
Dr. K.RAGHAVA RAO

Professor in CSE

KL University

krraocse@gmail.com
http://mcadaa.blog.com

Divide and Conquer

Selection Sort

mailto:krraocse@gmail.com

Defintion
– first find the smallest in the array and exchange it with the element in

the first position, then find the second smallest element and
exchange it with the element in the second position, and continue in
this way until the entire array is sorted.

Selection sort is:
– The simplest sorting techniques.

– a good algorithm to sort a small number of elements

– an incremental algorithm – induction method

Selection sort is Inefficient for large lists.

Incremental algorithms process the input elements one-by-
one and maintain the solution for the elements processed so
far.

Selection Sort

Selection Sort

Let A[1…n] be an array of n elements. A
simple and straightforward algorithm to sort
the entries in A works as follows. First, we
find the minimum element and store it in A[1].
Next, we find the minimum of the remaining
n-1 elements and store it in A[2]. We continue
this way until the second largest element is
stored in A[n-1].

Selection Sort algorithm

Input: A[1…n];

Output: A[1…n] sorted in nondecreasing order;

1. for i 1 to n-1

2. k i;

3. for j i+1 to n

4. if A[j]<A[k] then k j;

5. end for;

6. if k i then interchange A[i] and A[k];

7. end for;

Selection Sort

Take multiple passes over the array

Keep already sorted array at high-end

Find the biggest element in unsorted part

Swap it into the highest position in unsorted part

Invariant: each pass guarantees that one more

element is in the correct position (same as

bubbleSort)

a lot fewer swaps than bubbleSort!

Selection Sort

Pass 2

last = 3

largestIndex = 0, 0, 0

p = 1, 2, 3

Pass 3

last = 2

largestIndex = 0, 1

p = 1, 2

Pass 4

last = 1

largestIndex = 0, 1

p = 1

last = 4 3 2 1

largestIndex = 1 0 1 1

Step by step changes/swaps in the list that show
the swapping process during selection sort
implementation on array [7 8 3 1 6]

Example Execution of selection sort Tracing

Selection Sort Implementation for

Best Case [2 4 6 8 10]

Step by step changes/swaps in the
list that show the swapping process
during selection sort implementation
on array [2 4 6 8 10]

last = 4 3 2 1

largestIndex = 4 3 2 1

Selection Sort Analysis

For an array with size n, the external loop will iterate from n-
1 to 1.

for (int last = n-1; last>=1; --last)

For each iteration, to find the largest number in subarray, the
number of comparison inside the internal loop must is equal
to the value of last.

for (int p=1;p <=last; ++p)

Therefore the total comparison for Selection Sort in each
iteration is (n-1) + (n-2) + ….. 2 + 1.

Generally, the number of comparisons between elements in
Selection Sort can be stated as follows:

Selection Sort Analysis

Similar To Bubble Sort, In any cases of Selection Sort (worst
case, best case or average case) the number of comparisons
between elements is the same.

Number of Comparisons: 4 + 3 + 2 + 1 = 10

For array n= 5 => (n-1) +(n-2) + ….+ 2 + 1 = n(n-1)/2 = O(n2)

last = 4 3 2 1

largestIndex = 1 0 1 1

Selection Sort Analysis

Number of Comparisons for best case : 4 + 3 + 2 + 1 = 10

For array n= 5 =>(n-1) +(n-2)+ …. + 2 + 1 = n(n-1)/2 = O(n2)

last = 4 3 2 1

largestIndex = 4 3 2 1

Selection Sort – Algorithm

Complexity

Time Complexity for Selection Sort is the same

for all cases - worst case, best case or average

case O(n2).

The number of comparisons between elements

is the same.

The efficiency of Selection Sort does not

depend on the initial arrangement of the data

Alg.: SELECTION-SORT(A)

1 n ← length[A]

2 for j ← 1 to n - 1

3 do smallest ← j

4 for i ← j + 1 to n

5 do if A[i] < A[smallest]

6 then smallest ← i

7 exchange A[j] ↔ A[smallest]

cost times

c1 1

c2 n

c3 n-1

c4

c5

c6

c7 n-1

1

1
)1(

n

j
jn

1

1
)(

n

j
jn

1

1
)(

n

j
jn

1 1 1
2

1 2 3 4 5 6 7

1 1 2

() (1) (1) (1) ()
n n n

j j j

T n c c n c n c n j c n j c n j c n n

