Divide and Conquer
 Greedy Method-knapsack problem

Greedy Technique Definition

Constructs a solution to an optimization problem piece by piece through a sequence of choices that are: feasible, i.e. satisfying the constraints locally optimal (with respect to some neighborhood definition) greedy (in terms of some measure), and irrevocable.

For some problems, it yields a globally optimal solution for every instance. For most, does not but can be useful for fast approximations. We are mostly interested in the former case in this class.

Generic Algorithm

```
Algorithm Greedy(a,n) {
//a[1..n] contains the n inputs.
solution:= \varnothing;
For i:= l to n do {
X=select(a);
If Feasible(solution, x) then
solution:= union(solution, x);
}
return solution;
}
```


Applications of the Greedy Strategy

Optimal solutions:
change making for "normal" coin denominations minimum spanning tree (MST)
single-source shortest paths simple scheduling problems Huffman codes

Approximations/heuristics:
traveling salesman problem (TSP)
knapsack problem
other combinatorial optimization problems

Change-Making Problem

Given unlimited amounts of coins of denominations $d_{1}>\ldots>d_{m}$, give change for amount n with the least number of coins

Q: What are the objective function and constraints?
Example: $d_{1}=25 c, d_{2}=10 c, d_{3}=5 c, d_{4}=1 c$ and $n=48 c$

Greedy solution: $<1,2,0,3>$

Greedy solution is
\square optimal for any amount and "normal" set of denominations Ex: Prove the greedy algorithm is optimal for the above denominations.
\square may not be optimal for arbitrary coin denominations

The Fractional Knapsack Problem

\square Given: A set S of n items, with each item i having

- b_{i}-a positive benefit
- w_{i} - a positive weight
\square Goal: Choose items with maximum total benefit but with weight at most W .
\square If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
- In this case, we let x_{i} denote the amount we take of item i
- Objective: maximize

$$
\sum_{i \in S} b_{i}\left(x_{i} / w_{i}\right)
$$

- Constraint:

$$
\sum_{i \in S} x_{i} \leq W
$$

Example model- 1

in this model items are arranged by their values, maximum selected first, process continous till minimum value
\square Given: A set S of n items, with each item i having

- b_{i} - a positive benefit
- w_{i} - a positive weight
\square Goal: Choose items with maximum total benefit but with weight at most W.

Items:
Weight: Benefit:
Value:
(Rs. per ml)

4 ml	8 ml	2 ml	6 ml	1 ml
Rs. 12	Rs. 32	Rs. 40	Rs. 30	Rs. 50
3	4	20	5	50

Solution:

- 1 ml of 5
- 2 ml of 3
- 6 ml of 4
- 1 ml of 2

10 ml

Knapsack Problem model-2
in this model items are arranged by their weights, lightest weight selected first, process continuous till the maximum weight.
\square You have a knapsack that has capacity (weight) C.
\square You have several items I_{1}, \ldots, I_{n}.
\square Each item I_{i} has a weight w_{i} and a benefit b_{i}.
\square You want to place a certain number of copies of each item I_{i} in the knapsack so that:

- The knapsack weight capacity is not exceeded and
- The total benefit is maximal.

Key question

\square Suppose $f(w)$ represents the maximal possible benefit of a knapsack with weight w.
\square We want to find (in the example) f(5).
\square Is there anything we can say about $f(w)$ for arbitrary w ?

Key observation

\square To fill a knapsack with items of weight w, we must have added items into the knapsack in some order.
\square Suppose the last such item was I_{i} with weight w_{i} and benefit b_{i}.
\square Consider the knapsack with weight ($w-w_{i}$). Clearly, we chose to add I_{i} to this knapsack because of all items with weight w_{i} or less, l_{i} had the max benefit b_{i}.

Key observation

\square Thus, $f(w)=\operatorname{MAX}\left\{b_{i}+f\left(w-w_{i}\right) \mid l_{i}\right.$ is an item $\}$.
\square This gives rise to an immediate recursive algorithm to determine how to fill a knapsack.

Example

Item	Weight	Benefit
A	2	60
B	3	75
C	4	90

$f(0), f(1)$

$\square f(0)=0$. Why? The knapsack with capacity 0 can have nothing in it.
$\square f(1)=0$. There is no item with weight 1.
$\square f(2)=60$. There is only one item with weight 60.
\square Choose A.
$\square f(3)=\operatorname{MAX}\left\{b_{i}+f\left(w-w_{i}\right) \mid l_{i}\right.$ is an item $\}$.
$=\operatorname{MAX}\{60+f(3-2), 75+f(3-3)\}$
$=\operatorname{MAX}\{60+0,75+0\}$
$=75$.
Choose B.
$\square f(4)=\operatorname{MAX}\left\{b_{i}+f\left(w-w_{i}\right) \mid I_{i}\right.$ is an item $\}$.
$=\operatorname{MAX}\{60+\mathrm{f}(4-2), 75+\mathrm{f}(4-3), 90+\mathrm{f}(4-4)\}$
$=\operatorname{MAX}\{60+60,75+f(1), 90+f(0)\}$
$=\operatorname{MAX}\{120,75,90\}$
$=120$.
Choose A.
$\square f(5)=\operatorname{MAX}\left\{b_{i}+f\left(w-w_{i}\right) \mid l_{i}\right.$ is an item $\}$.
$=\operatorname{MAX}\{60+f(5-2), 75+f(5-3), 90+f(5-4)\}$
$=\operatorname{MAX}\{60+f(3), 75+f(2), 90+f(1)\}$
$=\operatorname{MAX}\{60+75,75+60,90+0\}$
$=135$.
Choose A or B.

Result

- Optimal knapsack weight is 135 .
\square Two possible optimal solutions:
\square Choose A during computation of $f(5)$. Choose B in computation of $f(3)$.
- Choose B during computation of $f(5)$. Choose A in computation of $f(2)$.
\square Both solutions coincide. Take A and B.

Another example model-2

\square Knapsack of capacity 50.

- 3 items
- Item 1 has weight 10, benefit 60
- Item 2 has weight 20,benefit 100
- Item 3 has weight 30, benefit 120 .

$f(0) . . ., f(9)$

\square All have value 0 .
$f(10), \ldots, f(19)$
\square All have value 10 .
\square Choose Item 1.

$f(20), \ldots, f(29)$

$\square F(20)=\operatorname{MAX}\{60+f(10), 100+f(0)\}$
$=\operatorname{MAX}\{60+60,100+0\}$
$=120$.
Choose Item 1.

$f(30), \ldots, f(39)$

$\mathrm{f}(30)=\operatorname{MAX}\{60+\mathrm{f}(20), 100+\mathrm{f}(10), 120+\mathrm{f}(0)\}$
$=\operatorname{MAX}\{60+120,100+60,120+0\}$
$=180$
Choose item 1.

$f(40), \ldots, f(49)$

$\square F(40)=\operatorname{MAX}\{60+f(30), 100+f(20), 120+$ $f(10)\}$
$=\operatorname{MAX}\{60+180,100+120,120+60\}$
$=240$.
Choose item 1.

$f(50)$

$\square f(50)=\operatorname{MAX}\{60+f(40), 100+f(30), 120+$ $\mathrm{f}(20)\}$
$=\operatorname{MAX}\{60+240,100+180,120+120\}$
$=300$.
Choose item 1.

Fractional knapsack

\square Much easier
\square For item l_{i}, let $r_{i}=b_{i} / w_{i}$. This gives you the benefit per measure of weight.
\square Sort the items in descending order of r_{i}
\square Pack the knapsack by putting as many of each item as you can walking down the sorted list.

Fractional knapsack model-3 example

A thief enters a store and sees the following items:
Cost Rs. 100-A , Rs. 10-B, Rs. $120-\mathrm{C}$ for Weight: $2 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ His Knapsack holds 4 Kgs. What should he steal to maximize profit?

Thief can take a fraction of an item.
Solution: 2 kg of item $A+2 \mathrm{~kg}$ of item $C=$ Rs. $100+$ Rs $80=180$

Fractional knapsack example model-3

$\mathrm{n}=3, \mathrm{~m}=20,(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3)=(25,24,15)$, and $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3)=(18,15,10)$
Four feasible solutions are:

($\times 1, \times 2, \times 3$)	$\sum W i x i$	$\sum p i x i$
1. (1/2,1/3,1/4)	16.5	24.25
2. $(1,2 / 15,0)$	20	28.2
3. $(0,2 / 3,1)$	20	31
$4(0,1,1 / 2)$	20	31.5

Solution 4 yields the maximum profit, so this is optimal solution for the given problem.

Fractional knapsack example model-3

$\mathrm{I}=<11,12,13,14,15>\mathrm{W}=<5,10,20,30,40>\mathrm{V}=<30,20,100,90,160>$ knapsack capacity $W=60$, the solution to the fractional knapsack problem is given as:

Initially	ltem	Wi	Vi
11	5	30	
12	10	20	
13	20	100	
14	30	90	
15	40	160	

Fractional knapsack example model-3

$\mathrm{I}=<11,12, \mathrm{I} 3,14,15>\mathrm{W}=<5,10,20,30,40>\mathrm{V}=<30,20,100,90,160>$ knapsack capacity $\mathrm{W}=60$, the solution to the fractional knapsack problem is given as:

Taking value per weight ratio

Item	wi	vi	Pi=vi/wi
I1	5	30	6.0
12	10	20	2.0
13	20	100	5.0
14	30	90	3.0
15	40	160	4.0

Fractional knapsack example model-3

$\mathrm{I}=<11, I 2, I 3,14, I 5>\mathrm{W}=<5,10,20,30,40>\mathrm{V}=<30,20,100,90,160>$ knapsack capacity $\mathrm{W}=60$, the solution to the fractional knapsack problem is given as: Arranging item with decreasing order of Pi

Item	wi	vi	$\mathrm{Pi=vi} / \mathrm{wi}$
11	5	30	6.0
12	20	100	5.0
13	40	160	4.0
14	30	90	3.0
15	10	20	2.0

Filling knapsack according to decreasing value of Pi , max. value $=v 1+v 2+$ new $(v 3)=30+100+140=270$

exercise

\square Find an optimal solution to knapsack problem instance $n=7, m=15,\{p 1, p 2, p 3, \ldots p 7\}=(10,5,15,7,6,18,3)$, and $(w 1, w 2, \ldots w 7)=(2,3,5,7,1,4,1)$.
$\square \mathrm{N}=3 \mathrm{~m}=20, \mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3=18,15,10$

- P1,p2,p3=25,24,15 find optimal solution for knapsack problem.

The Fractional Knapsack Algorithm

Algorithm for greedy strategy for knapsack problem

Algorithm GreedyKnapsack(m,n)

$/ / \mathrm{p}[1: \mathrm{n}]$ and $\mathrm{w}[1: \mathrm{n}]$ contain profits and weights respectively of n objects ordered such that $/ / \mathrm{p}[\mathrm{i}] / \mathrm{w}[\mathrm{i}]>=\mathrm{p}[\mathrm{i}+1] / \mathrm{w}[\mathrm{i}+1] . \mathrm{m}$ is the knapsack size and $\mathrm{x}[1: \mathrm{n}]$ is the solution vector
$\{$
For $\mathrm{i}:=1$ to n do $\mathrm{x}[\mathrm{i}]:=0.0$; //initialize x
$\mathrm{U}:=\mathrm{m}$;
\{
If $(\mathrm{w}[\mathrm{i}]>\mathrm{U})$ then break;
$\mathrm{x}[\mathrm{i}]:=1.0 ; \mathrm{U}:=\mathrm{U}-\mathrm{w}[\mathrm{i}] ;$
\}
If $(\mathrm{i}<=\mathrm{n})$ then $\mathrm{x}[\mathrm{i}]:=\mathrm{U} / \mathrm{w}[\mathrm{i}]$;
\}

