
Dr. K.RAGHAVA RAO, Professor in CSE, KL University, krraocse@gmail.com,
http://mcadaa.blog.com

Divide and Conquer

Greedy Method-knapsack problem

mailto:krraocse@gmail.com
mailto:krraocse@gmail.com

Constructs a solution to an optimization problem piece by piece through a

sequence of choices that are: feasible, i.e. satisfying the constraints locally optimal

(with respect to some neighborhood definition) greedy (in terms of some measure),

and irrevocable.

For some problems, it yields a globally optimal solution for every instance. For
most, does not but can be useful for fast approximations. We are mostly
interested in the former case in this class.

Greedy Technique Definition

Generic Algorithm

Algorithm Greedy(a,n) {

//a[1..n] contains the n inputs.

solution:= ;

For i:= 1to n do {

X=select(a);

If Feasible(solution , x) then

solution:= union(solution, x);

}

return solution;

}

Applications of the Greedy Strategy

Optimal solutions:

change making for “normal” coin denominations

minimum spanning tree (MST)

single-source shortest paths

simple scheduling problems

Huffman codes

Approximations/heuristics:

traveling salesman problem (TSP)

knapsack problem

other combinatorial optimization problems

Change-Making Problem

Given unlimited amounts of coins of denominations d1 > … > dm ,

give change for amount n with the least number of coins

Example: d1 = 25c, d2 =10c, d3 = 5c, d4 = 1c and n = 48c

Greedy solution:

Greedy solution is

 optimal for any amount and “normal’’ set of denominations

 may not be optimal for arbitrary coin denominations

<1, 2, 0, 3>

Ex: Prove the greedy algorithm is optimal for the above denominations.

Q: What are the objective function and constraints?

The Fractional Knapsack Problem

 Given: A set S of n items, with each item i having
 bi - a positive benefit

 wi - a positive weight

 Goal: Choose items with maximum total benefit but with weight at most W.

 If we are allowed to take fractional amounts, then this is the fractional knapsack
problem.
 In this case, we let xi denote the amount we take of item i

 Objective: maximize

 Constraint:

Si

iii wxb)/(

Si

i Wx

Example model-1

in this model items are arranged by their values, maximum selected first, process continous till

minimum value

 Given: A set S of n items, with each item i having

 bi - a positive benefit

 wi - a positive weight

 Goal: Choose items with maximum total benefit but with weight
at most W.

Weight:

Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

Rs.12 Rs.32 Rs.40 Rs.30 Rs.50

Items:

Value: 3
(Rs. per ml)

4 20 5 50 10 ml

Solution:

• 1 ml of 5

• 2 ml of 3

• 6 ml of 4

• 1 ml of 2

“knapsack”

Knapsack Problem model-2
in this model items are arranged by their weights, lightest weight selected first, process continuous

till the maximum weight.

 You have a knapsack that has capacity (weight) C.

 You have several items I1,…,In.

 Each item Ij has a weight wj and a benefit bj.

 You want to place a certain number of copies of each
item Ij in the knapsack so that:

 The knapsack weight capacity is not exceeded and

 The total benefit is maximal.

Key question

 Suppose f(w) represents the maximal possible

benefit of a knapsack with weight w.

 We want to find (in the example) f(5).

 Is there anything we can say about f(w) for

arbitrary w?

Key observation

 To fill a knapsack with items of weight w, we must
have added items into the knapsack in some order.

 Suppose the last such item was Ij with weight wi and
benefit bi.

 Consider the knapsack with weight (w- wi). Clearly,
we chose to add Ij to this knapsack because of all
items with weight wi or less, Ij had the max benefit bi.

Key observation

 Thus, f(w) = MAX { bj + f(w-wj) | Ij is an item}.

 This gives rise to an immediate recursive algorithm

to determine how to fill a knapsack.

Example

Item Weight Benefit

A 2 60

B 3 75

C 4 90

f(0), f(1)

 f(0) = 0. Why? The knapsack with capacity 0 can

have nothing in it.

 f(1) = 0. There is no item with weight 1.

f(2)

 f(2) = 60. There is only one item with weight 60.

 Choose A.

f(3)

 f(3) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60+f(3-2), 75 + f(3-3)}

= MAX { 60 + 0, 75 + 0 }

= 75.

Choose B.

f(4)

 f(4) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60 + f(4-2), 75 + f(4-3), 90+f(4-4)}

= MAX { 60 + 60, 75 + f(1), 90 + f(0)}

= MAX { 120, 75, 90}

=120.

Choose A.

f(5)

 f(5) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60 + f(5-2), 75 + f(5-3), 90+f(5-4)}

= MAX { 60 + f(3), 75 + f(2), 90 + f(1)}

= MAX { 60 + 75, 75 + 60, 90+0}

= 135.

Choose A or B.

Result

 Optimal knapsack weight is 135.

 Two possible optimal solutions:

 Choose A during computation of f(5). Choose B in
computation of f(3).

 Choose B during computation of f(5). Choose A in
computation of f(2).

 Both solutions coincide. Take A and B.

Another example model-2

 Knapsack of capacity 50.

 3 items

 Item 1 has weight 10, benefit 60

 Item 2 has weight 20,benefit 100

 Item 3 has weight 30, benefit 120.

f(0),..,f(9)

 All have value 0.

f(10),..,f(19)

 All have value 10.

 Choose Item 1.

f(20),..,f(29)

 F(20) = MAX { 60 + f(10), 100 + f(0) }

= MAX { 60+60, 100+0}

=120.

Choose Item 1.

f(30),…,f(39)

f(30) = MAX { 60 + f(20), 100 + f(10), 120 + f(0) }

= MAX { 60 + 120, 100+60, 120+0}

= 180

Choose item 1.

24

f(40),…,f(49)

 F(40) = MAX { 60 + f(30), 100 + f(20), 120 +

f(10)}

= MAX { 60 + 180, 100+120, 120 + 60}

= 240.

Choose item 1.

25

f(50)

 f(50) = MAX { 60 + f(40), 100 + f(30), 120 +

f(20) }

= MAX { 60 + 240, 100+180, 120 + 120}

= 300.

Choose item 1.

Fractional knapsack

 Much easier

 For item Ij, let rj = bj/wj. This gives you the benefit

per measure of weight.

 Sort the items in descending order of rj

 Pack the knapsack by putting as many of each item

as you can walking down the sorted list.

Fractional knapsack model-3 example

A thief enters a store and sees the following items:

Cost Rs. 100-A , Rs. 10-B, Rs. 120-C for Weight: 2 kg, 2kg , 3 kg

His Knapsack holds 4 Kgs. What should he steal to maximize profit?

Thief can take a fraction of an item.

Solution: 2 kg of item A + 2 kg of item C = Rs.100 + Rs 80=180

Fractional knapsack example model-3

n=3, m=20,(p1,p2,p3)=(25,24,15), and (w1,w2,w3)=(18,15,10)

Four feasible solutions are:

(x1,x2,x3)

1. (1/2,1/3,1/4) 16.5 24.25

2. (1,2/15, 0) 20 28.2

3. (0,2/3, 1) 20 31

4 (0,1,1/2) 20 31.5

Solution 4 yields the maximum profit, so this is optimal solution for the given problem.

Wixi pixi

I=<I1,I2,I3,I4,I5> W=<5,10,20,30,40> V=<30,20,100,90,160> knapsack capacity

W=60, the solution to the fractional knapsack problem is given as:

Initially

Fractional knapsack example model-3

Item Wi Vi

I1 5 30

I2 10 20

I3 20 100

I4 30 90

I5 40 160

I=<I1,I2,I3,I4,I5> W=<5,10,20,30,40> V=<30,20,100,90,160> knapsack capacity

W=60, the solution to the fractional knapsack problem is given as:

Taking value per weight ratio

Fractional knapsack example model-3

Item wi vi Pi=vi/wi

I1 5 30 6.0

I2 10 20 2.0

I3 20 100 5.0

I4 30 90 3.0

I5 40 160 4.0

I=<I1,I2,I3,I4,I5> W=<5,10,20,30,40> V=<30,20,100,90,160> knapsack capacity W=60, the solution to

the fractional knapsack problem is given as: Arranging item with decreasing order of Pi

Filling knapsack according to decreasing value of Pi, max. value = v1+v2+new(v3)=30+100+140=270

Fractional knapsack example model-3

Item wi vi Pi=vi/wi

I1 5 30 6.0

I2 20 100 5.0

I3 40 160 4.0

I4 30 90 3.0

I5 10 20 2.0

exercise

 Find an optimal solution to knapsack problem instance

n=7,m=15, {p1,p2,p3,…p7}=(10,5,15,7,6,18,3), and

(w1,w2,…w7)=(2,3,5,7,1,4,1).

 N=3 m=20 , w1,w2,w3=18,15,10

 P1,p2,p3=25,24,15 find optimal solution for knapsack problem.

33

The Fractional Knapsack Algorithm
Algorithm for greedy strategy for knapsack problem

Algorithm GreedyKnapsack(m,n)

//p[1:n] and w[1:n] contain profits and weights respectively of n objects ordered such that
//p[i]/w[i] >=p[i+1]/w[i+1].m is the knapsack size and x[1:n] is the solution vector

{

For i:= 1 to n do x[i]:=0.0; //initialize x

U:=m;

{

If (w[i]>U) then break;

x[i]:=1.0; U:=U-w[i];

}

If (i<=n) then x[i]:=U/w[i];

}

