \mathrm{N}$

After crossing the equal terms:

$$
\begin{aligned}
& T(N) / N=T(1)+c^{*} \log N \\
& T(N)=N+N^{*} c^{*} \log N=\mathbf{O}(\mathbf{N} \log N)
\end{aligned}
$$

ADVANTAGES AND DISADVANTAGES

> Advantages:
$>$ One of the fastest algorithms on average
$>$ Does not need additional memory (the sorting takes place in the array - this is called in-place processing)
> Disadvantages:
$>$ The worst-case complexity is $\mathrm{O}\left(\mathrm{N}^{2}\right)$

APPLICATIONS

Commercial applications

QuickSort generally runs fast
No additional memory
The above advantages compensate for the rare occasions when it runs with $\mathrm{O}\left(\mathrm{N}^{2}\right)$

EXERCISE

- Write quicksort tracing
- 26,5,37,1,61,11,59,15,48,19

