
Syllabus:

EMBEDDED COMMUNICATION PROTOCOLS: Embedded Networking: Introduction –
Serial/Parallel Communication – Serial communication protocols -RS232 standard – RS485 –
Synchronous Serial Protocols -Serial Peripheral Interface (SPI) – Inter Integrated Circuits
(I2C) – PC Parallel port programming -ISA/PCI Bus protocols – Firewire.

USB Bus: Introduction – Speed Identification on the bus – USB States – USB bus
communication: Packets –Data flow types –Enumeration –Descriptors –PIC 18
Microcontroller USB Interface

CAN Bus: Introduction - Frames –Bit stuffing –Types of errors –Nominal Bit Timing – PIC
microcontroller CAN Interface –A simple application with CAN.

EMBEDDED ETHERNET: Exchanging messages using UDP and TCP – Serving web pages
with Dynamic Data – Serving web pages that respond to user Input – Email for Embedded
Systems – Using FTP – Keeping Devices and Network secure.

WIRELESS EMBEDDED NETWORKING: Wireless sensor networks – Introduction –
Applications – Network Topology – Localization –Time Synchronization - Energy efficient
MAC protocols –SMAC – Energy efficient and robust routing – Data Centric routing

TEXT BOOKS

1. Frank Vahid, Givargis ‘Embedded Systems Design: A Unified Hardware/Software
Introduction’, Wiley Publications

2. Jan Axelson, ‘Parallel Port Complete’, Penram publications
3. Dogan Ibrahim, ‘Advanced PIC microcontroller projects in C’, Elsevier 2008
4. Jan Axelson ‘Embedded Ethernet and Internet Complete’, Penram publications
5. Bhaskar Krishnamachari, ‘Networking wireless sensors’, Cambridge press 2005

USB Bus: Introduction

 Speed Identification on the bus

 USB States

 USB bus communication: Packets

 Data flow types

 Enumeration

 Descriptors

 PIC 18 Microcontroller USB Interface

CHAP T E R 8

Advanced PIC18 Projects—USB
Bus Projects

The Universal Serial Bus (USB) is one of the most common interfaces used in

electronic consumer products today, including PCs, cameras, GPS devices, MP3

players, modems, printers, and scanners, to name a few.

The USB was originally developed by Compaq, Microsoft, Intel, and NEC, and later by

Hewlett-Packard, Lucent, and Philips as well. These companies eventually formed the

nonprofit corporation USB Implementers Forum Inc. to organize the development

and publication of USB specifications.

This chapter describes the basic principles of the USB bus and shows how to use

USB-based applications with PIC microcontrollers. The USB bus is a complex

protocol. A complete discussion of its design and use is beyond the scope of this

chapter. Only the basic principles, enough to be able to use the USB bus, are

outlined here. On the other hand, the functions offered by the mikroC language that

simplify the design of USB-based microcontroller projects are described in some detail.

The USB is a high-speed serial interface that can also provide power to devices

connected to it. A USB bus supports up to 127 devices (limited by the 7-bit address

field—note that address 0 is not used as it has a special purpose) connected through a

four-wire serial cable of up to three or even five meters in length. Many USB devices

can be connected to the same bus with hubs, which can have 4, 8, or even 16 ports.

A device can be plugged into a hub which is plugged into another hub, and so on.

The maximum number of tiers permitted is six. According to the specification, the

maximum distance of a device from its host is about thirty meters, accomplished by

www.newnespress.com

using five hubs. For longer-distance bus communications, other methods such as use of

Ethernet are recommended.

The USB bus specification comes in two versions: the earlier version, USB1.1, supports

11Mbps, while the new version, USB 2.0, supports up to 480Mbps. The USB

specification defines three data speeds:

� Low speed—1.5Mb/sec

� Full speed—12Mb/sec

� High speed—480Mb/sec

The maximum power available to an external device is limited to about 100mA at

5.0V.

USB is a four-wire interface implemented using a four-core shielded cable. Two types

of connectors are specified and used: Type A and Type B. Figure 8.1 shows typical

USB connectors. Figure 8.2 shows the pin-out of the USB connectors.

The signal wire colors are specified. The pins and wire colors of a Type A or Type B

connector are given in Table 8.1.

Figure 8.1: USB connectors

www.newnespress.com

410 Chapter 8

The specification also defines a mini-B connector, mainly used in smaller portable

electronic devices such as cameras and other handheld devices. This connector has a

fifth pin called ID, though this pin is not used. The pin assignment and wire colors of a

mini-B connector are given in Table 8.2.

Two of the pins, Dataþ and Data�, form a twisted pair and carry differential data

signals and some single-ended data states.

43

12

4321

Figure 8.2: Pin-out of USB connectors

Table 8.1: USB connector pin assignments

Pin no. Name Color

1 þ5.0V Red

2 Data� White

3 Dataþ Green

4 Ground Black

Table 8.2: Mini USB pin assignments

Pin no. Name Color

1 þ5.0V Red

2 �Data White

3 þData Green

4 Not used –

5 Ground Black

www.newnespress.com

411Advanced PIC18 Projects—USB Bus Projects

USB signals are bi-phase, and signals are sent from the host computer using the NRZI

(non-return to zero inverted) data encoding technique. In this technique, the signal level

is inverted for each change to a logic 0. The signal level for a logic 1 is not changed.

A 0 bit is “stuffed” after every six consecutive ones in the data stream to make the data

dynamic (this is called bit stuffing because the extra bit lengthens the data stream).

Figure 8.3 shows how the NRZI is implemented.

A packet of data transmitted by the host is sent to every device connected to the bus,

traveling downward through the chain of hubs. All the devices receive the signal, but

only one of them, the addressed one, accepts the data. Conversely, only one device at

any time can transmit to the host, and the data travels upward through the chain of hubs

until it reaches the host.

USB devices attached to the bus may be full-custom devices, requiring a full-custom

device driver, or they may belong to a device class. Device classes enable the

same device driver to be used for several devices having similar functionalities.

For example, a printer device has the device class 0�07, and most printers use

drivers of this type.

The most common device classes are given in Table 8.3. The USB human interface

device (HID) class is of particular interest, as it is used in the projects in this

chapter.

Some common USB terms are:

Endpoint: An endpoint is either a source or a sink of data. A single USB device can

have a number of endpoints, the limit being sixteen IN and sixteen OUT endpoints.

Transaction: A transaction is a transfer of data on the bus.

Pipe: A pipe is a logical data connection between the host and an endpoint.

Data
1 0 1 0 0 1 1 0 0 0 1

Figure 8.3: NRZI data

www.newnespress.com

412 Chapter 8

8.1 Speed Identification on the Bus

At the device end of the bus, a 1.5K pull-up resistor is connected from the Dþ or D�
line to 3.3V. On a full-speed bus, the resistor is connected from the Dþ line to 3.3V,

and on a low-speed bus the resistor is from D� line to 3.3V. When no device is plugged

in, the host will see both data lines as low. Connecting a device to the bus will pull

either the Dþ or the D� line to logic high, and the host will know that a device is

plugged into the bus. The speed of the device is determined by observing which line

is pulled high.

8.2 USB States

Some of the USB bus states are:

Idle: The bus is in idle state when the pulled-up line is high and the other line is low.

This is the state of the lines before and after a packet transmission.

Detached: When no device is connected to the bus, the host sees both lines as low.

Attached: When a device is connected to the bus, the host sees either Dþ or D� go

to logic high, which means a device has been plugged in.

Table 8.3: USB device classes

Device class Description Example device

0�00 Reserved �
0�01 USB audio device Sound card

0�02 USB communications device Modem, fax

0�03 USB human interface device Keyboard, mouse

0�07 USB printer device Printer

0�08 USB mass storage device Memory card, flash drive

0�09 USB hub device Hubs

0�0B USB smart card reader device Card reader

0�0E USB video device Webcam, scanner

0�E0 USB wireless device Bluetooth

www.newnespress.com

413Advanced PIC18 Projects—USB Bus Projects

J state: The same as idle state.

K state: The opposite of J state.

SE0: The single ended zero state, where both lines on the bus are pulled low.

SE1: The single ended one state, where both lines on the bus are high. SE1 is an

illegal condition on the bus; it must never be in this state.

Reset: When the host wants to communicate with a device on the bus, it first

sends a “reset” condition by pulling low both data lines (SE0 state) for at least

10ms.

EOP: The end of packet state, which is basically an SE0 state for 2 bit times,

followed by a J state for 1 bit time.

Keep alive: The state achieved by EOP. Keep alive is sent at least once every

millisecond to keep the device from suspending.

Suspend: Used to save power, suspend is implemented by not sending anything to a

device for 3ms. A suspended device draws less than 0.5mA from the bus and must

recognize reset and resume signals.

Resume: A suspended device is woken up by reversing the polarity of the signal on

the data lines for at least 20ms, followed by a low-speed EOP signal.

8.3 USB Bus Communication

USB is a host-centric connectivity system where the host dictates the use of the USB

bus. Each device on the bus is assigned a unique USB address, and no slave device can

assert a signal on the bus until the host asks for it. When a new USB device is plugged

into a bus, the USB host uses address 0 to ask basic information from the device. Then

the host assigns it a unique USB address. After the host asks for and receives further

information about the device, such as the name of the manufacturer, device capabilities,

and product ID, two-way transactions on the bus can begin.

8.3.1 Packets

Data is transmitted on a USB bus in packets. A packet starts with a sync pattern to allow

the receiver clock to synchronize with the data. The data bytes of the packet follow,

ending with an end of packet signal.

www.newnespress.com

414 Chapter 8

A packet identifier (PID) byte immediately follows the sync field of every USB packet.

A PID itself is 4 bits long, and the 4 bits are repeated in a complemented form. There

are seventeen different PID values, as shown in Table 8.4. These include one reserved

value and one that is used twice, with two different meanings.

There are four packet formats, based on which PID is at the start of the packet: token

packets, data packets, handshake packets, and special packets.

Figure 8.4 shows the format of a token packet, which is used for OUT, IN, SOF (start of

frame), and SETUP. The packet contains a 7-bit address, a 4-bit ENDP (endpoint

number), a 5-bit CRC checksum, and an EOP (end of packet).

A data packet is used for DATA0, DATA1, DATA2, and MDATA data transactions.

The packet format is shown in Figure 8.5 and consists of the PID, 0–1024 bytes of data,

a 2-byte CRC checksum, and an EOP.

Table 8.4: PID values

PID type PID name Bits Description

Token OUT
IN
SOF
SETUP

1110 0001
0110 1001
1010 0101
0010 1101

Host to device transaction
Device to host transaction
Start of frame
Setup command

Data DATA0
DATA1
DATA2
MDATA

1100 0011
0100 1011
1000 0111
0000 1111

Data packet PID even
Data packet PID odd
Data packet PID high speed
Data packet PID high speed

Handshake ACK
NAK
STALL
NYET

1101 0010
0101 1010
0001 1110
1001 0110

Receiver accepts packet
Receiver does not accept packet
Stalled
No response from receiver

Special PRE
ERR
SPLIT
PING
Reserved

0011 1100
0011 1100
0111 1000
1011 0100
1111 0000

Host preample
Split transaction error
High-speed split transaction
High-speed flow control
Reserved

Sync PID ADDR ENDP CRC EOP
8 bits 7 bits 4 bits 5 bits

Figure 8.4: Token packet

www.newnespress.com

415Advanced PIC18 Projects—USB Bus Projects

Figure 8.6 shows the format of a handshake packet, which is used for ACK, NAK,

STALL, and NYET. ACK is used when a receiver acknowledges that it has received an

error-free data packet. NAK is used when the receiving device cannot accept the packet.

STALL indicates when the endpoint is halted, and NYET is used when there is no

response from the receiver.

8.3.2 Data Flow Types

Data can be transferred on a USB bus in four ways: bulk transfer, interrupt transfer,

isochronous transfer, and control transfer.

Bulk transfers are designed to transfer large amounts of data with error-free delivery

and no guarantee of bandwidth. If an OUT endpoint is defined as using bulk transfers,

then the host will transfer data to it using OUT transactions. Similarly, if an IN

endpoint is defined as using bulk transfers, then the host will transfer data from it using

IN transactions. In general, bulk transfers are used where a slow rate of transfer is not a

problem. The maximum packet size in a bulk transfer is 8 to 64 packets at full speed,

and 512 packets at high speed (bulk transfers are not allowed at low speeds).

Interrupt transfers are used to transfer small amounts of data with a high bandwidth

where the data must be transferred as quickly as possible with no delay. Note that

interrupt transfers have nothing to do with interrupts in computer systems. Interrupt

packets can range in size from 1 to 8 bytes at low speed, from 1 to 64 bytes at full

speed, and up to 1024 bytes at high speed.

Isochronous transfers have a guaranteed bandwidth, but error-free delivery is not

guaranteed. This type of transfer is generally used in applications, such as audio data

Sync PID Data CRC EOP
1 byte 0–1024

bytes
2
bytes

Figure 8.5: Data packet

Sync PID EOP
1 byte

Figure 8.6: Handshake packet

www.newnespress.com

416 Chapter 8

transfer, where speed is important but the loss or corruption of some data is not. An

isochronous packet may contain 1023 bytes at full speed or up to 1024 bytes at high

speed (isochronous transfers are not allowed at low speeds).

A control transfer is a bidirectional data transfer, using both IN and OUT endpoints.

Control transfers are generally used for initial configuration of a device by the host.

The maximum packet size is 8 bytes at low speed, 8 to 64 bytes at full speed, and

64 bytes at high speed. A control transfer is carried out in three stages: SETUP,

DATA, and STATUS.

8.3.3 Enumeration

When a device is plugged into a USB bus, it becomes known to the host through a

process called enumeration. The steps of enumeration are:

� When a device is plugged in, the host becomes aware of it because one of the

data lines (Dþ or D�) becomes logic high.

� The host sends a USB reset signal to the device to place the device in a known

state. The reset device responds to address 0.

� The host sends a request on address 0 to the device to find out its maximum

packet size using a Get Descriptor command.

� The device responds by sending a small portion of the device descriptor.

� The host sends a USB reset again.

� The host assigns a unique address to the device and sends a Set Address request

to the device. After the request is completed, the device assumes the new

address. At this point the host is free to reset any other newly plugged-in

devices on the bus.

� The host sends a Get Device Descriptor request to retrieve the complete device

descriptor, gathering information such as manufacturer, type of device, and

maximum control packet size.

� The host sends a Get Configuration Descriptors request to receive the device’s

configuration data, such as power requirements and the types and number of

interfaces supported.

� The host may request any additional descriptors from the device.

www.newnespress.com

417Advanced PIC18 Projects—USB Bus Projects

The initial communication between the host and the device is carried out using the

control transfer type of data flow.

Initially, the device is addressed, but it is in an unconfigured state. After the host gathers

enough information about the device, it loads a suitable device driver which configures

the device by sending it a Set Configuration request. At this point the device has been

configured, and it is ready to respond to device-specific requests (i.e., it can receive data

from and send data to the host).

8.4 Descriptors

All USB devices have a hierarchy of descriptors that describe various features of

the device: the manufacturer ID, the version of the device, the version of USB it

supports, what the device is, its power requirements, the number and type of

endpoints, and so forth.

The most common USB descriptors are:

� Device descriptors

� Configuration descriptors

� Interface descriptors

� HID descriptors

� Endpoint descriptors

The descriptors are in a hierarchical structure as shown in Figure 8.7. At the top of the

hierarchy we have the device descriptor, then the configuration descriptors, followed

by the interface descriptors, and finally the endpoint descriptors. The HID descriptor

always follows the interface descriptor when the interface belongs to the HID class.

All descriptors have a common format. The first byte (bLength) specifies the

length of the descriptor, while the second byte (bDescriptorType) indicates

the descriptor type.

8.4.1 Device Descriptors

The device descriptor is the top-level set of information read from a device and the first

item the host attempts to retrieve.

www.newnespress.com

418 Chapter 8

A USB device has only one device descriptor, since the device descriptor represents

the entire device. It provides general information such as manufacturer, serial

number, product number, the class of the device, and the number of configurations.

Table 8.5 shows the format for a device descriptor with the meaning of each

field.

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

bcdUSB reports the highest version of USB the device supports in BCD format. The

number is represented as 0�JJMN, where JJ is the major version number, M is the

minor version number, and N is the subminor version number. For example, USB 1.1

is reported as 0�0110.

bDeviceClass, bDeviceSubClass, and bDeviceProtocol are assigned by the USB

organization and are used by the system to find a class driver for the device.

bMaxPacketSize0 is the maximum input and output packet size for endpoint 0.

idVendor is assigned by the USB organization and is the vendor’s ID.

idProduct is assigned by the manufacturer and is the product ID.

bcdDevice is the device release number and has the same format as the bcdUSB.

bNumConfigurations

Device
Descriptor

Configuration
Descriptor

Configuration
Descriptor

bNumInterfaces

bNumEndpoint

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Figure 8.7: USB descriptor hierarchy

www.newnespress.com

419Advanced PIC18 Projects—USB Bus Projects

iManufacturer, iProduct, and iSerialNumber are details about the manufacturer and

the product. These fields have no requirement and can be set to zero.

bNumConfigurations is the number of configurations the device supports.

Table 8.6 shows an example device descriptor for a mouse device. The length of the

descriptor is 18 bytes (bLength ¼ 18), and the descriptor type is 0�01 (bDescriptorType

¼ 0�01). The device supports USB 1.1 (bcdUSB ¼ 0�0110). bDeviceClass,

bDeviceSubClass, and bDeviceProtocol are set to zero to show that the class

information is in the interface descriptor. bMaxPacketSize0 is set to 8 to show that the

maximum input and output packet size for endpoint 0 is 8 bytes. The next three bytes

identify the device by the vendor ID, product ID, and device version number. The next

three items define indexes to strings about the manufacturer, product, and the serial

number. Finally, we notice that the mouse device has just one configuration

(bNumConfigurations ¼ 1).

Table 8.5: Device descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Device descriptor (0�01)

2 bcdUSB 2 Highest version of USB supported

4 bDeviceClass 1 Class code

5 bDeviceSubClass 1 Subclass code

6 bDeviceProtocol 1 Protocol code

7 bMaxPacketSize0 1 Maximum packet size

8 idVendor 2 Vendor ID

10 idProduct 2 Product ID

12 bcdDevice 2 Device release number

14 iManufacturer 1 Manufacturer string descriptor

15 iProduct 1 Index of product string descriptor

16 iSerialNumber 1 Index of serial number descriptor

17 bNumConfigurations 1 Number of possible configurations

www.newnespress.com

420 Chapter 8

8.4.2 Configuration Descriptors

The configuration descriptor provides information about the power requirements of

the device and how many different interfaces it supports. There may be more than

one configuration for a device.

Table 8.7 shows the format of the configuration descriptor with the meaning of each

field.

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

wTotalLength is the total combined size of this set of descriptors (i.e., total of

configuration descriptor þ interface descriptor þ HID descriptor þ endpoint

descriptor). When the configuration descriptor is read by the host, it returns the entire

configuration information, which includes all interface and endpoint descriptors.

Table 8.6: Example device descriptor

Offset Field Value Description

0 bLength 18 Size is 18

1 bDescriptorType 0�01 Descriptor type

2 bcdUSB 0�0110 Highest USB supported ¼ USB 1.1

4 bDeviceClass 0�00 Class information in interface descriptor

5 bDeviceSubClass 0�00 Class information in interface descriptor

6 bDeviceProtocol 0�00 Class information in interface descriptor

7 bMaxPacketSize0 8 Maximum packet size

8 idVendor 0�02A XYZ Co Ltd.

10 idProduct 0�1001 Mouse

12 bcdDevice 0�0011 Device release number

14 iManufacturer 0�20 Index to manufacturer string

15 iProduct 0�21 Index of product string

16 iSerialNumber 0�22 Index of serial number string

17 bNumConfigurations 1 Number of possible configurations

www.newnespress.com

421Advanced PIC18 Projects—USB Bus Projects

bNumInterfaces is the number of interfaces present for this configuration.

bConfigurationValue is used by the host (in command SetConfiguration) to select the

configuration.

iConfiguration is an index to a string descriptor describing the configuration in

readable format.

bmAttributes describes the power requirements of the device. If the device is USB

bus-powered, then bit D7 is set. If it is self-powered, it sets bit D6. Bit D5 specifies

the remote wakeup of the device. Bits D7 and D0–D4 are reserved.

bMaxPower defines the maximum power the device will draw from the bus in 2mA

units.

Table 8.8 shows an example configuration descriptor for a mouse device. The length

of the descriptor is 9 bytes (bLength ¼ 9), and the descriptor type is 0�02

(bDescriptorType ¼ 0�02). The total combined size of the descriptors is 34

(wTotalLength ¼ 34). The number of interfaces for the mouse device is 1

(bNumInterfaces ¼ 1). Host SetConfiguration command must use the value 1 as an

argument in SetConfiguration() to select this configuration. There is no string to

describe this configuration. bmAttributes is set to 0�40 to indicate that the device is

self-powered. bMaxPower is set to 10 to specify that the maximum current drawn by

the device is 20mA.

Table 8.7: Configuration descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Device descriptor (0�02)

2 wTotalLength 2 Total bytes returned

4 bNumInterfaces 1 Number of interfaces

5 bConfigurationValue 1 Value used to select configuration

6 iConfiguration 1 Index describing configuration string

7 bmAttributes 1 Power supply attributes

8 bMaxPower 2 Max power consumption in 2mA

www.newnespress.com

422 Chapter 8

8.4.3 Interface Descriptors

The interface descriptors specify the class of the interface and the number of endpoints

it uses. There may be more than one interface.

Table 8.9 shows the format of the interface descriptor with the meaning of each field.

Table 8.8: Example configuration descriptor

Offset Field Value Description

0 bLength 9 Descriptor size is 9 bytes

1 bDescriptorType 0�02 Device descriptor is 0�02

2 wTotalLength 34 Total bytes returned is 34

4 bNumInterfaces 1 Number of interfaces is 1

5 bConfigurationValue 1 Value used to select configuration

6 iConfiguration 0�2A Index describing configuration string

7 bmAttributes 0�40 Power supply attributes

8 bMaxPower 10 Max power consumption is 20mA

Table 8.9: Interface descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Device descriptor (0�04)

2 bInterfaceNumber 1 Number of interface

3 bAlternateSetting 1 Value to select alternate setting

4 bNumEndpoints 1 Number of endpoints

5 bInterfaceClass 1 Class code

6 bInterfaceSubClass 1 Subclass code

7 bInterfaceProtocol 1 Protocol code

8 iInterface 1 Index of string descriptor to interface

www.newnespress.com

423Advanced PIC18 Projects—USB Bus Projects

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

bInterfaceNumber indicates the index of the interface descriptor.

bAlternateSetting can be used to specify alternate interfaces that can be selected by

the host using command Set Interface.

bNumEndpoints indicates the number of endpoints used by the interface.

bInterfaceClass specifies the device class code (assigned by the USB organization).

bInterfaceSubClass specifies the device subclass code (assigned by the USB

organization).

bInterfaceProtocol specifies the device protocol code (assigned by the USB

organization).

iInterface is an index to a string descriptor of the interface.

Table 8.10 shows an example interface descriptor for a mouse device. The descriptor

length is 9 bytes (bLength ¼ 9) and the descriptor type is 0�04 (bDescriptorType ¼
0�04). The interface number used to reference this interface is 1 (bInterfaceNumber¼ 1).

Table 8.10: Example interface descriptor

Offset Field Value Description

0 bLength 9 Descriptor size is 9 bytes

1 bDescriptorType 0�04 Device descriptor is 0�04

2 bInterfaceNumber 0 Number of interface

3 bAlternateSetting 0 Value to select alternate setting

4 bNumEndpoints 1 Number of endpoints is 1

5 bInterfaceClass 0�03 Class code is 0�03

6 bInterfaceSubClass 0�02 Subclass code is 0�02

7 bInterfaceProtocol 0�02 Protocol code is 0�02

8 iInterface 0 Index of string descriptor to interface

www.newnespress.com

424 Chapter 8

bAlternateSetting is set to 0 (i.e., no alternate interfaces). The number of endpoints

used by this interface is 1 (excluding endpoint 0), and this is the endpoint used for the

mouse to send its data. The device class code is 0�03 (bInterfaceClass ¼ 0�03).

This is an HID (human interface device) type class. The interface subclass is set to

0�02. The device protocol is 0�02 (mouse). There is no string to describe this

interface (iInterface ¼ 0).

8.4.4 HID Descriptors

An HID descriptor always follows an interface descriptor when the interface belongs to

the HID class. Table 8.11 shows the format of the HID descriptor.

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

bcdHID is the HID class specification.

bCountryCode specifies any special local changes.

bNumDescriptors specifes if there are any additional descriptors associated with this

class.

bDescriptorType is the type of the additional descriptor specified in

bNumDescriptors.

wDescriptorLength is the length of the additional descriptor in bytes.

Table 8.11: HID descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 HID (0�21)

2 bcdHID 2 HID class

4 bCountryCode 1 Special country dependent code

5 bNumDescriptors 1 Number of additional descriptors

6 bDescriptorType 1 Type of additional descriptor

7 wDescriptorLength 2 Length of additional descriptor

www.newnespress.com

425Advanced PIC18 Projects—USB Bus Projects

Table 8.12 shows an example HID descriptor for a mouse device. The length of the

descriptor is 9 bytes (bLength ¼ 9), and the descriptor type is 0�21 (bDescriptorType

¼ 0�21). The HID class is set to 1.1 (bcdHID ¼ 0�0110). The country code is set to

zero (bCountryCode ¼ 0), specifying that there is no special localization with this

device. The number of descriptors is set to 1 (bNumDescriptors ¼ 1) which specifies

that there is one additional descriptor associated with this class. The type of the

additional descriptor is REPORT (bDescriptorType ¼ REPORT), and its length is

52 bytes (wDescriptorLength ¼ 52).

8.4.5 Endpoint Descriptors

Table 8.13 shows the format of the endpoint descriptor.

bLength is the length of the device descriptor.

bDescriptorType is the descriptor type.

bEndpointAddress is the address of the endpoint.

bmAttributes specifies what type of endpoint it is.

wMaxPacketSize is the maximum packet size.

bInterval specifies how often the endpoint should be polled (in ms).

Table 8.14 shows an example endpoint descriptor for a mouse device. The length of the

descriptor is 7 bytes (bLength ¼ 7), and the descriptor type is 0�05 (bDescriptorType

Table 8.12: Example HID descriptor

Offset Field Value Description

0 bLength 9 Descriptor size is 9 bytes

1 bDescriptorType 0�21 HID (0�21)

2 bcdHID 0�0110 Class version 1.1

4 bCountryCode 0 No special country dependent code

5 bNumDescriptors 1 Number of additional descriptors

6 bDescriptorType REPORT Type of additional descriptor

7 wDescriptorLength 5 Length of additional descriptor

www.newnespress.com

426 Chapter 8

¼ 0�05). The endpoint address is 0�50 (bEndpointAddress ¼ 0�50). The endpoint

is to be used as an interrupt endpoint (bmAttributes ¼ 0�03). The maximum packet size

is set to 2 (wMaxPacketSize ¼ 0�02) to indicate that packets longer than 2 bytes

will not be sent from the endpoint. The endpoint should be polled at least once every

20ms (bInterval ¼ 0�14).

8.5 PIC18 Microcontroller USB Bus Interface

Some of the PIC18 microcontrollers support USB interface directly. For example, the

PIC18F4550 microcontroller contains a full-speed and low-speed compatible USB

interface that allows communication between a host PC and the microcontroller. In the

USB projects in this chapter we will use the PIC18F4550 microcontroller.

Table 8.13: Endpoint descriptor

Offset Field Size Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Endpoint (0�05)

2 bcdEndpointAddress 1 Endpoint address

4 bmAttributes 1 Type of endpoint

5 wMaxPacketSize 2 Max packet size

6 bInterval 1 Polling interval

Table 8.14: Example endpoint descriptor

Offset Field Size Description

0 bLength 7 Descriptor size in bytes

1 bDescriptorType 0�05 Endpoint (0�05)

2 bcdEndpointAddress 0�50 Endpoint address

4 bmAttributes 0�03 Interrupt type endpoint

5 wMaxPacketSize 0�0002 Max packet size is 2

6 bInterval 0�14 Polling interval is 20ms

www.newnespress.com

427Advanced PIC18 Projects—USB Bus Projects

Figure 8.8 is an overview of the USB section of the PIC18F4550 microcontroller.

PORTC pins RC4 (pin 23) and RC5 (pin 24) are used for USB interface. RC4 is the

USB data D� pin, and RC5 is the USB data Dþ pin. Internal pull-up resistors are

provided which can be disabled (setting UPUEN ¼ 0) if desired and external pull-up

resistors can be used instead. For full-speed operation an internal or external resistor

should be connected to data pin Dþ, and for low-speed operation an internal or external

resistor should be connected to data pin D�.

Operation of the USB module is configured using three control registers, and a total of

twenty-two registers are used to manage the actual USB transactions. Configuration

PIC18FX455/X550 Family

3.3V Regulator

ENVREGEN

FSEN

VUSB

P

P
(Full

Speed)

External 3.3V
Supply(3)

UOE(1)

D+
D−

VM(1)

VP(1)

RCV(1)

VMO(1)

VPO(1)

SPP7: SPP0

CK1SPP
CK2SPP

CSSPP
OESPP

Note

(Low
Speed)

Optional
External

Pull-ups(2)

UPUEN

UTRDIS

UOE

USB Bus

USB Bus

External
Transceiver

FS

Transceiver

USB Clock from the
Oscillator Module

USB Control and
Configuration

USB
SIE

1 Kbyte
USB RAM

Internal Pull-ups

1: This signal is only available if the internal transceiver is disabled (UTRDIS = 1).

2: The internal pull-up resistors should be disabled (UPUEN = 0) if external pull-up resistors are used.

3: Do not enable the internal regulator when using an external 3.3V supply.

Figure 8.8: PIC18F4550 microcontroller USB overview

www.newnespress.com

428 Chapter 8

of these registers is a highly complex task and is not covered in this book. Interested

readers should refer to the PIC18F4550 data sheet and to books on USB internals.

In this chapter we are using the mikroC language USB library functions to

implement USB transactions. The details of these functions are given in the next

section.

8.6 mikroC Language USB Bus Library Functions

The mikroC language supports a number of functions for USB HID-type

communications. Each project based on the USB library should include a descriptor

source file which contains vendor ID and name, product ID and name, report length,

and other relevant information. To create a descriptor source file we can use mikroC’s

integrated USB HID terminal tool (see Tools ! HID Terminal). The default name for

descriptor file is USBdsc.c, but it can be renamed if required. The USBdsc.c file must

be included in USB-based projects either via the mikroC IDE tool, or as an #include

option in the program source file.

The mikroC language supports the following USB bus library functions when a PIC

microcontroller with built-in USB is used (e.g., PIC18F4550), and port pins RC4 and

RC5 are connected to the Dþ and D� pins of the USB connector respectively:

Hid_Enable: This function enables USB communication and requires two

arguments: the read-buffer address and the write-buffer address. It must be called

before any other functions of the USB library, and it returns no data.

Hid_Read: This function receives data from the USB bus and stores it in the receive-

buffer. It has no arguments but returns the number of characters received.

Hid_Write: This function sends data from the write-buffer to the USB bus. The

name of the buffer (the same buffer used in the initialization) and the length of

the data to be sent must be specified as arguments to the function. The function

does not return any data.

Hid_Disable: This function disables the USB data transfer. It has no arguments and

returns no data.

The USB interface of a PIC18F4550 microcontroller is shown in Figure 8.9. As the

figure shows, the interface is very simple. In addition to the power supply and

ground pins, it requires just two pins to be connected to the USB connector. The

microcontroller receives power from the USB port.

www.newnespress.com

429Advanced PIC18 Projects—USB Bus Projects

PROJECT 8.1—USB-Based Microcontroller Output Port

This project describes the design of a USB-based microcontroller output port.

A PIC18F4550 microcontroller is interfaced to a PC through a USB cable. A Visual

Basic program runs on the PC and sends commands to the microcontroller through the

USB bus, asking the microcontroller to set/reset the I/O bits of its PORTB.

The block diagram of the project is shown in Figure 8.10. The circuit diagram is given

in Figure 8.11. The USB lines of the PIC18F4550 microcontroller are connected to a

USB connector. The microcontroller is powered from the USB line (i.e., no external

Figure 8.9: PIC18F4550 USB interface

PIC
18F4550

PC

USB cable

LEDs

Figure 8.10: Block diagram of the project

www.newnespress.com

430 Chapter 8

power supply is required). This makes the design of USB-based products relatively

cheap and very attractive in applications where the total power consumption is below

100mA. The microcontroller is operated from an 8MHz crystal.

The PORTB pins of the microcontroller are connected to LEDs so we can see the state

changes as commands are sent from the PC. This makes testing the project very easy.

Note that a capacitor (about 200nF) should be connected between the VUSB pin (pin 18)

of the microcontroller and the ground for stability.

The project software consists of two parts: the PC software, and the microcontroller

software. Both are described in this section.

The PC Software

The PC software is based on Visual Basic. It is assumed that the user has elementary

knowledge of Visual Basic programming language. Instruction in programming using

the Visual Basic language is beyond the scope of this book, and interested readers

should refer to various books available on this topic.

Figure 8.11: Circuit diagram of the project

www.newnespress.com

431Advanced PIC18 Projects—USB Bus Projects

The source program listing and the executables of the programs are given on the

CDROM distributed with this book. Readers who do not want to do any programming

can use or modify the given programs.

The Visual Basic program in this example consists of a single form as shown in

Figure 8.12. The required PORTB data should be entered in decimal in the text box, and

then the command button CLICK TO SEND should be clicked with the mouse. For

example, entering decimal number 15 will turn on the LEDs connected to port pins

RB0,RB1,RB2, and RB3 of PORTB.

The program sends the entered number to the microcontroller as a packet consisting of

four characters in the following format:

P ¼ nT

where character P indicates the start of data, n is the byte to be sent to PORTB, and T is

the terminator character.

For example, if bits 3 and 4 of PORTB are to be set, i.e., PORTB ¼ “00011000,” then

the Visual Basic program sends packet P ¼ 24T (number 24 is sent as a single binary

byte and not as two ASCII bytes) to the microcontroller over the USB link. The bottom

part of the form displays the connection status.

The Visual Basic program used in this section is based on the USB utility known as

EasyHID USB Wizard, developed by Mecanique, and can be downloaded free of charge

Figure 8.12: The PC Visual Basic form

www.newnespress.com

432 Chapter 8

from their web site (www.mecanique.co.uk). EasyHID is designed to work with USB

2.0, and there is no need to develop a driver, as the XP operating system is shipped

with a HID-based USB driver. This utility generates Visual Basic, Visual Cþþ, or

Borland Delphi template codes for the PC end of a USB application using an HID-type

device interface. In addition, the utility can generate USB template code for the

PIC18F4550 and similar microcontrollers, based on the Proton Development Suite

(www.crownhill.co.uk), Swordish PIC Basic, or PicBasic Pro (www.melabs.com)

programming languages. The generated codes can be expanded with the user code

to implement the required application.

The steps in generating a Visual Basic code template follow:

� Load the EasyHID zip file from the Mecanique web site by clicking on

“Download EasyHID as a Standalone Application”

� Extract the files and install the application by double-clicking on SETUP.

� When the program has started, you should see a form as shown in Figure 8.13.

Enter your data in the fields Company Name, Product Name, and the optional

Serial Number.

Figure 8.13: EasyHID first form

www.newnespress.com

433Advanced PIC18 Projects—USB Bus Projects

� Enter your Vendor ID (VID) and Product ID (PID) as shown in the form in

Figure 8.14. Vendor IDs are unique throughout the world and are issued by the

USB implementers (www.usb.org) at a cost. Mecanique owns a Vendor ID

and can issue you a set of Product IDs at low cost so your products can be

shipped all over the world with unique VID and PID combinations. In this

example, VID ¼ 4660 and PID ¼ 1 are selected for test purposes.

� Clicking Next displays the form shown in Figure 8.15. The important

parameters here are the output and input buffer sizes, which specify

the number of bytes to be sent and received respectively between the

PC and the microcontroller during USB data transactions. In this example,

4 bytes are chosen for both fields (our output is in the format P ¼ nT, which

is 4 bytes).

� In the next form (see Figure 8.16), select a location for the generated

files, choose the microcontroller compiler to be used (this field is not

important, as we are only generating code for Visual Basic (i.e., the PC

Figure 8.14: EasyHID VID and PID entry form

www.newnespress.com

434 Chapter 8

Figure 8.15: EasyHID input-output buffer selection

Figure 8.16: EasyHID output folder, microcontroller type,
and host compiler selection

www.newnespress.com

435Advanced PIC18 Projects—USB Bus Projects

end), choose the microcontroller type, and finally select Visual Basic as the

language to be used.

� Clicking Next generates Visual Basic and microcontroller code templates

in the selected directories (see the final form in Figure 8.17).

Figure 8.18 shows the Visual Basic files generated by the EasyHID wizard. The files

basically consist of a blank form (FormMain.frm), a module file (mcHIDInterface.

BAS), and a project file (USBProject.vbp).

The files generated by the EasyHID wizard have been modified for our project as

follows:

� The blank form has been modified to display the various controls shown in

Figure 8.12.

� Messages are added to the program to display when a USB device is plugged

into or unplugged from the PC.

� A subroutine has been added to read the data entered by the user and then send

this data to the microcontroller over the USB bus when the button CLICK TO

SEND is clicked. This code is as follows:

Figure 8.17: EasyHID last form

www.newnespress.com

436 Chapter 8

Private Sub Command2_Click()

BufferOut(0) ¼ 0 ' first by is always the report ID
BufferOut(1) ¼ Asc("P") ' first data item (“P”)
BufferOut(2) ¼ Asc("¼") ' second data item (“¼”)
BufferOut(3) ¼ Val(txtno) ' third data item (number to send)
BufferOut(4) ¼ Asc("T") ' fourth data item (“T”)

' write the data (don't forget, pass the whole array). . .
hidWriteEx VendorID, ProductID, BufferOut(0)
lblstatus ¼ "Data sent. . ."

End Sub

Figure 8.18: Files generated by the EasyHID wizard

www.newnespress.com

437Advanced PIC18 Projects—USB Bus Projects

BufferOut stores the data to be sent to the microcontroller over the USB bus. Notice that

the first byte of this buffer is the report ID and must be set to 0. The actual data starts

from address BufferOut(1) of the array and the data sent is in the format P ¼ nT as

described before. After the data is sent, the message “Data sent. . .” appears at the

bottom part of the display.

Figure 8.19 shows the final listing of the Visual Basic program. The program is in

two parts: the form USB1.FRM and the module USB1.BAS. The programs should be

loaded and used in the Visual Basic development environment. An installable version

of this program (in folder USB1) comes with the CDROM included with this book

for those who do not have the Visual Basic development environment. This program

should be installed as a normal Windows software installation.

The Microcontroller Software

The microcontroller receives the command P ¼ nT from the PC and sends data byte

n to PORTB. The listing of the microcontroller program (USB.C) without the USB code

is shown in Figure 8.20. The program configures PORTB as digital

output.

Generating the USB Descriptor File

The USB descriptor file must be included at the beginning of the mikroC program.

This descriptor file is created using the Tools menu option of the mikroC compiler

as follows:

� Select Tools -> HID Terminal

� A new form should be displayed. Click on the Descriptor tab and the form

shown in Figure 8.21 is displayed.

� The important parameters to enter here are vendor ID (VID), product ID (PID),

input buffer size, output buffer size, vendor name (VN), and product name

(PN). Note that the VID and PID are in hexadecimal format and that the values

entered here must be the same as the ones used in the Visual Basic program

when generating the code using the EasyHID wizard. Choose VID ¼ 1234

(equivalent to decimal 6460), PID ¼ 1, input buffer size ¼ 4, output buffer

size ¼ 4, and any names you like for the VN and PN fields.

� Check the mikroC compiler.

www.newnespress.com

438 Chapter 8

USB1.FRM

' vendor and product IDs
Private Const VendorID = 4660
Private Const ProductID = 1

' read and write buffers
Private Const BufferInSize = 8
Private Const BufferOutSize = 8
Dim BufferIn(0 To BufferInSize) As Byte
Dim BufferOut(0 To BufferOutSize) As Byte

Private Sub Command1_Click()
 Form_Unload (0)
 End
End Sub

Private Sub Command2_Click()
 BufferOut(0) = 0 ' first by is always the report ID
 BufferOut(1) = Asc("P") ' first data item (“P”)
 BufferOut(2) = Asc("=") ' second data item (“-“)
 BufferOut(3) = Val(txtno) ' third data item (to send over USB)
 BufferOut(4) = Asc("T") ' fourth data item (“T”)

 ' write the data (don't forget, pass the whole array)...
 hidWriteEx VendorID, ProductID, BufferOut(0)
 lblstatus = "Data sent..."
End Sub

' ∗∗∗
' when the form loads, connect to the HID controller - pass
' the form window handle so that you can receive notification
' events...
'∗∗
Private Sub Form_Load()
 ' do not remove!
 ConnectToHID (Me.hwnd)
 lblstatus = "Connected to HID..."
End Sub

'∗∗
' disconnect from the HID controller...
'∗∗
Private Sub Form_Unload(Cancel As Integer)
 DisconnectFromHID
End Sub

'∗∗
' a HID device has been plugged in...

Figure 8.19: Visual Basic program for the PC end of USB link

www.newnespress.com

439Advanced PIC18 Projects—USB Bus Projects

'∗∗
Public Sub OnPlugged(ByVal pHandle As Long)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle)=
ProductID Then
 lblstatus = "USB Plugged....."
 End If
End Sub

'∗∗

' a HID device has been unplugged...
'∗∗
Public Sub OnUnplugged(ByVal pHandle As Long)
 If hidGetVendorID(pHandle) = VendorID And hidGetProductID(pHandle) =
ProductID Then
 lblstatus = "USB Unplugged...."
 End If
End Sub

'∗∗

' controller changed notification - called
' after ALL HID devices are plugged or unplugged
'∗∗
Public Sub OnChanged()
 Dim DeviceHandle As Long

 ' get the handle of the device we are interested in, then set
 ' its read notify flag to true - this ensures you get a read
 ' notification message when there is some data to read...
 DeviceHandle = hidGetHandle(VendorID, ProductID)
 hidSetReadNotify DeviceHandle, True
End Sub

'∗∗

' on read event...
'∗∗
Public Sub OnRead(ByVal pHandle As Long)

 ' read the data (don't forget, pass the whole array)...
 If hidRead(pHandle, BufferIn(0)) Then
 ' ∗∗ YOUR CODE HERE ∗∗
 ' first byte is the report ID, e.g. BufferIn(0)
 ' the other bytes are the data from the microcontrolller...
 End If
End Sub

Figure 8.19: (Cont’d)

www.newnespress.com

440 Chapter 8

USB1.BAS

' this is the interface to the HID controller DLL - you should not
' normally need to change anything in this file.
'
' WinProc() calls your main form 'event' procedures - these are currently
' set to..
'
' MainForm.OnPlugged(ByVal pHandle as long)
' MainForm.OnUnplugged(ByVal pHandle as long)
' MainForm.OnChanged()
' MainForm.OnRead(ByVal pHandle as long)

Option Explicit

' HID interface API declarations...
Declare Function hidConnect Lib "mcHID.dll" Alias "Connect" (ByVal pHostWin As
Long) As Boolean
Declare Function hidDisconnect Lib "mcHID.dll" Alias "Disconnect" () As Boolean
Declare Function hidGetItem Lib "mcHID.dll" Alias "GetItem" (ByVal pIndex As
Long) As Long
Declare Function hidGetItemCount Lib "mcHID.dll" Alias "GetItemCount" () As
Long
Declare Function hidRead Lib "mcHID.dll" Alias "Read" (ByVal pHandle As Long,
ByRef pData As Byte) As Boolean
Declare Function hidWrite Lib "mcHID.dll" Alias "Write" (ByVal pHandle As Long,
ByRef pData As Byte) As Boolean
Declare Function hidReadEx Lib "mcHID.dll" Alias "ReadEx" (ByVal pVendorID As
Long, ByVal pProductID As Long, ByRef pData As Byte) As Boolean
Declare Function hidWriteEx Lib "mcHID.dll" Alias "WriteEx" (ByVal pVendorID
As Long, ByVal pProductID As Long, ByRef pData As Byte) As Boolean
Declare Function hidGetHandle Lib "mcHID.dll" Alias "GetHandle" (ByVal
pVendoID As Long, ByVal pProductID As Long) As Long
Declare Function hidGetVendorID Lib "mcHID.dll" Alias "GetVendorID" (ByVal
pHandle As Long) As Long
Declare Function hidGetProductID Lib "mcHID.dll" Alias "GetProductID" (ByVal
pHandle As Long) As Long
Declare Function hidGetVersion Lib "mcHID.dll" Alias "GetVersion" (ByVal
pHandle As Long) As Long
Declare Function hidGetVendorName Lib "mcHID.dll" Alias "GetVendorName"
(ByVal pHandle As Long, ByVal pText As String, ByVal pLen As Long) As Long
Declare Function hidGetProductName Lib "mcHID.dll" Alias "GetProductName"
(ByVal pHandle As Long, ByVal pText As String, ByVal pLen As Long) As Long
Declare Function hidGetSerialNumber Lib "mcHID.dll" Alias"GetSerialNumber"
(ByVal pHandle As Long, ByVal pText As String, ByVal pLen As Long) As Long
Declare Function hidGetInputReportLength Lib "mcHID.dll" Alias
"GetInputReportLength" (ByVal pHandle As Long) As Long
Declare Function hidGetOutputReportLength Lib "mcHID.dll" Alias
"GetOutputReportLength" (ByVal pHandle As Long) As Long

Figure 8.19: (Cont’d)

www.newnespress.com

441Advanced PIC18 Projects—USB Bus Projects

Declare Sub hidSetReadNotify Lib "mcHID.dll" Alias "SetReadNotify" (ByVal
pHandle As Long, ByVal pValue As Boolean)
Declare Function hidIsReadNotifyEnabled Lib "mcHID.dll" Alias
"IsReadNotifyEnabled" (ByVal pHandle As Long) As Boolean
Declare Function hidIsAvailable Lib "mcHID.dll" Alias "IsAvailable" (ByVal
pVendorID As Long, ByVal pProductID As Long) As Boolean

' windows API declarations - used to set up messaging...
Private Declare Function CallWindowProc Lib "user32" Alias "CallWindowProcA"
(ByVal lpPrevWndFunc As Long, ByVal hwnd As Long, ByVal Msg As Long,
ByVal wParam As Long, ByVal lParam As Long) As Long
Private Declare Function SetWindowLong Lib "user32" Alias "SetWindowLongA"
(ByVal hwnd As Long, ByVal nIndex As Long, ByVal dwNewLong As Long) As
Long

' windows API Constants
Private Const WM_APP = 32768
Private Const GWL_WNDPROC = -4

' HID message constants
Private Const WM_HID_EVENT = WM_APP + 200
Private Const NOTIFY_PLUGGED = 1
Private Const NOTIFY_UNPLUGGED = 2
Private Const NOTIFY_CHANGED = 3
Private Const NOTIFY_READ = 4

' local variables
Private FPrevWinProc As Long ' Handle to previous window procedure
Private FWinHandle As Long ' Handle to message window

' Set up a windows hook to receive notification
' messages from the HID controller DLL - then connect
' to the controller
Public Function ConnectToHID(ByVal pHostWin As Long) As Boolean
 FWinHandle = pHostWin
 ConnectToHID = hidConnect(FWinHandle)
 FPrevWinProc = SetWindowLong(FWinHandle, GWL_WNDPROC, AddressOf
WinProc)
End Function

' Unhook from the HID controller and disconnect...
Public Function DisconnectFromHID() As Boolean
 DisconnectFromHID = hidDisconnect
 SetWindowLong FWinHandle, GWL_WNDPROC, FPrevWinProc
End Function

' This is the procedure that intercepts the HID controller messages...
Private Function WinProc(ByVal pHWnd As Long, ByVal pMsg As Long,
ByVal wParam As Long, ByVal lParam As Long) As Long
 If pMsg = WM_HID_EVENT Then

Figure 8.19: (Cont’d)

www.newnespress.com

442 Chapter 8

� Clicking the CREATE button will ask for a folder name and then create

descriptor file USBdsc in this folder. Rename this file to have extension “.C”

(i.e., the full file name should be USBdsc.C) and then copy it to the following

folder (other required mikroC files are already in this folder, so it makes sense

to copy USBdsc.C here as well).

C:\Program Files\Mikroelektronika\mikroC\Examples\EasyPic4
\extra_examples\HID-library\USBdsc.c

Do not modify the contents of file USBdsc.C. A listing of this file is given on the

CDROM.

The microcontroller program listing with the USB code included is shown in

Figure 8.22 (program USB1.C). At the beginning of the program the USB descriptor

file USBdsc.C is included. The operation of the USB link requires the microcontroller

to keep the connection alive by sending keep-alive messages to the PC every several

milliseconds. This is achieved by setting up a timer interrupt service routine using

 Select Case wParam

 ' HID device has been plugged message...
 Case Is = NOTIFY_PLUGGED
 MainForm.OnPlugged (lParam)

 ' HID device has been unplugged
 Case Is = NOTIFY_UNPLUGGED
 MainForm.OnUnplugged (lParam)

 ' controller has changed...
 Case Is = NOTIFY_CHANGED
 MainForm.OnChanged

 ' read event...
 Case Is = NOTIFY_READ
 MainForm.OnRead (lParam)
 End Select

 End If

 ' next...
 WinProc = CallWindowProc(FPrevWinProc, pHWnd, pMsg, wParam, lParam)

End Function

Figure 8.19: (Cont’d)

www.newnespress.com

443Advanced PIC18 Projects—USB Bus Projects

TIMER 0. Inside the timer interrupt service routine the mikroC USB function

HID_InterruptProc is called. Timer TMR0L is reloaded and timer interrupts are

re-enabled just before returning from the interrupt service routine.

Inside the main program PORTB is defined as digital I/O and TRISB is cleared to

0 so all PORTB pins are outputs. All the interrupt registers are then set to their

power-on-reset values for safety. The timer interrupts are then set up. The timer is

operated in 8-bit mode with a prescaler of 256. Although the crystal clock frequency

is 8MHZ, the CPU is operated with a 48MHz clock, as described later. Selecting a

timer value of TMR0L ¼ 100 with a 48MHz clock (CPU clock period of 0.083ms)
gives timer interrupt intervals of:

ð256 � 100Þ � 256 � 0:083ms
or, about 3.3ms. Thus, the keep-alive messages are sent every 3.3ms.

/∗∗∗
 USB BASED MICROCONTROLLER OUTPUT PORT
 ==

In this project a PIC18F4550 type microcontroller is connected to a PC through
the USB link.

A Visual Basic program runs on the PC where the user enters the bits to be set
or cleared on PORTB of the microcontroller. The PC sends a command to the
microcontroller requesting it to set or reset the required bits of the microcontroller
PORTB.

The command sent by the PC to the microcontroller is in the following format:

 P=nT

where n is the byte the microcontroller is requested to send to PORTB of the
microcontroller.

Author: Dogan Ibrahim
Date: September 2007
File: USB.C
∗∗/

void main()
{
 ADCON1 = 0xFF; // Set PORTB to digital I/O
 TRISB = 0; // Set PORTB to outputs
 PORTB = 0; // Clear all outputs
}

Figure 8.20: Microcontroller program without the USB code

www.newnespress.com

444 Chapter 8

The USB port is then enabled by calling function Hid_Enable. The program then enters

an indefinite loop and reads data from the USB port with Hid_Read. When 4 bytes are

received at the correct format (i.e., byte 0 ¼ “P,” byte 1 ¼ “¼”, and byte 3 ¼ “T”) then

the data byte is read from byte 2 and sent to PORTB of the microcontroller.

It is important to note that when data is received using the Hid_Read function, the

function returns the number of bytes received. In addition, the first byte received is the

first actual data byte and not the report ID.

Microcontroller Clock

The USB module of the PIC18F4550 microcontroller requires a 48MHz clock.

In addition, the microcontroller CPU requires a clock that can range from 0 to 48MHz.

In this project the CPU clock is set to be 48MHz.

There are several ways to provide the required clock pulses.

Figure 8.21: Creating the USBdsc descriptor file

www.newnespress.com

445Advanced PIC18 Projects—USB Bus Projects

/∗∗∗
 USB BASED MICROCONTROLLER OUTPUT PORT
 ==

In this project a PIC18F4550 type microcontroller is connected
to a PC through the USB link.

A Visual Basic program runs on the PC where the user enters the bits to be set or
cleared on PORTB of the microcontroller. The PC sends a command to the
microcontroller requesting it to set or reset the required bits of the microcontroller
PORTB.

A 8MHz crystal is used to operate the microcontroller. The actual CPU clock is raised
to 48MHz by setting configuration bits. Also, the USB module is operated with
48MHz.

The command sent by the PC to the microcontroller is in the following format:

 P=nT

where n is the byte the microcontroller is requested to send to PORTB of the
microcontroller.

This program includes the USB code.

Author: Dogan Ibrahim
Date: September 2007
File: USB1.C
∗∗/

#include "C:\Program
Files\Mikroelektronika\mikroC\Examples\EasyPic4\extra_examples\HID-
library\USBdsc.c"

unsigned char Read_buffer[64];
unsigned char Write_buffer[64];
unsigned char num;
//
// Timer interrupt service routine
//
void interrupt()
{
 HID_InterruptProc(); // Keep alive
 TMR0L = 100; // Re-load TMR0L
 INTCON.TMR0IF = 0; // Re-enable TMR0 interrupts
}

//
// Start of MAIN program

Figure 8.22: Microcontroller program with USB code

www.newnespress.com

446 Chapter 8

//
void main()
{

 ADCON1 = 0xFF; // Set PORTB to digital I/O
 TRISB = 0; // Set PORTB to outputs
 PORTB = 0; // Clear all outputs
//
// Set interrupt registers to power-on defaults
// Disable all interrupts
//
 INTCON=0;
 INTCON2=0xF5;
 INTCON3=0xC0;
 RCON.IPEN=0;
 PIE1=0;
 PIE2=0;
 PIR1=0;
 PIR2=0;
//
// Configure TIMER 0 for 3.3ms interrupts. Set prescaler to 256
// and load TMR0L to 100 so that the time interval for timer
// interrupts at 48MHz is 256∗(256-100)∗0.083 = 3.3ms
//
// The timer is in 8-bit mode by default
//
 T0CON = 0x47; // Prescaler = 256
 TMR0L = 100; // Timer count is 256-156 = 100
 INTCON.TMR0IE = 1; // Enable T0IE
 T0CON.TMR0ON = 1; // Turn Timer 0 ON
 INTCON = 0xE0; // Enable interrupts

//
// Enable USB port
//
 Hid_Enable(&Read_buffer, &Write_buffer);
 Delay_ms(1000);
 Delay_ms(1000);
//
// Read from the USB port. Number of bytes read is in num
//

 for(;;) // do forever
{
 num=0;
 while(num != 4) // Get 4 characters
 {num = Hid_Read();
 }
 if(Read_buffer[0] == 'P' && Read_buffer[1] == '=' && Read_buffer[3] == 'T')
 {
 PORTB = Read_buffer[2];
 }
 }
 Hid_Disable();

}

Figure 8.22: (Cont’d)

www.newnespress.com

Figure 8.23 shows part of the PIC18F4550 clock circuit. The circuit consists of a

1:1 – 1:12 PLL prescaler and multiplexer, a 4:96MHz PLL, a 1:2 – 1:6 PLL postscaler,

and a 1:1 – 1:4 oscillator postscaler. Assuming the crystal frequency is 8MHz and

we want to operate the microcontroller with a 48MHz clock, and also remembering

that a 48MHz clock is required for the USB module, we should make the following

choices in the Edit Project option of the mikroC IDE:

� Set _PLL_DIV2_1L so the 8MHz clock is divided by 2 to produce 4MHZ at

the output of the PLL prescaler multiplexer. The output of the 4:96MHZ PLL

is now 96MHz. This is further divided by 2 to give 48MHz at the input of

multiplexer USBDIV.

PIC18F2455/2550/4455/4550

PLLDIV

P
LL

 P
re

sc
al

er

M
U

X

P
L

L
 P

o
st

sc
al

er

(4 MHz Input Only)

USB Clock Source

USBDIV

FSEN

CPU

1

0

Peripherals

USB
Peripheral

96 MHz
PLL

CPUDIV

CPUDIV

OSCCON<6:4>

FOSC3:FOSC0
IDLEN

M
U

X

T1OSC

Internal Oscillator

Secondary Oscillator

O
sc

ill
at

or
 P

os
ts

ca
le

r

XT, HS, EC, ECIO

T1OSO

T1OSI

T1OSCEN
Enable
Oscillator

Primary Oscillator

Sleep

OSC2

OSC1

Primary
Clock

HSPLL, ECPLL,
XTPLL, ECPIO

111
÷ 12

0
1÷ 2

÷ 10

÷ 6

÷ 5

÷ 4

÷ 3

÷ 2

÷ 6

÷ 4

+ 4

÷ 3

÷ 2÷ 4

÷ 3

÷ 2

÷ 1

÷ 1

110

101

100

011

010

001

11

10

01

0011

10

01

00

1
0

000

Figure 8.23: PIC18F4550 microcontroller clock

www.newnespress.com

448 Chapter 8

� Check _USBDIV_2_1L to provide a 48MHz clock to USB module and to select

�2 for the PLL postscaler.

� Check CPUDIV_OSC1_PLL2_1L to select PLL as the clock source.

� Check _FOSC_HSPLL_HS_1H to select a 48MHz clock for the CPU.

� Set the CPU clock to 48MHz in mikroC IDE (using Edit Project).

The clock bits selected for the 48MHz USB operation with a 48MHz CPU clock are

shown in Figure 8.24.

Setting other configuration bits in addition to the clock bits is recommended.

The following list gives all the bits that should be set in the Edit Project option of

the IDE (most of these settings are the power-on-reset values of the bits):

PLLDIV_2_1L
CPUDIV_OSC1_PLL2_1L
USBDIV_2_1L

FOSC_HSPLL_HS_1H
FCMEM_OFF_1H
IESO_OFF_1H

PWRT_ON_2L
BOR_ON_2L
BORV_43_2L
VREGEN_ON_2L

WDT_OFF_2H
WDTPS_256_2H

MCLRE_ON_3H
LPT1OSC_OFF_3H
PBADEN_OFF_3H
CCP2MX_ON_3H

STVREN_ON_4L
LVP_OFF_4L
ICPRT_OFF_4L
XINST_OFF_4L
DEBUG_OFF_4L

www.newnespress.com

449Advanced PIC18 Projects—USB Bus Projects

Figure 8.24: Selecting clock bits for USB operation

www.newnespress.com

450 Chapter 8

Testing the Project

Testing the project is relatively easy. The steps are:

� Construct the hardware

� Load the program (Figure 8.22) into the PIC18F4550 microcontroller

� Copy or run the PC-based Visual Basic program

When the microcontroller is connected to one of the USB ports of the PC, a message

should be visible at the bottom right-hand corner of the screen similar to the one in

Figure 8.25. This message shows that the new USB HID device has been plugged

in and is recognized by the PC.

In addition, the device manager display should show an HID-compliant device and

a USB human interface device as in Figure 8.26. The properties of these drivers

can be displayed to make sure the VIP is 0 � 1234 and the PID is 1.

Enter data into the Visual Basic form and click the CLICK TO SEND button. The

corresponding microcontroller LEDs should turn on. For example, entering 3 should

turn on LEDs 0 and 1.

Figure 8.25: USB connection message

www.newnespress.com

451Advanced PIC18 Projects—USB Bus Projects

Using a USB Protocol Analyzer

If for any reason the project is not working, a USB protocol analyzer can be used to

check the data transactions on the USB bus. There are many USB protocol analyzers on

the market. Some expensive professional ones are hardware-based and require the

purchase of special hardware. Most low-cost USB protocol analyzers are software-

based. Two such tools are described here briefly.

UVCView

UVCView is a free Microsoft product that runs on a PC and displays the descriptors of a

USB device after it is plugged in. Figure 8.27 shows the UVCView display after the

Figure 8.26: Device manager display showing the USB devices

www.newnespress.com

452 Chapter 8

microcontroller is plugged into the PC. The left side of the display shows the USB ports

available in the system. Clicking on a device in this part of the display shows descriptor

details of the device in the middle of the screen. In Figure 8.27 the descriptors of

our device are shown. The UVCView display is useful when various fields of the

device descriptors must be checked.

USBTrace

USBTrace is a software USB protocol analyzer developed by SysNucleus (www.

sysnucleus.com) and runs on a PC. The software monitors the USB ports of the PC it is

running on and displays all the transactions on the bus. This software can be an

invaluable tool when all the transactions on the line must be monitored and logged.

Figure 8.27: UVCView display of the project

www.newnespress.com

453Advanced PIC18 Projects—USB Bus Projects

A limited-time demo version of USBTrace is available on the manufacturer’s web site.

An example using the program is given in this section to show the data sent from the PC

to the microcontroller:

� Start the USBTrace program.

� Connect the microcontroller to the USB port of the PC.

� Select the device from the left side of the display by checking the appropriate

box.

� Start the Visual Basic program.

� Start capturing data by clicking the green arrow at the top left of the USBTrace

menu. You should see the START OF LOG message in the middle part of the

screen

� Enter number 3 on the Visual Basic form to turn on LEDs 0 and 1 of PORTB,

and click the CLICK TO SEND button.

� You should see data packets in the middle of the screen as shown in

Figure 8.28.

� Move the cursor over the first packet. This is the packet sent from the PC to the

microcontroller (OUT packet). A pop-up window will appear, and information

about this packet will be displayed, with the data sent appearing in hexadecimal

Figure 8.28: Transactions on the bus when CLICK TO SEND is clicked

www.newnespress.com

454 Chapter 8

at the bottom of the display, as shown in Figure 8.29. Note that the data consists

of the following 4 bytes:

50 3D 03 54
P ¼ 3T

which correspond to the ASCII string P ¼ 3T. This is the actual packet sent from the PC

to the microcontroller.

USBTrace can also display the device descriptors in detail, as shown in the lower part

of the screen in Figure 8.29.

Figure 8.29: Displaying contents of the packet

www.newnespress.com

455Advanced PIC18 Projects—USB Bus Projects

Using the HID Terminal of mikroC

The mikroC IDE provides a USB terminal interface that can be used for sending and

receiving data over the USB bus. This program can be used instead of the Visual Basic

program to test the USB interface. The steps are as follows:

� In mikroC IDE, Select Tools -> HID Terminal

� Plug the microcontroller into the PC’s USB port

� You should see the product ID under HID Devices:

○ To turn on LEDs 0,1,4, and 5, type P ¼ 3T under Communication and click

the SEND button as shown in Figure 8.30 (remember that the ASCII value

of number 3 has the bit pattern “0011 0011”)

○ LEDs 0,1,4, and 5 of the microcontroller should turn on

PROJECT 8.2—USB-Based Microcontroller
Input/Output

This project is very similar to Project 8.1, except that it includes two-way

communication, while in Project 8.1 data to be output on PORTB was sent to the

Figure 8.30: Using the HID terminal to send data to a USB device

www.newnespress.com

456 Chapter 8

microcontroller. In addition, PORTB data is received from the microcontroller and

displayed on the PC.

The PC sends two commands to the microcontroller:

� Command P ¼ nT requests the microcontroller to send data byte n to PORTB.

� Command P ¼ ?? requests the microcontroller to read its PORTB data and

send it as a byte to the PC. The PC then displays this data on the screen. The

microcontroller sends its data in the familiar format P ¼ nT.

The hardware of this project is the same as the hardware for the previous project, shown

in Figure 8.11, where eight LEDs are connected to PORTB of a PIC18F4550

microcontroller which is operated from a 8MHz crystal.

A single form is used in this project, and Figure 8.31 shows the format of this form.

The upper part of the form is the same as in Project 8.1, i.e., sending data to PORTB

of the microcontroller. A text box and a command button named CLICK TO

RECEIVE are also placed on the form. When the button is pressed, the PC sends

command P ¼ ?? to the microcontroller. The microcontroller reads its PORTB data

and sends it in the format P ¼ nT to the PC where it is displayed in the text box.

Figure 8.31: Visual Basic form of the project

www.newnespress.com

457Advanced PIC18 Projects—USB Bus Projects

Figure 8.32 shows the mikroC program of the project. The program is named

USB2.C and is very similar to the one for the previous project. But here, in

addition, when the command P ¼ ?? is received from the PC, the microcontroller

reads PORTB data and sends it to the PC in the format using the mikroC function

Hid_Write.

The program checks the format of the received command. For P ¼ ?? type commands,

PORTB is configured as inputs, PORTB data is read into Write_buffer[2], and

Write_buffer is sent to the PC, where Write_buffer[0] ¼ “P,” Write_buffer[1] ¼ “¼”,

and Write_buffer[3] ¼ “T” as follows:

if(Read_buffer [0] ¼¼ ‘P‘ && Read_buffer [1] ¼¼ ‘¼‘ &&
Read_buffer [2] ¼¼ ‘?‘ && Read_Buffer [3] ¼¼ ‘?‘)
{
TRISB ¼ 0�FF;
Write_buffer [0] ¼ ‘P‘; Write_buffer [1] ¼ ‘¼‘; Write_buffer [2] ¼

PORTB; Write_buffer [3] ¼ ‘T‘;
Hid_Write(&Write_buffer,4);
}

For P ¼ nT type commands, PORTB is configured as outputs and Read_buffer[2] is

sent to PORTB as follows:

if(Read_buffer [0] ¼¼ ‘P‘ && Read_buffer [1] ¼¼ ‘¼‘ &&
Read_buffer [3] ¼¼ ‘T‘)
{
TRISB ¼ 0;
PORTB ¼ Read_buffer [2];
}

The microcontroller clock should be set as in Project 8.1 (i.e., both the CPU and the

USB module should have 48MHz clocks). The other configurations bits should also be

set as described in the previous problem.

Testing the Project

The project can be tested using one of the methods described in the previous project.

If you are using the Visual Basic program, send data to the microcontroller and make

sure the correct LEDs are turned on. Then connect some of the PORTB pins to

logic 0 and click the CLICK TO RECEIVE button. The microcontroller will read its

PORTB data and send it to the PC, where it will be displayed on the PC screen.

www.newnespress.com

458 Chapter 8

/∗∗∗
 USB BASED MICROCONTROLLER INPUT/OUTPUT PORT
 ==

In this project a PIC18F4550 type microcontroller is connected
to a PC through the USB link.

A Visual Basic program runs on the PC where the user enters the
bits to be set or cleared on PORTB of the microcontroller. The
PC sends a command to the microcontroller requesting it to set
or reset the required bits of the microcontroller PORTB. In addition,
the PORTB data can be requested from the microcontroller and displayed
on the PC.

The microcontroller is operated from a 8MHz crystal, but the CPU
clock frequency is increased to 48MHz. Also, the USB module operates
with 48MHz.

The commands are:

From PC to microcontroller: P=nT (Send data byte n to PORTB)
 P=?? (Give me PORTB data)

From microcontroller to PC: P=nT (Here is my PORTB data)

Author: Dogan Ibrahim
Date: September 2007
File: USB2.C
∗∗∗/

#include "C:\Program
Files\Mikroelektronika\mikroC\Examples\EasyPic4\extra_examples\HID-
library\USBdsc.c"

unsigned char Read_buffer[64];
unsigned char Write_buffer[64];
unsigned char num,i;
//
// Timer interrupt service routine
//
void interrupt()
{
 HID_InterruptProc(); // Keep alive
 TMR0L = 100; // Reload TMR0L
 INTCON.TMR0IF = 0; // Re-enable TMR0 interrupts
}

//
// Start of MAIN program

Figure 8.32: mikroC program listing of the project
(Continued)

www.newnespress.com

459Advanced PIC18 Projects—USB Bus Projects

//
void main()
{

 ADCON1 = 0xFF; // Set PORTB to digital I/O
 TRISB = 0; // Set PORTB to outputs
 PORTB = 0; // PORTB all 0s to start with

//
// Set interrupt registers to power-on defaults
// Disable all interrupts
//
 INTCON=0;
 INTCON2=0xF5;
 INTCON3=0xC0;
 RCON.IPEN=0;
 PIE1=0;
 PIE2=0;
 PIR1=0;
 PIR2=0;
//
// Configure TIMER 0 for 20ms interrupts. Set prescaler to 256
// and load TMR0L to 156 so that the time interval for timer
// interrupts at 8MHz is 256∗156∗0.5 = 20ms
//
// The timer is in 8-bit mode by default
//
 T0CON = 0x47; // Prescaler = 256
 TMR0L = 100; // Timer count is 256-156 = 100
 INTCON.TMR0IE = 1; // Enable T0IE
 T0CON.TMR0ON = 1; // Turn Timer 0 ON
 INTCON = 0xE0; // Enable interrupts

//
// Enable USB port
//
 Hid_Enable(&Read_buffer, &Write_buffer);
 Delay_ms(1000);
 Delay_ms(1000);
//
// Read from the USB port. Number of bytes read is in num
//

 for(;;) // do forever
{
 num=0;
 while(num != 4)
 {num = Hid_Read();
 }

Figure 8.32: (Cont’d)

www.newnespress.com

460 Chapter 8

The project can also be tested using the HID terminal of mikroC IDE. The steps are:

� Start the HID terminal.

� Send a command to the microcontroller to turn on the LEDs (e.g., P ¼ 1T) and

make sure the correct LEDs are turned on (in this case, LEDs 0, 4, and 5 should

turn on, corresponding to the data pattern “0011 0001”).

� Connect bits 2 and 3 of PORTB to logic 1 and the other six bits to ground.

� Send command P ¼ ?? to the microcontroller.

� The PC will display the number 12, corresponding to bit pattern “0000 1100”.

The Visual Basic program listing of the project is given in Figure 8.33. Only the main

program is given here, as the library declarations are the same as in Figure 8.19. The

program jumps to subroutine OnRead when data arrives at the USB bus. The format

of this data is checked to be in the format P ¼ nT, and if the format is correct, the

received data byte is displayed in the text box.

An installable version of the Visual Basic PC program is available in folder USB2

on the CDROM included with this book.

 if(Read_buffer[0] == 'P' && Read_buffer[1] == '=' &&
 Read_buffer[2] == '?' && Read_Buffer[3] == '?')
 {
 TRISB = 0xFF;
 Write_buffer[0] = 'P'; Write_buffer[1] = '=';
 Write_buffer[2] = PORTB; Write_buffer[3] = 'T';
 Hid_Write(&Write_buffer,4);
 }
 else
 {
 if(Read_buffer[0] == 'P' && Read_buffer[1] == '=' &&
 Read_buffer[3] == 'T')
 {
 TRISB = 0;
 PORTB = Read_buffer[2];
 }
 }
 }
 Hid_Disable();

}

Figure 8.32: (Cont’d)

www.newnespress.com

461Advanced PIC18 Projects—USB Bus Projects

CAN Bus: Introduction

 Frames

 Bit stuffing

 Types of errors

 Nominal Bit Timing

 PIC microcontroller CAN Interface

 A simple application with CAN

CHAP T E R 9

Advanced PIC18 Projects—CAN
Bus Projects

The Controller Area Network (CAN) is a serial bus communications protocol developed

by Bosch (an electrical equipment manufacturer in Germany) in the early 1980s.

Thereafter, CAN was standardized as ISO-11898 and ISO-11519, establishing itself as

the standard protocol for in-vehicle networking in the auto industry. In the early days of

the automotive industry, localized stand-alone controllers had been used to manage

various actuators and electromechanical subsystems. By networking the electronics in

vehicles with CAN, however, they could be controlled from a central point, the engine

control unit (ECU), thus increasing functionality, adding modularity, and making

diagnostic processes more efficient.

Early CAN development was mainly supported by the vehicle industry, as it was used in

passenger cars, boats, trucks, and other types of vehicles. Today the CAN protocol is

used in many other fields in applications that call for networked embedded control,

including industrial automation, medical applications, building automation, weaving

machines, and production machinery. CAN offers an efficient communication protocol

between sensors, actuators, controllers, and other nodes in real-time applications, and is

known for its simplicity, reliability, and high performance.

The CAN protocol is based on a bus topology, and only two wires are needed for

communication over a CAN bus. The bus has a multimaster structure where each device

on the bus can send or receive data. Only one device can send data at any time while

all the others listen. If two or more devices attempt to send data at the same time,

the one with the highest priority is allowed to send its data while the others return to

receive mode.

www.newnespress.com

As shown in Figure 9.1, in a typical vehicle application there is usually more than one

CAN bus, and they operate at different speeds. Slower devices, such as door control,

climate control, and driver information modules, can be connected to a slow speed bus.

Devices that require faster response, such as the ABS antilock braking system, the

transmission control module, and the electronic throttle module, are connected to a

faster CAN bus.

The automotive industry’s use of CAN has caused mass production of CAN controllers.

Current estimate is that 400 million CAN modules are sold every year, and CAN

controllers are integrated on many microcontrollers, including PIC microcontrollers,

and are available at low cost.

Figure 9.2 shows a CAN bus with three nodes. The CAN protocol is based on CSMA/

CDþAMP (Carrier-Sense Multiple Access/Collision Detection with Arbitration on

Message Priority) protocol, which is similar to the protocol used in Ethernet LAN.

When Ethernet detects a collision, the sending nodes simply stop transmitting and wait

Air
conditioner

Door
switch

Instrument
panel

500Kb/s

Satellite
navigation

DVD Radio

5Mb/s

Engine

Oil
pressure Brakes

Gateway

125Kb/s

CD

Head
lamps

Steering Engine
temperature

Tire
pressure

Figure 9.1: Typical CAN bus application in a vehicle

www.newnespress.com

476 Chapter 9

a random amount of time before trying to send again. CAN protocol, however, solves

the collision problem using the principle of arbitration, where only the higheest priority

node is given the right to send its data.

There are basically two types of CAN protocols: 2.0A and 2.0B. CAN 2.0A is the

earlier standard with 11 bits of identifier, while CAN 2.0B is the new extended standard

with 29 bits of identifier. 2.0B controllers are completely backward-compatible with

2.0A controllers and can receive and transmit messages in either format.

There are two types of 2.0A controllers. The first is capable of sending and receiving

2.0A messages only, and reception of a 2.0B message will flag an error. The second

type of 2.0A controller (known as 2.0B passive) sends and receives 2.0A messages but

will also acknowledge receipt of 2.0B messages and then ignore them.

Some of the CAN protocol features are:

� CAN bus is multimaster. When the bus is free, any device attached to the bus

can start sending a message.

� CAN bus protocol is flexible. The devices connected to the bus have no

addresses, which means messages are not transmitted from one node to another

based on addresses. Instead, all nodes in the system receive every message

transmitted on the bus, and it is up to each node to decide whether the received

message should be kept or discarded. A single message can be destined for a

particular node or for many nodes, depending on how the system is designed.

Another advantage of having no addresses is that when a device is added to or

CAN BUS

NODE
2

NODE
3

NODE
1

Terminator Terminator

Figure 9.2: Example CAN bus

www.newnespress.com

477Advanced PIC18 Projects—CAN Bus Projects

removed from the bus, no configuration data needs to be changed (i.e., the bus is

“hot pluggable”).

� CAN bus offers remote transmit request (RTR), which means that one node on

the bus is able to request information from the other nodes. Thus instead of

waiting for a node to continuously send information, a request for information

can be sent to the node. For example, in a vehicle, where the engine temperature

is an important parameter, the system can be designed so the temperature is

sent periodically over the bus. However, a more elegant solution is to request

the temperature as needed, since it minimizes the bus traffic while maintaining

the network’s integrity.

� CAN bus communication speed is not fixed. Any communication speed can be

set for the devices attached to a bus.

� All devices on the bus can detect an error. The device that has detected an error

immediately notifies all other devices.

� Multiple devices can be connected to the bus at the same time, and there are no

logical limits to the number of devices that can be connected. In practice, the

number of units that can be attached to a bus is limited by the bus’s delay time

and electrical load.

The data on CAN bus is differential and can be in two states: dominant and recessive.

Figure 9.3 shows the state of voltages on the bus. The bus defines a logic bit 0 as a

dominant bit and a logic bit 1 as a recessive bit. When there is arbitration on the bus, a

Voltage
level

Vdiff
RecessiveRecessive

CANL

CANH

Dominant
3.5

2.5

1.5

Time

Figure 9.3: CAN logic states

www.newnespress.com

478 Chapter 9

dominant bit state always wins out over a recessive bit state. In the recessive state, the

differential voltage CANH and CANL is less than the minimum threshold (i.e., less than

0.5V receiver input and less than 1.5V transmitter output). In the dominant state, the

differential voltage CANH and CANL is greater than the minimum threshold.

The ISO-11898 CAN bus specifies that a device on that bus must be able to drive a

forty-meter cable at 1Mb/s. A much longer bus length can usually be achieved by

lowering the bus speed. Figure 9.4 shows the variation of bus length with the

communication speed. For example, with a bus length of one thousand meters we can

have a maximum speed of 40Kb/s.

A CAN bus is terminated to minimize signal reflections on the bus. The ISO-11898

requires that the bus has a characteristic impedance of 120 ohms. The bus can be

terminated by one of the following methods:

� Standard termination

� Split termination

� Biased split termination

In standard termination, the most common termination method, a 120-ohm resistor is

used at each end of the bus, as shown in Figure 9.5(a). In split termination, the ends

of the bus are split and a single 60-ohm resistor is used as shown in Figure 9.5(b).

Split termination allows for reduced emission, and this method is gaining popularity.

Biased split termination is similar to split termination except that a voltage divider

40
40

400

100 1000

760

1120

Speed (bps)

B
us

 le
ng

th
 (

m
)

Figure 9.4: CAN bus speed and bus length

www.newnespress.com

479Advanced PIC18 Projects—CAN Bus Projects

circuit and a capacitor are used at either end of the bus. This method increases the EMC

performance of the bus (Figure 9.5(c)).

Many network protocols are described using the seven-layer Open Systems

Interconnection (OSI) model. The CAN protocol includes the data link layer, and

the physical layer of the OSI reference model (see Figure 9.6). The data link layer

(DLL) consists of the Logical Link Control (LLC) and Medium Access Control

(MAC). LLC manages the overload notification, acceptance filtering, and recovery

management. MAC manages the data encapsulation, frame coding, error detection,

and serialization/deserialization of the data. The physical layer consists of the

physical signaling layer (PSL), physical medium attachment (PMA), and the

medium dependent interface (MDI). PSL manages the bit encoding/decoding and

bit timing. PMA manages the driver/receiver characteristics, and MDI is the

connections and wires.

120 ohm

Standard termination
(a)

60 ohm

60 ohm

Split termination
(b)

VDD

60 ohm

Biased split termination

R2

R1

60 ohm

(c)

Figure 9.5: Bus termination methods

www.newnespress.com

480 Chapter 9

There are basically four message frames in CAN: data, remote, error, and overload. The

data and remote frames need to be set by the user. The other two are set by the CAN

hardware.

9.1 Data Frame

The data frame is in two formats: standard (having an 11-bit ID) and extended (having a

29-bit ID). The data frame is used by the transmitting device to send data to the

receiving device, and the data frame is the most important frame handled by the user.

Figure 9.7 shows the data frame’s structure. A standard data frame starts with the

start of frame (SOF) bit, which is followed by an 11-bit identifier and the remote

transmission request (RTR) bit. The identifier and the RTR form the 12-bit arbitration

field. The control field is 6 bits wide and indicates how many bytes of data are in

the data field. The data field can be 0 to 8 bytes. The data field is followed by the

Application
Presentation
Session
Transport
Netwok
Data Link
Physical

Medium Access Control

Medium Dependent Interface

Physical Medium Attachment

Physical Signaling

Logical Link Control

Figure 9.6: CAN and the OSI model

RTR
Control

11-bit
identifier

Start of
frame Data

CRC

ACK

End of
frame

Figure 9.7: Standard data frame

www.newnespress.com

481Advanced PIC18 Projects—CAN Bus Projects

CRC field, which checks whether or not the received bit sequence is corrupted.

The ACK field is 2 bits and is used by the transmitter to receive acknowledgment of

a valid frame from any receiver. The end of the message is indicated by a 7-bit end

of frame (EOF) field. In an extended data frame, the arbitration field is 32 bits wide

(29-bit identifier þ1-bit IDE to define the message as an extended data frame þ1-bit

SRR which is unused þ1-bit RTR) (see Figure 9.8).

The data frame consists of the following fields:

9.1.1 Start of Frame (SOF)

The start of frame field indicates the beginning of a data frame and is common to

both standard and extended formats.

9.1.2 Arbitration Field

Arbitration is used to resolve bus conflicts that occur when several devices at

once start sending messages on the bus. The arbitration field indicates the priority

of a frame, and it is different in the standard and extended formats. In the standard

format there are 11 bits, and up to 2032 IDs can be set. The extended format

ID consists of 11 base IDs plus 18 extended IDs. Up to 2032 � 218 discrete IDs

can be set.

During the arbitration phase, each transmitting device transmits its identifier and

compares it with the level on the bus. If the levels are equal, the device continues

to transmit. If the device detects a dominant level on the bus while it is trying to

transmit a recessive level, it quits transmitting and becomes a receiving device.

After arbitration only one transmitter is left on the bus, and this transmitter continues

to send its control field, data field, and other data.

11-bit
identifier

SRR 18-bit
identifier

IDE RTR

CRC

Control

ACK

End of
frame

Start of
frame

Figure 9.8: Extended data frame

www.newnespress.com

482 Chapter 9

The process of arbitration is illustrated in Figure 9.9 by an example consisting of three

nodes having identifiers:

Node 1: 11100110011 Node 2: 11100111111 Node 3: 11100110001

Assuming the recessive level corresponds to 1 and the dominant level to 0, the

arbitration is performed as follows:

� All the nodes start transmitting simultaneously, first sending SOF bits.

� Then they send their identifier bits. The 8th bit of Node 2 is in the recessive

state, while the corresponding bits of Nodes 1 and 3 are in the dominant state.

Therefore Node 2 stops transmitting and returns to receive mode. The receiving

phase is indicated by a gray field.

� The 10th bit of Node 1 is in the recessive state, while the same bit of Node 3 is

in dominant state. Thus Node 1 stops transmitting and returns to receive mode.

� The bus is now left to Node 3, which can send its control and data fields freely.

Notably, the devices on the bus have no addresses. Instead, all the devices pick up all

the data on the bus, and every node must filter out the messages it does not want.

Bus

Node 3

Node 2

Node 1

Start of frame

1 2 3 4 5 6 7 8 9 10 11

Figure 9.9: Example CAN bus arbitration

www.newnespress.com

483Advanced PIC18 Projects—CAN Bus Projects

9.1.3 Control Field

The control field is 6 bits wide, consisting of 2 reserved bits and 4 data length code

(DLC) bits, and indicates the number of data bytes in the message being transmitted.

This field is coded as shown in Table 9.1, where up to 8 transmit bytes can be coded

with 6 bits.

9.1.4 Data Field

The data field carries the actual content of the message. The data size can vary from

0 to 8 bytes. The data is transmitted with the MSB first.

9.1.5 CRC Field

The CRC field, consisting of a 15-bit CRC sequence and a 1-bit CRC delimiter, is

used to check the frame for a transmission error. The CRC calculation includes the

start of frame, arbitration field, control field, and data field. The calculated CRC

and the received CRC sequence are compared, and if they do not match, an error

is assumed.

Table 9.1: Coding the control field

No. of data bytes DLC3 DLC2 DLC1 DLC0

0 D D D D

1 D D D R

2 D D R D

3 D D R R

4 D R D D

5 D R D R

6 D R R D

7 D R R R

8 R D or R D or R D or R

D: Dominant level, R: Recessive level.

www.newnespress.com

484 Chapter 9

9.1.6 ACK Field

The ACK field indicates that the frame has been received normally. This field

consists of 2 bits, one for ACK slot and one for ACK delimiter.

9.2 Remote Frame

The remote frame is used by the receiving unit to request transmission of a

message from the transmitting unit. It consists of six fields (see Figure 9.10): start

of frame, arbitration field, control field, CRC field, ACK field, and end of

frame field. A remote frame is the same as a data frame except that it lacks a

data field.

9.3 Error Frame

Error frames are generated and transmitted by the CAN hardware and are used to

indicate when an error has occurred during transmission. An error frame consists of

an error flag and an error delimiter. There are two types of error flags: active, which

consists of 6 dominant bits, and passive, which consists of 6 recessive bits. The

error delimiter consists of 8 recessive bits.

9.4 Overload Frame

The overload frame is used by the receiving unit to indicate that it is not yet

ready to receive frames. This frame consists of an overload flag and an overload

delimiter. The overload flag consists of 6 dominant bits and has the same

structure as the active error flag of the error frame. The overload delimiter

consists of 8 recessive bits and has the same structure as the error delimiter of

the error frame.

SOF
Arbitration

field

Control field
ACK

CRC
EOF

Figure 9.10: Remote frame

www.newnespress.com

485Advanced PIC18 Projects—CAN Bus Projects

9.5 Bit Stuffing

The CAN bus makes use of bit stuffing, a technique to periodically synchronize

transmit-receive operations to prevent timing errors between receive nodes. After 5

consecutive bits with the same level, one bit of inverted data is added to the sequence.

If, during sending of a data frame or remote frame, the same level occurs in 5

consecutive bits anywhere from the start of frame to the CRC sequence, an inverted

bit is inserted in the next (i.e., the sixth) bit. If, during receiving of a data frame or

remote frame, the same level occurs in 5 consecutive bits anywhere from the start of

frame to CRC sequence, the next (sixth) bit is deleted from the received frame. If the

deleted sixth bit is at the same level as the fifth bit, an error (stuffing error) is detected.

9.6 Types of Errors

The CAN bus identifies five types of errors:

� Bit error

� CRC error

� Form error

� ACK error

� Stuffing error

Bit errors are detected when the output level and the data level on the bus do not

match. Both transmit and receive units can detect bit errors. CRC errors are detected

only by receiving units. CRC errors are detected if the calculated CRC from the

received message and the received CRC do not match. Form errors are detected

by the transmitting or receiving units when an illegal frame format is detected.

ACK errors are detected only by the transmitting units if the ACK field is found

recessive. Stuffing errors are detected when the same level of data is detected for 6

consecutive bits in any field that should have been bit-stuffed. This error can be

detected by both the transmitting and receiving units.

9.7 Nominal Bit Timing

The CAN bus nominal bit rate is defined as the number of bits transmitted every

second without resynchronization. The inverse of the nominal bit rate is the nominal

bit time. All devices on the CAN bus must use the same bit rate, even though each

www.newnespress.com

486 Chapter 9

device can have its own different clock frequency. One message bit consists of four

nonoverlapping time segments:

� Synchronization segment (Sync_Seg)

� Propagation time segment (Prop_Seg)

� Phase buffer segment 1 (Phase_Seg1)

� Phase buffer segment 2 (Phase_Seg2)

The Sync_Seg segment is used to synchronize various nodes on the bus, and an edge

is expected to lie within this segment. The Prop_Seg segment compensates for

physical delay times within the network. The Phase_Seg1 and Phase_Seg2 segments

compensate for edge phase errors. These segments can be lengthened or shortened by

synchronization. The sample point is the point in time where the actual bit value is

located and occurs at the end of Phase_Seg1. A CAN controller can be configured

to sample three times and use a majority function to determine the actual bit value.

Each segment is divided into units known as time quantum, or TQ. A desired bit

timing can be set by adjusting the number of TQ’s that comprise one message bit

and the number of TQ’s that comprise each segment in it. The TQ is a fixed unit

derived from the oscillator period, and the time quantum of each segment can vary

from 1 to 8. The lengths of the various time segments are:

� Sync_Seg is 1 time quantum long

� Prop_Seg is programmable as 1 to 8 time quanta long

� Phase_Seg1 is programmable as 1 to 8 time quanta long

� Phase_Seg2 is programmable as 2 to 8 time quanta long

By setting the bit timing, a sampling point can be set so multiple units on the bus can

sample messages with the same timing.

The nominal bit time is programmable from a minimum of 8 time quanta to a maximum

of 25 time quanta. By definition, the minimum nominal bit time is 1ms, corresponding
to a maximum 1Mb/s rate. The nominal bit time (TBIT) is given by:

TBIT ¼ TQ � ðSync Seg þ Prop Seg þ Phase Seg1 þ Phase Seg2Þ ð9:1Þ

www.newnespress.com

487Advanced PIC18 Projects—CAN Bus Projects

and the nominal bit rate (NMR) is

NBR ¼ 1=TBIT ð9:2Þ

The time quantum is derived from the oscillator frequency and the programmable

baud rate prescaler, with integer values from 1 to 64. The time quantum can be

expressed as:

TQ ¼ 2 � ðBRP þ 1Þ=FOSC ð9:3Þ

where TQ is in ms, FOSC is in MHz, and BRP is the baud rate prescaler (0 to 63).

Equation (9.2) can be written as

TQ ¼ 2 � ðBRP þ 1Þ � TOSC ð9:4Þ

where TOSC is in ms.

An example of the calculation of a nominal bit rate follows.

Example 9.1

Assuming a clock frequency of 20MHz, a baud rate prescaler value of 1, and a

nominal bit time of TBIT ¼ 8 * TQ, determine the nominal bit rate.

Solution 9.1

Using equation (9.3),

TQ ¼ 2 � ð1 þ 1Þ=20 ¼ 0:2ms

also

TBIT ¼ 8 � TQ ¼ 8 � 0:2 ¼ 1:6ms

From Equation (9.2),

NBR ¼ 1=TBIT ¼ 1=1:6ms ¼ 625; 000bites=s or 625Kb=s

www.newnespress.com

488 Chapter 9

In order to compensate for phase shifts between the oscillator frequencies of nodes

on a bus, each CAN controller must synchronize to the relevant signal edge of the

received signal. Two types of synchronization are defined: hard synchronization and

resynchronization. Hard synchronization is used only at the beginning of a message

frame, when each CAN node aligns the Sync_Seg of its current bit time to the

recessive or dominant edge of the transmitted start of frame. According to the

rules of synchronization, if a hard synchronization occurs, there will not be a

resynchronization within that bit time.

With resynchronization, Phase_Seg1 may be lengthened or Phase_Seg2 may be

shortened. The amount of change in the phase buffer segments has an upper bound

given by the synchronization jump width (SJW). The SJW is programmable between

1 and 4, and its value is added to Phase_Seg1 or subtracted from Phase_Seg2.

9.8 PIC Microcontroller CAN Interface

In general, any type of PIC microcontroller can be used in CAN bus–based projects, but

some PIC microcontrollers (e.g., PIC18F258) have built-in CAN modules, which can

simplify the design of CAN bus–based systems. Microcontrollers with no built-in CAN

modules can also be used in CAN bus applications, but additional hardware and

software are required, making the design costly and also more complex.

Figure 9.11 shows the block diagram of a PIC microcontroller–based CAN bus

application, using a PIC16 or PIC12-type microcontroller (e.g., PIC16F84) with no

CAN Node

CAN Bus

CAN
Transceiver
MCP2551 TX

RX PIC12/16
Series 8-bit

microcontroller

CAN
Controller
MCP2515

SPI

Figure 9.11: CAN node with any PIC microcontroller

www.newnespress.com

489Advanced PIC18 Projects—CAN Bus Projects

built-in CAN module. The microcontroller is connected to the CAN bus using an

external MCP2515 CAN controller chip and an MCP2551 CAN bus transceiver chip.

This configuration is suitable for a quick upgrade to an existing design using any PIC

microcontroller.

For new CAN bus–based designs it is easier to use a PIC microcontroller with a built-in

CAN module. As shown in Figure 9.12, such devices include built-in CAN controller

hardware on the chip. All that is required to make a CAN node is to add a CAN

transceiver chip. Table 9.2 lists some of the PIC microcontrollers that include a CAN

module.

CAN Node

TX

CAN Bus

RXCAN
Transceiver
MCP2551

PIC18F
Series 8-bit

Microcontroller
&

CAN controller
module

Figure 9.12: CAN node with integrated CAN module

Table 9.2: Some popular PIC microcontrollers that include CAN modules

Device Pins
Flash
(KB)

SRAM
(KB)

EEPROM
(bytes) A/D

CAN
module SPI UART

18F258 28 16 768 256 5 1 1 1

18F2580 28 32 1536 256 8 1 1 1

18F2680 28 64 3328 1024 8 1 1 1

18F4480 40/44 16 768 256 11 1 1 1

18F8585 80 48 3328 1024 16 1 1 1

18F8680 80 64 3328 1024 16 1 1 1

www.newnespress.com

490 Chapter 9

9.9 PIC18F258 Microcontroller

Later in this chapter the PIC18F258 microcontroller is used in a CAN bus–based

project. This section describes this microcontroller and its operating principles with

respect to its built-in CAN bus. The principles here are in general applicable to other

PIC microcontrollers with CAN modules.

The PIC18F258 is a high performance 8-bit microcontroller with integrated CAN

module. The device has the following features:

� 32K flash program memory

� 1536 bytes RAM data memory

� 256 bytes EEPROM memory

� 22 I/O ports

� 5-channel 10-bit A/D converters

� Three timers/counters

� Three external interrupt pins

� High-current (25mA) sink/source

� Capture/compare/PWM module

� SPI/I2C module

� CAN 2.0A/B module

� Power-on reset and power-on timer

� Watchdog timer

� Priority level interrupts

� DC to 40MHz clock input

� 8 � 8 hardware multiplier

� Wide operating voltage (2.0V to 5.5V)

� Power-saving sleep mode

www.newnespress.com

491Advanced PIC18 Projects—CAN Bus Projects

The features of the PIC18F258 microcontroller’s CAN module are as follows:

� Compatible with CAN 1.2, CAN 2.0A, and CAN 2.0B

� Supports standard and extended data frames

� Programmable bit rate up to 1Mbit/s

� Double-buffered receiver

� Three transmit buffers

� Two receive buffers

� Programmable clock source

� Six acceptance filters

� Two acceptance filter masks

� Loop-back mode for self-testing

� Low-power sleep mode

� Interrupt capabilities

The CAN module uses port pins RB3/CANRX and RB2/CANTX for CAN bus receive

and transmit functions respectively. These pins are connected to the CAN bus via an

MCP2551-type CAN bus transceiver chip.

The PIC18F258 microcontroller supports the following frame types:

� Standard data frame

� Extended data frame

� Remote frame

� Error frame

� Overload frame

� Interframe space

A node uses filters to decide whether or not to accept a received message. Message

filtering is applied to the whole identifier field, and mask registers are used to specify

which bits in the identifier the filters should examine.

www.newnespress.com

492 Chapter 9

The CAN module in the PIC18F258 microcontroller has six modes of operation:

� Configuration mode

� Disable mode

� Normal operation mode

� Listen-only mode

� Loop-back mode

� Error recognition mode

9.9.1 Configuration Mode

The CAN module is initialized in configuration mode. The module is not allowed to

enter configuration mode while a transmission is taking place. In configuration mode

the module will neither transmit nor receive, the error counters are cleared, and the

interrupt flags remain unchanged.

9.9.2 Disable Mode

In disable mode, the module will neither transmit nor receive. In this mode the internal

clock is stopped unless the module is active. If the module is active, it will wait for

11 recessive bits on the CAN bus, detect that condition as an IDLE bus, and then accept

the module disable command. The WAKIF interrupt (wake-up interrupt) is the only

CAN module interrupt that is active in disable mode.

9.9.3 Normal Operation Mode

The normal operation mode is the CAN module’s standard operating mode. In this

mode, the module monitors all bus messages and generates acknowledge bits, error

frames, etc. This is the only mode that can transmit messages.

9.9.4 Listen-only Mode

The listen-only mode allows the CAN module to receive messages, including

messages with errors. It can be used to monitor bus activities or to detect the baud

rate on the bus. For automatic baud rate detection, at least two other nodes must be

www.newnespress.com

493Advanced PIC18 Projects—CAN Bus Projects

communicating with each other. The baud rate can be determined by testing

different values until valid messages are received. The listen-only mode cannot

transmit messages.

9.9.5 Loop-Back Mode

In the loop-back mode, messages can be directed from internal transmit buffers to

receive buffers without actually transmitting messages on the CAN bus. This mode

is useful during system developing and testing.

9.9.6 Error Recognition Mode

The error recognition mode is used to ignore all errors and receive all messages. In

this mode, all messages, valid or invalid are received and copied to the receive buffer.

9.9.7 CAN Message Transmission

The PIC18F258 microcontroller implements three dedicated transmit buffers: TXB0,

TXB1, and TXB2. Pending transmittable messages are in a priority queue. Before

the SOF is sent, the priorities of all buffers queued for transmission are compared.

The transmit buffer with the highest priority is sent first. If two buffers have the

same priority, the one with the higher buffer number is sent first. There are four

levels of priority.

9.9.8 CAN Message Reception

Reception of a message is a more complex process. The PIC18F258 microcontroller

includes two receive buffers, RXB0 and RXB1, with multiple acceptance filters

for each (see Figure 9.13). All received messages are assembled in the message

assembly buffer (MAB). Once a message is received, regardless of the type of

identifier and the number of data bytes, the entire message is copied into the MAB.

Received messages have priorities. RXB0 is the higher priority buffer, and it has two

message acceptance filters, RXF0 and RXF1. RXB1 is the lower priority buffer and

has four acceptance filters: RXF2, RXF3, RXF4, and RXF5. Two programmable

acceptance filter masks, RXM0 and RXM1, are also available, one for each receive

buffer.

www.newnespress.com

494 Chapter 9

The CAN module uses message acceptance filters and masks to determine if a

message in the MAB should be loaded into a receive buffer. Once a valid message is

received by the MAB, the identifier field of the message is compared to the filter

values. If there is a match, that message is loaded into the appropriate receive buffer.

The filter masks determine which bits in the identifier are examined with the filters.

The truth table in Table 9.3 shows how each bit in the identifier is compared against

Message Assembly Buffer

Identifier
Data and
Identifier

Data and
Identifier Identifier

RXB0 RXB1

Acceptance Filter
RXF1

Acceptance Filter
RXF4

Acceptance Filter
RXF5

Acceptance Filter
RXF0

Acceptance Filter
RXF3

Acceptance Filter
RXM2

Acceptance Mask
RXM0

Acceptance Mask
RXM1

Accept

Accept

Figure 9.13: Receive buffer block diagram

Table 9.3: Filter/mask truth table

Mask bit n Filter bit n Message identifier bit n001 Accept or reject bit n

0 � � Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

www.newnespress.com

495Advanced PIC18 Projects—CAN Bus Projects

the masks and filters to determine if the message should be accepted. If a mask

bit is set to 0, that bit in the identifier is automatically accepted regardless of the

filter bit.

9.9.9 Calculating the Timing Parameters

Setting the nodes’ timing parameters is essential for the bus to operate reliably. Given

the microcontroller clock frequency and the required CAN bus bit rate, we can calculate

the values of the following timing parameters:

� Baud rate prescaler value

� Prop_Seg value

� Phase_Seg1 value

� Phase_Seg2 value

� SJW value

Correct timing requires that

� Prop_Seg þ Phase_Seg1 � Phase_Seg2

� Phase_Seg2 � SJW

The following example illustrates the calculation of these timing parameters.

Example 9.2

Assuming the microcontroller oscillator clock rate is 20MHz and the required CAN bit

rate is 125KHz, calculate the timing parameters.

Solution 9.2

With a 20MHz clock rate, the clock period is 50ns. Choosing a baud rate prescaler

value of 4, from Equation (9.4), TQ ¼ 2 * (BRP þ 1) * TOSC, gives a time

quantum of TQ ¼ 500ns. To obtain a nominal bit rate of 125KHz, the nominal bit

time must be:

TBIT ¼ 1=0:125MHz ¼ 8ms; or 16TQ

www.newnespress.com

496 Chapter 9

The Sync_Segment is 1TQ. Choosing 2TQ for the Prop_Seg, and 7TQ for Phase_Seg1

leaves 6TQ for Phase_Seg2 and places the sampling point at 10TQ at the end of

Phase_Seg1.

By the rules described earlier, the SJW can be the maximum allowed (i.e., 4). However,

a large SJW is only necessary when the clock generation of different nodes is not

stable or accurate (e.g., if ceramic resonators are used). Typically, a SJW of 1 is

enough. In summary, the required timing parameters are:

Baud rate prescaler (BRP) ¼ 4
Sync_Seg ¼ 1
Prop_Seg ¼ 2
Phase_Seg1 ¼ 7
Phase_Seg2 ¼ 6
SJW ¼ 1

The sampling point is at 10TQ which corresponds to 62.5% of the total bit time.

There are several tools available for free on the Internet for calculating CAN bus timing

parameters. One such tool is the CAN Baud Rate Calculator, developed by Artic

Consultants Ltd (http://www.articconsultants.co.uk). An example using this tool

follows.

Example 9.3

Assuming the microcontroller oscillator clock rate is 20MHz and the required CAN

bit rate is 125KHz, calculate the timing parameters using the CAN Baud Rate

Calculator.

Solution 9.3

Figure 9.14 shows the output of the CAN Baud Rate Calculator program. The device

type is selected as PIC18Fxxx8, the oscillator frequency is entered as 20MHz, and the

CAN bus baud rate is entered as 125KHz.

Clicking the Calculate Settings button calculates and displays the recommended timing

parameters. In general, there is more than one solution, and different solutions are given

in the Calculated Solutions field’s drop-down menu.

In choosing Solution 2 from the drop-down menu, the following timing parameters are

recommended by the program:

www.newnespress.com

497Advanced PIC18 Projects—CAN Bus Projects

Baud rate prescaler (BRP) ¼ 4
Sync_Seg ¼ 1
Prop_Seg ¼ 5
Phase_Seg1 ¼ 5
Phase_Seg2 ¼ 5
SJW ¼ 1
Sample point ¼ 68%
Error ¼ 0%

9.10 mikroC CAN Functions

The mikroC language provides two libraries for CAN bus applications: the library for

PIC microcontrollers with built-in CAN modules and the library based on using a SPI

Figure 9.14: Output of the CAN Baud Rate Calculator program

www.newnespress.com

498 Chapter 9

bus for PIC microcontrollers having no built-in CAN modules. In this section we

will discuss only the library functions available for PIC microcontrollers with built-in

CAN modules. Similar functions are available for the PIC microcontrollers with no

built-in CAN modules.

The mikroC CAN functions are supported only by PIC18XXX8 microcontrollers

with MCP2551 or similar CAN transceivers. Both standard (11 identifier bits) and

extended format (29 identifier bits) messages are supported.

The following mikroC functions are provided:

� CANSetOperationMode

� CANGetOperationMode

� CANInitialize

� CANSetBaudRAte

� CANSetMask

� CANSetFilter

� CANRead

� CANWrite

9.10.1 CANSetOperationMode

The CANSetOperationMode function sets the CAN operation mode. The function

prototype is:

void CANSetOperationMode(char mode, char wait_flag)

The parameter wait_ flag is either 0 or 0 � FF. If it is set to 0 � FF, the function blocks

and will not return until the requested mode is set. If it is set to 0, the function returns as

a nonblocking call.

The mode can be one of the following:

� CAN_MODE_NORMAL Normal mode of operation

� CAN_MODE_SLEEP Sleep mode of operation

� CAN_MODE_LOOP Loop-back mode of operation

www.newnespress.com

499Advanced PIC18 Projects—CAN Bus Projects

� CAN_MODE_LISTEN Listen-only mode of operation

� CAN_MODE_CONFIG Configuration mode of operation

9.10.2 CANGetOperationMode

The CANGetOperationMode function returns the current CAN operation mode. The

function prototype is:

char CANGetOperationMode(void)

9.10.3 CANInitialize

The CANInitialize function initializes the CAN module. All mask registers are cleared

to 0 to allow all messages. Upon execution of this function, the normal mode is set. The

function prototype is:

void CANInitialize(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPEG, char CAN_CONFIG_FLAGS)

where

SJW is the synchronization jump width

BRP is the baud rate prescaler

PHSEG1 is the Phase_Seg1 timing parameter

PHSEG2 is the Phase_Seg2 timing parameter

PROPSEG is the Prop_Seg

CAN_CONFIG_FLAGS can be one of the following configuration flags:

� CAN_CONFIG_DEFAULT Default flags

� CAN_CONFIG_PHSEG2_PRG_ON Use supplied PHSEG2 value

� CAN_CONFIG_PHSEG2_PRG_OFF Use maximum of PHSEG1 or

information processing time (IPT),

whichever is greater

� CAN_CONFIG_LINE_FILTER_ON Use CAN bus line filter for wake-up

� CAN_CONFIG_FILTER_OFF Do not use CAN bus line filter

www.newnespress.com

500 Chapter 9

� CAN_CONFIG_SAMPLE_ONCE Sample bus once at sample point

� CAN_CONFIG_SAMPLE_THRICE Sample bus three times prior to

sample point

� CAN_CONFIG_STD_MSG Accept only standard identifier

messages

� CAN_CONFIG_XTD_MSG Accept only extended identifier

messages

� CAN_CONFIG_DBL_BUFFER_ON Use double buffering to receive

data

� CAN_CONFIG_DBL_BUFFER_OFF Do not use double buffering

� CAN_CONFIG_ALL_MSG Accept all messages including

invalid ones

� CAN_CONFIG_VALID_XTD_MSG Accept only valid extended

identifier messages

� CAN_CONFIG_VALID_STD_MSG Accept only valid standard

identifier messages

� CAN_CONFIG_ALL_VALID_MSG Accept all valid messages

These configuration values can be bitwise AND’ed to form complex configuration

values.

9.10.4 CANSetBaudRate

The CANSetBaudRate function is used to set the CAN bus baud rate. The function

prototype is:

void CANSetBaudRate(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPSEG, char CAN_CONFIG_FLAGS)

The arguments of the function are as in function CANInitialize.

9.10.5 CANSetMask

The CANSetMask function sets the mask for filtering messages. The function

prototype is:

www.newnespress.com

501Advanced PIC18 Projects—CAN Bus Projects

void CANSetMask(char CAN_MASK, long value, char
CAN_CONFIGFLAGS)

CAN_MASK can be one of the following:

� CAN_MASK_B1 Receive buffer 1 mask value

� CAN_MASK_B2 Receive buffer 2 mask value

value is the mask register value. CAN_CONFIG_FLAGS can be either

CAN_CONFIG_XTD (extended message), or CAN_CONFIG_STD (standard

message).

9.10.6 CANSetFilter

The CANSetFilter function sets filter values. The function prototype is:

void CANSetFilter(char CAN_FILTER, long value, char
CAN_CONFIG_FLAGS)

CAN_FILTER can be one of the following:

� CAN_FILTER_B1_F1 Filter 1 for buffer 1

� CAN_FILTER_B1_F2 Filter 2 for buffer 1

� CAN_FILTER_B2_F1 Filter 1 for buffer 2

� CAN_FILTER_B2_F2 Filter 2 for buffer 2

� CAN_FILTER_B2_F3 Filter 3 for buffer 2

� CAN_FILTER_B2_F4 Filter 4 for buffer 2

CAN_CONFIG_FLAGS can be either CAN_CONFIG_XTD (extended message) or

CAN_CONFIG_STD (standard message).

9.10.7 CANRead

The CANRead function is used to read messages from the CAN bus. If no message is

available, 0 is returned. The function prototype is:

char CANRead(long *id, char *data, char *datalen, char
*CAN_RX_MSG_FLAGS)

www.newnespress.com

502 Chapter 9

id is the CAN message identifier. Only 11 or 29 bits may be used depending on

message type (standard or extended). data is an array of bytes up to 8 where the

received data is stored. datalen is the length of the received data (1 to 8).

CAN_RX_MSG_FLAGS can be one of the following:

� CAN_RX_FILTER_1 Receive buffer filter 1 accepted this message

� CAN_RX_FILTER_2 Receive buffer filter 2 accepted this message

� CAN_RX_FILTER_3 Receive buffer filter 3 accepted this message

� CAN_RX_FILTER_4 Receive buffer filter 4 accepted this message

� CAN_RX_FILTER_5 Receive buffer filter 5 accepted this message

� CAN_RX_FILTER_6 Receive buffer filter 6 accepted this message

� CAN_RX_OVERFLOW Receive buffer overflow occurred

� CAN_RX_INVALID_MSG Invalid message received

� CAN_RX_XTD_FRAME Extended identifier message received

� CAN_RX_RTR_FRAME RTR frame message received

� CAN_RX_DBL_BUFFERED This message was double buffered

These flags can be bitwise AND’ed if desired.

9.10.8 CANWrite

The CANWrite function is used to send a message to the CAN bus. A zero is returned

if message can not be queued (buffer full). The function prototype is:

char CANWrite(long id, char *data, char datalen, char
CAN_TX_MSG_FLAGS)

id is the CAN message identifier. Only 11 or 29 bits may be used depending on message

type (standard or extended). data is an array of bytes up to 8 where the data to be sent is

stored. datalen is the length of the data (1 to 8).

CAN_TX_MSG_FLAGS can be one of the following:

� CAN_TX_PRIORITY_0 Transmit priority 0

� CAN_TX_PRIORITY_1 Transmit priority 1

www.newnespress.com

503Advanced PIC18 Projects—CAN Bus Projects

� CAN_TX_PRIORITY_2 Transmit priority 2

� CAN_TX_PRIORITY_3 Transmit priority 3

� CAN_TX_STD_FRAME Standard identifier message

� CAN_TX_XTD_FRAME Extended identifier message

� CAN_TX_NO_RTR_FRAME Non RTR message

� CAN_TX_RTR_FRAME RTR message

These flags can be bitwise AND’ed if desired.

9.11 CAN Bus Programming

To operate the PIC18F258 microcontroller on the CAN bus, perform the following

steps:

� Configure the CAN bus I/O port directions (RB2 and RB3)

� Initialize the CAN module (CANInitialize)

� Set the CAN module to CONFIG mode (CANSetOperationMode)

� Set the mask registers (CANSetMask)

� Set the filter registers (CANSetFilter)

� Set the CAN module to normal mode (CANSetOperationMode)

� Write/read data (CANWrite/CANRead)

PROJECT 9.1—Temperature Sensor CAN
Bus Project

The following is a simple two-node CAN bus–based project. The block diagram of

the project is shown in Figure 9.15. The system is made up of two CAN nodes.

One node (called DISPLAY node) requests the temperature every second and

displays it on an LCD. This process is repeated continuously. The other node

(called COLLECTOR node) reads the temperature from an external semiconductor

temperature sensor.

www.newnespress.com

504 Chapter 9

The project’s circuit diagram is given in Figure 9.16. Two CAN nodes are

connected together using a two-meter twisted pair cable, terminated with a 120-ohm

resistor at each end.

NODE: COLLECTOR NODE: DISPLAY

PIC18F
258 LCD

120 ohm
terminator

PIC18F
258LM35

MCP2551 MCP2551

CAN Bus

Temperature
sensor

120 ohm
terminator

Figure 9.15: Block diagram of the project

Figure 9.16: Circuit diagram of the project

www.newnespress.com

505Advanced PIC18 Projects—CAN Bus Projects

The DISPLAY Processor

Like the COLLECTOR processor, the DISPLAY processor consists of a PIC18F258

microcontroller with a built-in CAN module and an MCP2551 transceiver chip. The

microcontroller is operated from an 8MHz crystal. The MCLR input is connected to

an external reset button. The CAN outputs (RB2/CANTX and RB3/CANRX) of the

microcontroller are connected to the TXD and RXD inputs of the MCP2551. Pins

CANH and CANL of the transceiver chip are connected to the CAN bus. An

HD44780-type LCD is connected to PORTC of the microcontroller to display the

temperature values.

The COLLECTOR Processor

The COLLECTOR processor consists of a PIC18F258 microcontroller with a

built-in CAN module and an MCP2551 transceiver chip. The microcontroller is

operated from an 8MHz crystal. The MCLR input is connected to an external reset

button. Analog input AN0 of the microcontroller is connected to a LM35DZ-type

semiconductor temperature sensor. The sensor can measure temperature in the range

of 0�C to 100�C and generates an analog voltage directly proportional to the

measured temperature (i.e., the output is 10mV/�C). For example, at 20�C the

output voltage is 200mV.

The CAN outputs (RB2/CANTX and RB3/CANRX) of the microcontroller are

connected to the TXD and RXD inputs of an MCP2551-type CAN transceiver

chip. The CANH and CANL outputs of this chip are connected directly to a twisted

cable terminating at the CAN bus. The MCP2551 is an 8-pin chip that supports

data rates up to 1Mb/s. The chip can drive up to 112 nodes. An external resistor

connected to pin 8 of the chip controls the rise and fall times of CANH and

CANL so that EMI can be reduced. For high-speed operation this pin should be

connected to ground. A reference voltage equal to VDD/2 is output from pin 5 of

the chip.

The program listing is in two parts: the DISPLAY program and the COLLECTOR

program. The operation of the system is as follows:

� The DISPLAY processor requests the current temperature from the

COLLECTOR processor over the CAN bus

www.newnespress.com

506 Chapter 9

� The COLLECTOR processor reads the temperature, formats it, and sends to the

DISPLAY processor over the CAN bus

� The DISPLAY processor reads the temperature from the CAN bus and then

displays it on the LCD

� This process is repeated every second

DISPLAY Program

Figure 9.17 shows the program listing of the DISPLAY program, called DISPLAY.C.

At the beginning of the program PORTC pins are configured as outputs, RB3 is

configured as input (CANRX), and RB2 is configured as output (CANTX). In this

project the CAN bus bit rate is selected as 100Kb/s. With a microcontroller clock

frequency of 8MHz, the Baud Rate Calculator program (see Figure 9.14) is used to

calculate the timing parameters as:

SJW ¼ 1
BRP ¼ 1
Phase_Seg1 ¼ 6
Phase_Seg2 ¼ 7
Prop_Seg ¼ 6

The mikroC CAN bus function CANInitialize is used to initialize the CAN module. The

timing parameters and the initialization flag are specified as arguments in this function.

The initialization flag is made up from the bitwise AND of:

init_flag ¼ CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG &
CAN_CONFIG_LINE_FILTER_OFF;

Where sampling the bus three times is specified, the standard identifier is specified,

double buffering is turned on, and the line filter is turned off.

Then the operationmode is set to CONFIG and the filter masks and filter values are specified.

Both mask 1 and mask 2 are set to all 1’s (�1 is a shorthand way of writing hexadecimal

FFFFFFFF, i.e., setting all mask bits to 1’s) so that all filter bits match up with incoming data.

www.newnespress.com

507Advanced PIC18 Projects—CAN Bus Projects

/∗∗
 CAN BUS EXAMPLE - NODE: DISPLAY
 ===============================

This is the DISPLAY node of the CAN bus example. In this project a PIC18F258
type microcontroller is used. An MCP2551 type CAN bus transceiver is used to
connect the microcontroller to the CAN bus. The microcontroller is operated from
an 8MHz crystal with an external reset button.

Pin CANRX and CANTX of the microcontroller are connected to pins RXD
and TXD of the transceiver chip respectively. Pins CANH and CANL of
the transceiver chip are connected to the CAN bus.

An LCD is connected to PORTC of the microcontroller. The ambient
temperature is read from another CAN node and is displayed on the LCD.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD

 RC0 D4
 RC1 D5
 RC2 D6
 RC3 D7
 RC4 RS
 RC5 EN

CAN speed parameters are:

 Microcontroller clock: 8MHz
 CAN Bus bit rate: 100Kb/s
 Sync_Seg: 1
 Prop_Seg: 6
 Phase_Seg1: 6
 Phase_Seg2: 7
 SJW: 1
 BRP: 1
 Sample point: 65%

Author: Dogan Ibrahim
Date: October 2007
File: DISPLAY.C
∗∗∗/

void main()
{
 unsigned char temperature, data[8];
 unsigned short init_flag, send_flag, dt, len, read_flag;
 char SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, txt[4];
 long id, mask;

Figure 9.17: DISPLAY program listing

www.newnespress.com

508 Chapter 9

 TRISC = 0; // PORTC are outputs (LCD)
 TRISB = 0x08; // RB2 is output, RB3 is input
//
// CAN BUS Parameters
//
 SJW = 1;
 BRP = 1;
 Phase_Seg1 = 6;
 Phase_Seg2 = 7;
 Prop_Seg = 6;

 init_flag = CAN_CONFIG_SAMPLE_THRICE &
 CAN_CONFIG_PHSEG2_PRG_ON &
 CAN_CONFIG_STD_MSG &
 CAN_CONFIG_DBL_BUFFER_ON &
 CAN_CONFIG_VALID_XTD_MSG &
 CAN_CONFIG_LINE_FILTER_OFF;

 send_flag = CAN_TX_PRIORITY_0 &
 CAN_TX_XTD_FRAME &
 CAN_TX_NO_RTR_FRAME;

 read_flag = 0;
//
// Initialize CAN module
//
 CANInitialize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);
//
// Set CAN CONFIG mode
//
 CANSetOperationMode(CAN_MODE_CONFIG, 0xFF);

 mask = -1;
//
// Set all MASK1 bits to 1's
//
 CANSetMask(CAN_MASK_B1, mask, CAN_CONFIG_XTD_MSG);
//
// Set all MASK2 bits to 1's
//
 CANSetMask(CAN_MASK_B2, mask, CAN_CONFIG_XTD_MSG);
//
// Set id of filter B2_F3 to 3
//
 CANSetFilter(CAN_FILTER_B2_F3,3,CAN_CONFIG_XTD_MSG);
//
// Set CAN module to NORMAL mode
//
 CANSetOperationMode(CAN_MODE_NORMAL, 0xFF);

Figure 9.17: (Cont’d)

www.newnespress.com

509Advanced PIC18 Projects—CAN Bus Projects

Filter 3 for buffer 2 is set to value 3 so that identifiers having values 3 are accepted by

the receive buffer.

The operation mode is then set to NORMAL. The program then configures the LCD

and displays the message “CAN BUS” for one second on the LCD.

The main program loop executes continuously and starts with a for statement. Inside

this loop the LCD is cleared and text “TEMP ¼” is displayed on the LCD. Then

character “T” is sent over the bus with the identifier equal to 500 (the COLLECTOR

//
// Configure LCD
//
 Lcd_Config(&PORTC,4,5,0,3,2,1,0); // LCD is connected to PORTC
 Lcd_Cmd(LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"CAN BUS"); // Display heading on LCD
 Delay_ms(1000); // Wait for 2 seconds

//
// Program loop. Read the temperature from Node:COLLECTOR and display
// on the LCD continuously
//
 for(;;) // Endless loop
 {
 Lcd_Cmd(LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"Temp = "); // Display "Temp = "
 //
 // Send a message to Node:COLLECTOR and ask for data
 //
 data[0] = 'T'; // Data to be sent
 id = 500; // Identifier
 CANWrite(id, data, 1, send_flag); // send 'T'
 //
 // Get temperature from node:COLLECT
 //
 dt = 0;
 while(!dt)dt = CANRead(&id, data, &len, &read_flag);
 if(id == 3)
 {
 temperature = data[0];
 ByteToStr(temperature,txt); // Convert to string
 Lcd_Out(1,8,txt); // Output to LCD
 Delay_ms(1000); // Wait 1 second
 }
 }

}

Figure 9.17: (Cont’d)

www.newnespress.com

510 Chapter 9

/∗∗∗
 CAN BUS EXAMPLE - NODE: COLLECTOR
 =================================

This is the COLLECTOR node of the CAN bus example. In this project a
PIC18F258 type microcontroller is used. An MCP2551 type CAN bus transceiver
is used to connect the microcontroller to the CAN bus. The microcontroller is
operated from an 8MHz crystal with an external reset button.

Pin CANRX and CANTX of the microcontroller are connected to pins RXD
and TXD of the transceiver chip respectively. Pins CANH and CANL of the
transceiver chip are connected to the CAN bus.

An LM35DZ type analog temperature sensor is connected to port AN0 of the
microcontroller. The microcontroller reads the temperature when a request is
received and then sends the temperature value as a byte to Node:DISPLAY on
the CAN bus.

CAN speed parameters are:

 Microcontroller clock: 8MHz
 CAN Bus bit rate: 100Kb/s
 Sync_Seg: 1
 Prop_Seg: 6
 Phase_Seg1: 6
 Phase_Seg2: 7
 SJW: 1
 BRP: 1
 Sample point: 65%

Author: Dogan Ibrahim
Date: October 2007
File: COLLECTOR.C
∗∗∗/

void main()
{
 unsigned char temperature, data[8];
 unsigned short init_flag, send_flag, dt, len, read_flag;
 char SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, txt[4];
 unsigned int temp;
 unsigned long mV;
 long id, mask;

 TRISA = 0xFF; // PORTA are inputs
 TRISB = 0x08; // RB2 is output, RB3 is input
//
// Configure A/D converter
//
 ADCON1 = 0x80;

Figure 9.18: COLLECTOR program listing
(Continued)

www.newnespress.com

511Advanced PIC18 Projects—CAN Bus Projects

//
// CAN BUS Timing Parameters
//
 SJW = 1;
 BRP = 1;
 Phase_Seg1 = 6;
 Phase_Seg2 = 7;
 BRP = 1;
 Prop_Seg = 6;

 init_flag = CAN_CONFIG_SAMPLE_THRICE &
 CAN_CONFIG_PHSEG2_PRG_ON &
 CAN_CONFIG_STD_MSG &
 CAN_CONFIG_DBL_BUFFER_ON &
 CAN_CONFIG_VALID_XTD_MSG &
 CAN_CONFIG_LINE_FILTER_OFF;

 send_flag = CAN_TX_PRIORITY_0 &
 CAN_TX_XTD_FRAME &
 CAN_TX_NO_RTR_FRAME;

 read_flag = 0;
//
// Initialise CAN module
//
 CANInitialize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);
//
// Set CAN CONFIG mode
//
 CANSetOperationMode(CAN_MODE_CONFIG, 0xFF);

 mask = -1;
//
// Set all MASK1 bits to 1's
//
 CANSetMask(CAN_MASK_B1, mask, CAN_CONFIG_XTD_MSG);
//
// Set all MASK2 bits to 1's
//
 CANSetMask(CAN_MASK_B2, mask, CAN_CONFIG_XTD_MSG);
//
// Set id of filter B1_F1 to 3
//
 CANSetFilter(CAN_FILTER_B2_F3,500,CAN_CONFIG_XTD_MSG);
//
// Set CAN module to NORMAL mode
//
 CANSetOperationMode(CAN_MODE_NORMAL, 0xFF);

//

Figure 9.18: (Cont’d)

www.newnespress.com

512 Chapter 9

// Program loop. Read the temperature from analog temperature
// sensor
//
 for(;;) // Endless loop
 {
 //
 // Wait until a request is received
 //
 dt = 0;
 while(!dt) dt = CANRead(&id, data, &len, &read_flag);
 if(id == 500 && data[0] == 'T')
 {
 //
 // Now read the temperature
 //
 temp = Adc_Read(0); // Read temp
 mV = (unsigned long)temp ∗ 5000 / 1024; // in mV
 temperature = mV/10; // in degrees C
 //
 // send the temperature to Node:Display
 //
 data[0] = temperature;
 id = 3; // Identifier
 CANWrite(id, data, 1, send_flag); // send temperature
 }
 }
}

Figure 9.18: (Cont’d)

Node: DISPLAY Node: COLLECTOR

Initialize CAN module Initialize CAN module
Set mode to CONFIG Set mode to CONFIG
Set Mask bits to 1’s Set Mask bits to 1’s
Set Filter value to 3 Set Filter value to 500
Set mode to NORMAL Set mode to NORMAL

DO FOREVER DO FOREVER
 Send character “T” with identifier 500 Read a character
 Read temperature with identifier 3 IF character is “T”
 Convert temperature to string Read temperature
 Display temperature on LCD Convert to digital
 Wait 1 second Convert to ºC
ENDDO Send with identifier 3
 ENDIF
 ENDDO

Figure 9.19: Operation of both nodes

www.newnespress.com

513Advanced PIC18 Projects—CAN Bus Projects

node filter is set to accept identifier 500). This is a request to the COLLECTOR

node to send the temperature reading. The program then reads the temperature from

the CAN bus, converts it to a string in array txt, and displays it on the LCD. This

process repeats after a one-second delay.

COLLECTOR Program

Figure 9.18 shows the program listing of the COLLECTOR program, called

COLLECTOR.C. The initial part of this program is the same as the DISPLAY

program. The receive filter is set to 500 so that messages with identifier 500 are

accepted by the program.

Inside the program loop, the program waits until it receives a request to send the

temperature. Here the request is identified by the reception of character “T”. Once a

valid request is received, the temperature is read and converted into �C (stored in

variable temperature) and then sent to the CAN bus as a byte with an identifier value

equal to 3. This process repeats forever.

Figure 9.19 summarizes the operation of both nodes.

www.newnespress.com

514 Chapter 9

CHAP T E R 1 0

Multi-Tasking and Real-Time
Operating Systems

Nearly all microcontroller-based systems perform more than one activity. For example,

a temperature monitoring system is made up of three tasks that normally repeat after a

short delay, namely:

� Task 1 Reads the temperature

� Task 2 Formats the temperature

� Task 3 Displays the temperature

More complex systems may have many complex tasks. In a multi-tasking system,

numerous tasks require CPU time, and since there is only one CPU, some form of

organization and coordination is needed so each task has the CPU time it needs. In

practice, each task takes a very brief amount of time, so it seems as if all the tasks are

executing in parallel and simultaneously.

Almost all microcontroller-based systems work in real time. A real-time system is a

time responsive system that can respond to its environment in the shortest possible time.

Real time does not necessarily mean the microcontroller should operate at high speed.

What is important in a real-time system is a fast response time, although high speed can

help. For example, a real-time microcontroller-based system with various external

switches is expected to respond immediately when a switch is activated or some other

event occurs.

A real-time operating system (RTOS) is a piece of code (usually called the kernel) that

controls task allocation when the microcontroller is operating in a multi-tasking

www.newnespress.com

EMBEDDED ETHERNET:

 Exchanging messages using UDP and TCP

Serving web pages with Dynamic Data

Serving web pages that respond to user Input

Email for Embedded Systems

Using FTP

Keeping Devices and Network secure.

Serving Web Pages that Respond to User Input

 285

Chapter 6 showed how a Web page can use HTML to display text and
images, including real-time data. Many embedded Web servers also need to
display pages that can respond to user input. For example, a Web page
might display a virtual control panel that enables users to start, stop, or
modify processes controlled by an embedded system. Or a page might dis-
play a form that enables users to enter or select values for use in configuring
or controlling a device.

‘Two technologies for enabling Web pages to respond to user input are com-
mon gateway interface (CGI) programming and Java servlets. CGI pro-
grams and Java servlets can do the following:

• Retrieve the current values of variables and place them on a Web page to
return to a client.

• Receive and act on data provided by a client who clicks a hyperlink or
submits an HTML form.

Chapter 7

286

• Do just about anything that an ordinary program is capable of, including
making calculations, performing logical operations, and accessing I/O
ports.

This chapter presents examples of devices that use CGI programming and
Java servlets to enable Web pages to respond to user input. A Rabbit module
uses CGI programming and a TINI uses Java servlets. The In Depth section
of the chapter has more detail about what’s involved in using these technolo-
gies, plus examples of how a server can serve forms and respond to form data
submitted by users.

Quick Start:
Device Controller

What method to use to enable a Web page to accept user input depends in
part on the programming language and the system’s capabilities. For the
Rabbit, the HTTP server in Dynamic C’s http.lib library supports Common
Gateway Interface (CGI) programming. For the TINI, the addition of a
servlet engine enables running servlets written in Java.

The browsers that display pages that request user input don’t require any
special capabilities. At the browser, a link or button that requests a server to
take an action is just like any other hyperlink. A Web page that accepts user
input on a form must support forms, but it’s rare to find a browser these
days without support for forms. On receiving the user’s input, the server
performs the processing and returns a Web page that may incorporate out-
put from the program code the server has just executed.

The Device Controller’s Web Page
The device-controller examples in this section use LEDs to represent pro-
cesses the system is controlling. The examples can serve as prototypes for
embedded systems that accept user input from Web pages for any purpose.

In the examples, the servers host a Web page that displays a virtual control
panel (Figure 7-1). The Web page displays two LEDs and two buttons that

Serving Web Pages that Respond to User Input

 287

users can click to turn the LEDs on and off. Both the Rabbit and TINI can
host this Web page, though they use different technologies to respond to the
button clicks.

The images of LEDs on the Web page match the states of the LEDs in the
embedded system at the time the browser requested the Web page. When a
user viewing the page clicks a button, the Web server receives a message con-
taining the name of a CGI function or servlet to execute. The server toggles
the state of the selected LED and then either returns a Web page containing
updated images and text or returns a code that advises the client to request
an updated page.

Figure 7-1: This Web page is a virtual control panel that enables users to turn
LEDs on or off by clicking a button.

Chapter 7

288

Rabbit Device Controller
The first example uses the same RabbitCore RCM3200 module as the previ-
ous Rabbit examples. Listing 7-1 shows the HTML code for Figure 7-1’s
Web page.

On the page, the images of the two LEDs and their buttons are in table cells
so that each button lines up below the LED it controls. Each button is a
hyperlink. When a user viewing the page clicks a button, the server receives
a message containing the text /led1toggle.cgi or /led2toggle.cgi. On the server,
these file names are associated with CGI functions.

The page also uses SSI #echo directives, as described in Chapter 6, to dis-
play images of lit or unlit LEDs and text descriptions of the LEDs’ states
(“on” or “off”).

The LEDs are controlled by bits 6 and 7 of Port G on the Rabbit 3000
CPU. The LEDS are included on Rabbit Semiconductor’s prototyping
board for the RCM3200.

Program Code

In the RCM3200, a Dynamic C program serves Figure 7-1’s Web page and
responds to button clicks that send HTTP requests to execute CGI func-
tions. Much of the code is similar to the code in Chapter 6’s Rabbit exam-
ple.

Initial Defines and Declarations

As explained in Chapter 5, TCPCONFIG specifies a configuration that sets the
IP address, netmask, and gateway IP address values:

#define TCPCONFIG 1

The CGI functions use the values in the REDIRECTHOST and REDIRECTTO
constants to tell the client’s browser what Web page to request to display the
result of a button click. If the Rabbit is behind a router that uses NAT and if
you want the Web page to be accessible beyond the local network, REDI-
RECTHOST must be the router’s public IP address or domain name.

#define REDIRECTHOST _PRIMARY_STATIC_IP
#define REDIRECTTO "http://" REDIRECTHOST "/index.shtml"

Serving Web Pages that Respond to User Input

 289

The #memmap xmem directive causes all C functions not declared as root to
be stored in extended memory. The dcrtcp.lib library supports TCP/IP.
The http.lib library supports HTTP functions.

#memmap xmem
#use "dcrtcp.lib"

<html>
<head>
 <title>Device Controller Demo</title>
</head>

<body>

<h1>Device Controller Demo</h1>

<table>
 <tr>
 <td> <img SRC="<!--#echo var="led1_image" -->"> </td>
 <td> <img SRC="<!--#echo var="led2_image" -->"> </td>
 </tr>
 <tr>
 <td>
</td>

 <td>
</td>

 </tr>
</table>

<p>LED 1 is <!--#echo var="led1_state" --> .</p>
<p>LED 2 is <!--#echo var="led2_state" --> .</p>

<p>Click a button to turn an LED on or off.</p>
<p>The Web page will update to show the current states of the
LEDs.</p>

</body>
</html>

Listing 7-1: This Web page contains links to CGI programs that the Rabbit
executes before serving Figure 7-1’s page.

Chapter 7

290

#use "http.lib"

The #ximport directive retrieves a file from the PC being used for project
development, stores the file’s length and contents in the Rabbit’s extended
memory, and associates a symbol with the file’s address in memory. This
application uses one Web page and three image files. You must replace the
file paths with paths that are valid for the files in your development PC.

#ximport "c:/rabbitserver/index.shtml" index_html
#ximport "c:/rabbitserver/ledon.gif" ledon_gif
#ximport "c:/rabbitserver/ledoff.gif" ledoff_gif
#ximport "c:/rabbitserver/button.gif" button_gif

An HttpType structure specifies the handler to use with different file exten-
sions. If the handler is NULL, the server uses the default handler, which sends
the file’s contents unaltered. For the Device Controller application, the Web
page uses the .shtml handler because the page contains SSI directives.
Requests for files with .cgi and .gif extensions use the default handler. The
structure below also specifies the default handler for HTML files.

const HttpType http_types[] =
{
 { ".shtml", "text/html", shtml_handler},
 { ".html", "text/html", NULL},
 { ".cgi", "", NULL},
 { ".gif", "image/gif", NULL}
};

The strings ledon_image and ledoff_image store the names of files that
contain images of lit and unlit LEDs ("ledon.gif" and "ledoff.gif").
The string variables led1_image and led2_image each contain a file name
for the image that matches the corresponding LED’s state. The string vari-
ables led1_state and led2_state hold the text "on" or "off" as appro-
priate, to match the state of an LED.

const char ledon_image[] = "ledon.gif";
const char ledoff_image[] = "ledoff.gif";

char led1_image[15];
char led2_image[15];

char led1_state[4];
char led2_state[4];

Serving Web Pages that Respond to User Input

 291

Controlling the LEDs

Each LED has a function (led1toggle() and led2toggle()) that exe-
cutes when the server receives a message indicating that a user has clicked
that LED’s button on the Web page. When called, the function receives a
pointer to an HttpState structure that contains information about the cur-
rent connection and request.

This is the code for LED1:

int led1toggle(HttpState* state)
{
 if (BitRdPortI(PGDR, 6) == 0) {
 // When the bit is 0, the LED is on, so turn it off.
 BitWrPortI(PGDR, &PGDRShadow, 1, 6);
 strcpy(led1_image,ledoff_image);
 strcpy(led1_state, "off");
 }
 else {
 // When the bit is 1, the LED is off, so turn it on.
 BitWrPortI(PGDR, &PGDRShadow, 0, 6);
 strcpy(led1_image,ledon_image);
 strcpy(led1_state, "on");
 }

 cgi_redirectto(state,REDIRECTTO);
 return 0;
}

Writing zero to a port bit that controls an LED turns the LED on, and writ-
ing 1 to the port bit turns the LED off. The routine for LED1 reads the
state of Port G, bit 6 and toggles the bit to the opposite state.

The BitRdPortI() function returns the value of a bit on one of the Rab-
bit’s internal ports. PGDR is Port G’s data register, and 6 is the number of
the bit to read.

The BitWrPortI() function writes a value to a bit in one of the Rabbit’s
internal ports. Again, PGDR is Port G’s data register. The second parameter,
PGDRShadow, is a variable that functions as a shadow register that contains
the last value written to the register. Shadow registers are useful for storing
the most recently written values to write-only registers. Program code can
then learn a bit’s value by reading the bit in the corresponding Shadow regis-

Chapter 7

292

ter. Port G has read/write access, but the BitWrPortI() function requires a
shadow register. The function’s third and fourth parameters are the value to
write (1) and the bit number to write to (6).

After writing to the port bit, the routine stores a file name ("ledon.gif" or
"ledoff.gif", as appropriate) in led1_image, and stores "on" or "off"
as appropriate in led1_state.

The call to the cgi_redirectto() function tells the server to return an
HTTP response containing a response code that advises the client to request
the URL stored in REDIRECTTO. In this application, the REDIRECTTO URL
is the same index.shtml page the browser displayed when the user clicked a
button. The newly retrieved page will contain updated images and text that
reflect the current values of the LEDs. The statement return 0 must follow
the call to cgi_redirectto().

The routine for LED2 is the same as the routine for LED1, except that it
references LED2’s port bit and variables:

int led2toggle(HttpState* state)
{
 if (BitRdPortI(PGDR, 7) == 0) {
 // When the bit is 0, the LED is on, so turn it off.
 BitWrPortI(PGDR, &PGDRShadow, 1, 7);
 strcpy(led2_image,ledoff_image);
 strcpy(led2_state, "off");
 }
 else {
 // When the bit is 1, the LED is off, so turn it on.
 BitWrPortI(PGDR, &PGDRShadow, 0, 7);
 strcpy(led2_image,ledon_image);
 strcpy(led2_state, "on");
 }

 cgi_redirectto(state,REDIRECTTO);
 return 0;
}

Specifying What the Web Server Can Access

As in Chapter 6’s example, an HttpSpec structure contains information
about the files, variables, and functions the Web server can access. The Web
page and three image files each have an HTTPSPEC_FILE entry in the struc-

Serving Web Pages that Respond to User Input

 293

ture. When a browser requests the file index.shtml or the server’s default file
("/"), the server serves the Web page stored at index_html. The four string
variables that hold file names and LED state information each have an
HTTPSPEC_VARIABLE entry. Two HTTPSPEC_FUNCTION entries associate the
names of the CGI programs (/led1toggle.cgi and /led2toggle.cgi)
with pointers to the functions led1toggle and led2toggle.

const HttpSpec http_flashspec[] =
{
 { HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
 { HTTPSPEC_FILE, "/index.shtml", index_html, NULL, 0,
 NULL, NULL},
 { HTTPSPEC_FILE, "/ledon.gif", ledon_gif, NULL, 0,
 NULL, NULL},
 { HTTPSPEC_FILE, "/ledoff.gif", ledoff_gif, NULL, 0,
 NULL, NULL},
 { HTTPSPEC_FILE, "/button.gif", button_gif, NULL, 0,
 NULL, NULL},

 { HTTPSPEC_VARIABLE, "led1_image", 0, led1_image,
 PTR16, "%s", NULL},
 { HTTPSPEC_VARIABLE, "led2_image", 0, led2_image,
 PTR16, "%s", NULL},
 { HTTPSPEC_VARIABLE, "led1_state", 0, led1_state,
 PTR16, "%s", NULL},
 { HTTPSPEC_VARIABLE, "led2_state", 0, led2_state,
 PTR16, "%s", NULL},

 { HTTPSPEC_FUNCTION, "/led1toggle.cgi", 0, led1toggle,
 0, NULL, NULL},
 { HTTPSPEC_FUNCTION, "/led2toggle.cgi", 0, led2toggle,
 0, NULL, NULL},
};

The main() Function

The program’s main() function begins by writing to Port G’s Data Direc-
tion Register (PGDDR) to configure bits 6 and 7 as outputs. Writing 1 to a
bit in the register configures the corresponding port bit as an output. The
program then reads the bits and stores the appropriate file names and text to
use on the Web page to reflect the LEDs’ states.

main()
{

Chapter 7

294

 WrPortI(PGDDR, NULL, 0xC0);

 if (BitRdPortI(PGDR, 6) == 0) {
 strcpy(led1_image,ledon_image);
 strcpy(led1_state, "on");
 } else {
 strcpy(led1_image,ledoff_image);
 strcpy(led1_state, "off");
 }

 if (BitRdPortI(PGDR, 7) == 0) {
 strcpy(led2_image,ledon_image);
 strcpy(led2_state, "on");
 } else {
 strcpy(led2_image,ledoff_image);
 strcpy(led2_state, "off");
 }

Before performing any network communications, the program must initial-
ize the TCP/IP stack and Web server. As in Chapter 6’s Rabbit example,
calling tcp_reserveport() can improve the Web server’s performance.

 sock_init();
 http_init();
 tcp_reserveport(80);

The main program loop has just one task, calling http_handler(). In a
real-world application, the main program loop would perform other tasks as
well.

 while (1) {
 http_handler();
 // Code to perform other tasks can be placed here.
 }
} // end main

Using the Device Controller

When the RCM3200 module runs this program, any computer that can
access the module over the network can request the Web page and view and
control the LEDs. Clicking a button on the Web page causes the browser to
send an HTTP request containing the name of a CGI function. The Rabbit
executes the named function and returns a response code that advises the

Serving Web Pages that Respond to User Input

 295

browser to refresh the page. In a similar way, you can enable users to control
other processes on an RCM3200 or similar module via a Web page.

TINI Device Controller
To serve Figure 7-1’s Device Controller Web page, a TINI can use Java serv-
lets. Servlets are components that can place real-time data on a Web page
and can receive and respond to user input, as well as performing just about
any task that an ordinary program might do. A Web server that runs servlet
code must have a servlet container, also called a servlet engine, which adds
support for servlets to the Web server.

The servlet examples in this book are written for use with the Tynamo Web
server, an HTTP server and servlet container from Shawn Silverman
(tynamo.qindesign.com). Tynamo is free for development and educational
use. Use in commercial products requires a license.

Another option for servlets on a TINI is Smart Software Consulting’s
TiniHttpServer (www.smartsc.com). TiniHttpServer is offered at no cost
under the GNU General Public License. The source code is available.

For the latest information on licensing terms for both products, see their
Web sites. The Web sites also have complete documentation, including links
to the necessary files to download and instructions for building the servers
and deploying them on a TINI module and other Java platforms.

The capabilities of any servlet engine will comply with the Java Servlet Spec-
ification, but the implementation details can vary with different products.

The Web Page

Listing 7-2 is the HTML source code for Figure 7-1’s Web page when it has
been served by a TINI using servlets. The Web page’s HTML code isn’t
stored in a separate file. Instead, the servlet generates the page on request.

The HTML code is much the same as in Listing 7-1’s code for the Rabbit,
with differences only in how the dynamic data is handled.

Chapter 7

296

<html>
<head>
 <title>Device Controller </title>
</head>

<body>
<h1> Device Controller Demo</h1>

<table>
<tr>
 <td></td>
 <td></td>
</tr>

<tr>
 <td>

 </td>
 <td>

 </td>
</tr>

</table>

<p>LED 1 is on.</p>
<p>LED 2 is off.</p>
<p>Click a button to turn an LED on or off.</p>
<p>The Web page will update to show the current states of the
LEDs.</p>

</body>

</html>

Listing 7-2: When a browser requests Figure 7-1’s Web page from a TINI
module running the Tynamo Web server and the DeviceController servlet code
in this chapter, the server inserts the file names and text descriptions to match
the LEDs’ states

Serving Web Pages that Respond to User Input

 297

The hyperlinks for the buttons each contain a string that names the servlet
being requested. This Java statement sends the text required to place the
image button.gif on a page and make it a hyperlink:

out.print("<p>

 "</p>);

In the hyperlink, /servlet/DeviceController matches a mapping in a
configuration file for the Web server. The mapping tells the server to run the
DeviceController servlet. Following the servlet mapping is a question
mark and a query string (button1) that identifies the button that was
clicked.

The server inserts the img tags ("ledon.gif", "ledoff.gif") and the text
descriptions of the LEDs (LED 1 is on., LED 2 is off.) in the page
each time the page is served. The images and text match the current states of
the LEDs.

LED1 is D1 on the DSTINIm400 module and is controlled by Port 5, bit 2
on the DS80C400 microcontroller. Figure 7-2 shows the interface. A logic
low on the port bit sinks current to turn the LED on, and a logic high cuts
off the current and turns the LED off. The 1-kilohm pull-up resistor limits

Figure 7-2: A port bit on the DSTINIm400 module controls an LED. A logic low
turns the LED on.

Chapter 7

298

current through the LED. LED2 is an optional LED that can interface in
the same way to Port 5, bit 3 on the ’80C400.

(The DS-TINI-1 module includes an LED controlled by Port 3, bit 5 on
the DS80C390 microcontroller. This interface is the reverse of the
’80C400’s circuit: a logic high turns the LED on, and a logic low turns it
off.)

The Servlet

The Device Controller servlet is a Java class with methods that serve Figure
7-1’s page and respond when users click the buttons on the page.

The class imports java.io classes to enable reading inputs and writing to
outputs. Two additional packages support servlets. The javax.servlet
package includes the Servlet interface and the abstract class Generic-
Servlet, which implements the Servlet interface. The javax.serv-
let.http package contains the abstract class HttpServlet, which adds
support for HTTP and Web applications. The TINI-specific class
com.dalsemi.system.BitPort enables accessing the port bits that con-
trol the TINI’s LEDs.

The DeviceController class extends the HttpServlet class of the
javax.servlet.http package.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.dalsemi.system.BitPort;

public class DeviceController
 extends HttpServlet
{

Two BitPort objects, led1 and led2, correspond to port bits on the
’80C400 microcontroller The BitPort class’s readLatch method returns
the last value written to a port bit, which in turn indicates the state of the
LED controlled by the bit. (To read a port bit configured as an input, use
the read() method.)

 BitPort led1 = new BitPort(BitPort.Port5Bit2);
 BitPort led2 = new BitPort(BitPort.Port5Bit3);

Serving Web Pages that Respond to User Input

 299

Performing Tasks on Startup

The GenericServlet class includes an init() method that enables a serv-
let to perform tasks on startup. The init() method is called once, when
the servlet starts, and is optional. In this example, init() sets the LEDs’
port bits to turn the LEDs off.

 public void init() throws ServletException {
 led1.set();
 led2.set();
 } // end init()

Serving GET Requests

A received HTTP GET request causes the DeviceController class’s
doGet() method to be called. The DeviceController class overrides
HttpServlet’s doGet() method with a method that serves the Device
Controller Web page to the client. The doGet() method has two parame-
ters: request is an HttpServletRequest object that contains the client’s
request, and response is an HttpServletResponse object that contains
response information for the client.

A ServletException occurs if the server can’t handle the GET request for
some reason. An IOException occurs if there is an input or output error
when the servlet is handling the GET request. The doGet() method throws
ServletExceptions and IOExceptions.

 public void doGet
 (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

The getQueryString() method of the HttpServletRequest object
returns a string received from the client in the GET request. In this applica-
tion, the query string is the text button1 or button2 that appears after the
question mark in a button’s hyperlink.

 String query = request.getQueryString();

If the query string equals "button1", indicating that Button 1 was clicked,
the program calls the toggle() method to change the state of led1. The
method returns true if the toggled LED is on and false if the LED is off.

Chapter 7

300

If the query string doesn’t contain "button1", the program uses the Bit-
Port class’s readLatch() method to find out the last value written to
led1’s port bit. If the last value written was zero, the LED is on and ledOn
is set to true. If the last value written was 1, the LED is off and ledOn is set
to false.

In the same way, depending on the contents of the query string, the pro-
gram toggles or just reads the state of led2.

 boolean led1On;
 if ("button1".equals(query)) {
 System.out.println("Button 1 was clicked");
 led1On = toggle(led1);
 } else {
 led1On = (led1.readLatch() == 0);
 }

 boolean led2On;
 if ("button2".equals(query)) {
 System.out.println("Button 2 was clicked");
 led2On = toggle(led2);
 } else {
 led2On = (led2.readLatch() == 0);
 }

If there is no query string, such as when a user requests the page for the first
time, the code reads the states of both LEDs and toggles neither.

Two String variables (led1Image, led2Image) hold the names of image
files that correspond to the LEDs’ states. Two additional String variables
(led1State, led2State) hold the text "on" or "off" as appropriate for
the LEDs. After reading the LEDs’ states, the program sets the image and
text strings to match the LEDs.

 String led1Image;
 String led1State;
 if (led1On) {
 led1Image= "/ledon.gif";
 led1State = "on";
 }
 else {
 led1Image = "/ledoff.gif";
 led1State = "off";
 }

Serving Web Pages that Respond to User Input

 301

 String led2Image;
 String led2State;
 if (led2On) {
 led2Image= "/ledon.gif";
 led2State = "on";
 }
 else {
 led2Image = "/ledoff.gif";
 led2State = "off";
 }

A call to the class’s sendWebPage() method sends an updated Web page to
the client. The method uses the HttpServlet response object and the four
variables that indicate the LEDs’ states and image files.

 sendWebPage (response, led1Image, led2Image,
 led1State, led2State);
 } // end doGet()

Toggling an LED

The toggle() method toggles the state of a BitPort object. The method
returns a boolean value that indicates if the corresponding LED is on. The
value is false if the last value written to the LED was 1 and the LED is off,
and true if the last value written was zero and the LED is on.

 private static boolean toggle(BitPort bitPort) {
 if (bitPort.readLatch() == 0) {
 bitPort.set();
 return false;
 } else {
 bitPort.clear();
 return true;
 }
 } // end toggle()

Sending the Web Page

The sendWebPage() method writes a Web page to an output stream. The
method uses the HttpServlet response object and four variables that the
method inserts in the Web page. The method throws IOExceptions.

 private void sendWebPage (HttpServletResponse response,
 String led1Image,
 String led2Image,
 String led1State,

Chapter 7

302

 String led2State)
 throws IOException {

The setContentType() method of the HttpServletResponse object
sets the Content-Type field in the response’s HTML header:

 response.setContentType("text/html");

The getOutputStream() method of the HttpServletResponse object
returns an instance of a ServletOutputStream object. The ServletOut-
putStream class extends the java.io.OutputStream class and provides
an output stream for sending data to a client. You could use a PrintWriter
object instead, but a ServletOutputStream object requires less processing,
and thus is quicker. A series of out.print statements write the Web page’s
contents to the output stream. The servlet container automatically creates
and writes an HTTP header that precedes the page’s contents.

 ServletOutputStream out = response.getOutputStream();
 out.print("<html>"
 + "<head>"
 + "<title>Device Controller</title>"
 + "</head>"
 + "<body>"
 + "<h1>Device Controller</h1>");

Much of the HTML code is similar to the source code for the Web page in
the Rabbit Device Controller example. The differences are in how the server
gets the values of real-time variables and in how the server responds to but-
ton clicks.

The LED and button images are in a table to ensure they line up on the
page. The variables led1Image and led2Image each contain a filename,
"ledon.gif" or "ledoff.gif", as appropriate, to indicate the images the
browser should display for the LEDs.

Some of the text in the HTML code includes quotation marks. Because
quotation marks are also the delimiters for a string, any quotation mark
within a string must be preceded by a back slash (\). For example, many
HTML tags include attributes enclosed by quotation marks, such as

Serving Web Pages that Respond to User Input

 303

To write this line to the output stream, each quotation mark in the string
must be preceded by a back slash: out.print("<img

src=\"ledon.gif\">");

The back slash indicates that the quotation mark is part of the string and
not the string’s delimiter.

 out.print("<table>"
 + "<tr>"
 + "<td>"
 + "<img src=\"");
 out.print(led1Image);
 out.print("\">"
 + "</td>"
 + "<td>"
 + "<img src=\"");
 out.print(led2Image);
 out.print("\">"
 + "</td>"
 + "</tr>");

In the hyperlinks for the button images, /servlet/DeviceController is
a mapping that tells the server, via a configuration file, that DeviceCon-
troller is a servlet. When a user clicks a button on the Web page, the
browser returns either button1 or button2 to the TINI in the request’s
query string.

 out.print("<tr><td>");
 out.print("<a href=
 \"/servlet/DeviceController?button1\">
 ");
 out.print("</td><td>");
 out.print("<a href=
 \"/servlet/DeviceController?button2\">
 ");
 out.print("</td></tr></table>");

In addition to the LEDs’ images, two lines of text indicate the states of the
LEDs. The variables led1State and led2State each hold the text "on" or
"off" as appropriate, and out.print statements write the text to the out-
put stream.

 out.print("<p>LED 1 is ");
 out.print (led1State);
 out.print(".</p>"

Chapter 7

304

 + "<p>"
 + "LED 2 is ");
 out.print (led2State);
 out.print(".</p>"
 + "<p>"
 + "Click a button to turn an LED on or off."
 + "<p>"
 + "The Web page will update to show the
 current states of the LEDs."
 + "</p>"
 + "</body>"
 + "</html>");

The servlet container flushes and closes the output stream when the request
has been serviced, so there’s no need to do so in the servlet.

Loading and Running Servlets

In writing an ordinary Java program for use on a TINI, you compile the
program to one or more .class files and use the TINIConvertor utility to
convert the file(s) to a .tini file. You can then use an FTP program to copy
the file to the TINI. Or you can use the build utility Ant to automate the
process of creating and copying the files. When the file or files have been
transferred to the TINI, you can run the program from a Telnet session by
typing java, followed by the name of the .tini file.

With servlets, things are more complicated. The Tynamo Web server func-
tions both as a Web server, which responds to HTTP requests, and as a serv-
let container, which contains and manages the servlets. A variety of
configuration files contain information about the servlets and Web server.
The Ant utility is the recommended way to compile, convert, and deploy
the Web server and servlets on the TINI.

With Ant, you can compile your .java files and create the file webserver.tini,
which contains both the object code required to respond to HTTP requests
and the code for your servlets.

If you use another servlet container, such as TiniHttpServer, the details will
vary, but the information about how to use Ant, TiniAnt, and the configura-
tion files are likely to be similar.

Serving Web Pages that Respond to User Input

 305

Required Components

These are the required components for creating and running servlets on a
TINI with the Tynamo Web server:

• A TINI module, to run the Tynamo Web server.

• The Java SDK, for program development, from java.sun.com.

• The Tynamo Web server, to support servlets, from tynamo.qindesign.com.

• Ant, a Java-based build tool, from jakarta.apache.org.

• TiniAnt, a plug-in that integrates TINI’s build process into Ant, from
tiniant.sourceforge.net.

• The NetComponents.jar library, with FTP and Telnet support for deploy-
ing the Web server on the TINI. The NetComponents distribution is
available from www.savarese.org.

The Tynamo Web server uses four configuration files. You must edit at least
three of these to provide information that is specific to your development
PC and your servlets. The build.properties file contains the locations and
names of various files and directories on the development computer. The
servlets.props file contains information about the servlets. The deploy.proper-
ties file contains your TINI’s IP address and other information that the Ant
utility uses in copying the Web server’s files to the TINI. The webserver.props
file enables you to specify a default directory, home page, and other proper-
ties of your server. (Many servers can use the default webserver.props file,
with no editing.) You can edit these files in any text editor.

Below is more information about each of these files, followed by instruc-
tions for how to use the files in compiling, converting, and deploying files to
the Web server.

Creating a build.properties File

The build.properties file is in the home directory of the Tynamo distribution.
The file contains the locations and names of the TINI’s home directory and
the servlets on the development computer. The Ant utility uses the informa-
tion in the file in building the TINI’s executable file. Listing 7-3 is an exam-
ple build.properties file.

Chapter 7

306

For each of the following items, edit the existing text by inserting the infor-
mation that applies to your system and servlets. Use forward slashes as sepa-
rators even if the operating system of your developement computer (such as
Windows) uses back slashes. Ant converts to back slashes as needed.

Set tini.path equal to the location of the TINI SDK on the development
computer:

tini.path=/tini1.11

Set src.paths equal to the location of the source code for your servlets on
the development computer:

src.paths=/myservlets

If there are multiple locations, separate the paths with colons or semicolons:

src.paths=/myservlets;/test

Set src.files equal to the names of your servlets, separating multiple
names with commas or spaces:

src.files=DeviceController.java, FormResponse.java

Set reflect.classes equal to the full class name of each servlet, separat-
ing multiple names with commas or spaces:

reflect.classes=DeviceController, FormResponse

Three dependency entries can contain information about the classes that a
servlet uses, or depends on. Not every servlet requires dependency informa-
tion.

#example build.properties file
tini.path=C:/tini1.11
src.paths=/myservlets
src.files=DeviceController.java, FormResponse.java
include.servletReloading=false
dependency.files=
dependency.groups=
dependency.classpath=
reflect.classes=DeviceController, FormResponse

Listing 7-3: The build.properties file contains information that Ant uses in
compiling the servlets.

Serving Web Pages that Respond to User Input

 307

A dependency.files entry specifies the name and location of a file that
contains dependency information for one or more servlets. An example
entry is:

dependency.files=examples/servlet_examples_dep.txt

Below is the information provided in the dependency file for Tynamo’s
example servlet RequestInfoServlet:

RequestInfoServlet=
com.qindesign.servlet.example.RequestInfoServlet;
com.qindesign.servlet.example.Common

The RequestInfoServlet entry has two values separated by a semicolon.
The first value is the full name of the servlet’s class. The second value
informs the build process that the servlet depends on the com.qinde-
sign.servlet.example.Common class.

Creating a servlets.props File

The servlets.props file is in the \bin directory of the Tynamo installation and
must contain information required by the servlet container to run your serv-
lets. The file provides information about each servlet supported by the
server. Listing 7-4 is an example servlets.props file for the servlets Device-
Controller and FormResponse.

A servlet name identifies the servlet in the file. The servlet names in the
example are DeviceController and FormResponse. A mapping specifies
how clients can request to run the servlet and has the following format:

servlet_name.mapping=mapping

where servlet_name is a servlet name and mapping is the text that clients can
use to request the servlet from the server.

The following mapping enables clients to request to run the servlet Device-
Controller by typing the TINI’s IP address or domain name followed by
/servlet/DeviceController in a browser’s Address text box:

DeviceController.mapping=/servlet/DeviceController

For example, if the IP address is 192.168.111.9, the user would enter the
following:

Chapter 7

308

http://192.168.111.9/servlet/DeviceController

The servlets.props file must also specify the full class name of the class
that implements the javax.servlet.Servlet interface for each servlet.
The class name is the name of the servlet’s class in the source code, preceded
by its package name, if any. This information uses the following format:

servlet_name.class=class

where servlet_name is the servlet name and class is the class name. In the
example, the class name for the servlet DeviceController is also Device-
Controller. In this case it seems redundant, but other classes might use a
different name for the class name and servlet name.

If the servlet is in a package, the class name must specify the package name
as well, as in this example:

Shutdown.class=com.qindesign.servlet.ShutdownServlet

The optional initParams entry can specify one or more initialization
parameters to use when the servlet starts:

Shutdown.initParams=passwd=shut:down

The optional loadOnStartup entry can specify that the servlet should load
when the server starts, rather than on first use:

Shutdown.loadOnStartup=true

The number sign (#) indicates a comment, which the server ignores:

Shutdown servlet

The example servlets.props file included with the Tynamo Web server has
additional examples.

DeviceController.mapping=/servlet/DeviceController
DeviceController.class=DeviceController

FormResponse.mapping=/servlet/FormResponse
FormResponse.class=FormResponse

Listing 7-4: The servlets.props file contains configuration information for your
servlets.

Serving Web Pages that Respond to User Input

 309

Creating a deploy.properties File

The deploy.properties file simplifies the process of transferring files to a TINI.
Listing 7-5 shows an example.

Four deploy properties contain information about the TINI. The server
property is the TINI’s IP address. The userid and password properties are
the user ID and password required to log onto the TINI’s FTP server. The
rootdir property is the directory the deploy process should use as the root
directory on the TINI when transferring files. The deploy process creates
the directory if it doesn’t exist.

Setting Web Server Properties

The webserver.props file enables you to specify properties of the server. The
default file will work with no changes, but you can edit the entries if you
wish. To use a default directory other than /web/http-root for files on the
server, edit this entry with the desired directory path.

server.rootDir=/web/http-root

To use a default home page other than index.html, edit this entry with the
desired default file’s name:

server.welcomeFile=index.html

The entries in the provided file show additional options you can change.

Running the Web server

When you’ve obtained the necessary components and have written a servlet
such as the DeviceController servlet above, these are the steps required to
use Tynamo to run the servlet on a TINI:

1. Install Ant and TiniAnt on your development PC, following the instruc-
tions provided with each, including setting the recommended environment
variables to identify file locations.

2. As described above, edit build.properties, servlets.props, deploy.properties,
and webserver.props with the appropriate information for your TINI and
servlets.

Chapter 7

310

3. Build webserver.tini with Ant. Open a window with a command prompt.
Under Windows XP, click Start, then Run, and enter cmd in the Open: text
box that appears. Change to Tynamo’s home directory and enter ant. This
runs the file ant.bat included with the Ant distribution. Ant uses the infor-
mation in build.properties and Tynamo’s build.xml file to locate the needed
files, compile, and convert the result to the file webserver.tini. The file con-
tains the executable code for the servlet container and the servlets the Web
server can run.

4. Copy any static HTML files, images, or other files the Web server will
need to access to the appropriate directories under the Tynamo’s home
directory on the development computer. The webserver.props file specifies
the root directory for these files. The default is http-root.

5. From a command prompt in Tynamo’s home directory, enter ant

deploy. This runs ant.bat again, but this time runs the deploy task instead
of the default build task. (Tynamo’s build.xml file specifies the default task.)

The deploy task copies the Web server’s files to the TINI. Using the default
settings, the files copied are the following files under Tynamo’s home direc-
tory:

\bin\webserver.tini (the Web server application)
\bin\WebServer (a script to run the Web server)
\bin\webserver.props (configuration information about the Web server)
\bin\servlets.props (information about the servlets)
\bin\mimeTypes.props (MIME definitions for file types)
\http-root* (all files in this directory)

deploy.server=192.168.111.2
deploy.userid=root
deploy.password=tini
deploy.rootdir=/web

Listing 7-5: The deploy.properties file contains information specific to the TINI
that will run the Web server.

Serving Web Pages that Respond to User Input

 311

6. To run the Web server, in a Telnet session, at a command prompt in the
root directory, enter the following command:

source web/bin/WebServer

This executes the WebServer script, which contains the following text:

java /web/bin/webserver.tini /web/bin/webserver.props &

On running the Web server, the Telnet window displays something like the
text in Figure 7-3. And the TINI is ready to run the servlets named in
servlets.props.

Serving Other Files

The default configuration of the Tynamo Web server treats any request not
handled by a servlet as a request for a file under the /web/http-root directory.
Examples of such requests include requests for image files or static HTML
files. If the request doesn’t specify a valid servlet or file name, the default
configuration serves the page index.html if available in the specified direc-
tory.

The default home page can contain a hyperlink to the Device Controller
servlet:

Device Controller

Figure 7-3: You can run the Tynamo server from a Telnet session with the TINI.

Chapter 7

312

Save the Web page as index.html and copy the file to the TINI’s
/web/http-root directory. Then users who enter the TINI’s IP address alone
or the IP address followed by /index.html will see the Web page with the link
to the servlet.

To redirect the user’s browser to request the servlet automatically from the
home page, include this META tag in the Web page’s HEAD section:

<meta http-equiv="Refresh" content="0;
 url=/servlet/DeviceController">

In Depth:
Using CGI and Servlets

The examples above showed how Web pages can use CGI functions and
servlets to enable users to click hyperlinks to run program code on the server
and view the result in a Web page. This section has more detail about CGI
and servlets, including additional examples that show how embedded sys-
tems can use forms to accept text input from users.

CGI for Embedded Systems
The common gateway interface (CGI) defines a protocol that enables users
to click a link or button on a Web page to request a server to execute pro-
gram code. A CGI program can perform just about any function on the
server. After running the requested program, the server returns a result in an
HTTP response.

Support for CGI programming has been around since the earliest days of
the Web. The first Web server to implement CGI was the NCSA HTTPD
server from the National Center for Supercomputing Applications. NCSA
publishes a CGI Specification at http://hoohoo.ncsa.uiuc.edu/cgi/. Many
embedded systems that support networking also include support for CGI.
The Dynamic C library http.lib is an example.

CGI programming doesn’t require a particular programming language. On
large servers, the Perl language has long been popular. Perl programs are typ-
ically scripts that require an interpreter to execute, and large servers gener-

Serving Web Pages that Respond to User Input

 313

ally have a Perl interpreter. A small embedded system isn’t likely to have a
Perl interpreter, so CGI programs for embedded systems are often written in
C.

A Web server that runs CGI programs must be able to do the following:

• Identify a received HTTP request that references a CGI program to exe-
cute.

• Locate and run the requested CGI program.

• Return an HTTP response.

The response the server returns after running a CGI program often includes
an HTTP redirection code that advises the browser to request a page con-
taining an acknowledgment or a refreshed page with updated data.

Some CGI programs process data submitted by a client on a form. When a
client submits a request that contains form data, the server must be able to
pass the data to the CGI program that will use the data.

For security reasons, a server may provide a way to enable, disable, or limit
support for CGI.

CGI Requests

A client can request a server to run a CGI program by sending an HTTP
request containing the name of a CGI program on the server. In the Device
Controller example in this chapter, the buttons on the Web page are hyper-
links that each contain a program name:

Clicking the image of the button causes the browser to request the server to
run the program (or function) led1toggle.cgi.

Text hyperlinks are another way to request a server to run CGI programs.
The following HTML code causes the text “Turn off LED1” to appear on a
Web page as a hyperlink:

 Turn off LED1>

Clicking the hyperlink causes the browser to request the server to run the
program led1off.cgi.

Chapter 7

314

Servers also use CGI programming in accepting input from a Web page con-
taining a form. Clicking a form’s Submit button causes the form’s data to be
sent to the server in an HTTP GET or POST request. The server can be
configured to respond to the request by running CGI code that processes
the form data and returns a response.

Identifying and Running CGI Programs

CGI code may be an interpreted script, a compiled program, or a function
within a program.

Large servers often store all CGI programs in a directory such as cgi-bin. Or
a server may identify CGI programs by a .cgi extension in the program
name. In Dynamic C, CGI programs can be functions declared as
HTTPSPEC_FUNCTION items in an HttpSpec structure. Or an application
can use the form-handling capabilities in Dynamic C’s server utility library
(zserver.lib) to process form data.

Returning a Response

A CGI program must return an HTTP response to the request that caused
the server to run the program. Like other HTTP responses, the response
includes a status line, response headers, and if appropriate, a message body.
The response can provide requested information or acknowledge that sub-
mitted data was received. To enable a user to view the result of executing a
CGI program, a response may contain a redirection code that advises the
user’s browser to refresh the current Web page.

In this chapter’s Device Controller application for the Rabbit module, after
a user clicks a button on the Web page, the browser requests a refreshed
copy of the page so the user can see the LEDs’ current states. To cause the
browser to request to refresh the page, the server returns a response contain-
ing the following code in the response line, with the desired file name and
path in a Location header:

Http 1.0 302 Found
Location: http://192.168.111.7/index.shtml

On receiving this response code in reply to a GET request, the browser sends
a new GET request for the specified file. In case a browser doesn’t support

Serving Web Pages that Respond to User Input

 315

automatic redirection, many responses include a message body that displays
a hyperlink to the file in the Location field and text that advises the user to
click the link to view the file.

Servlets for Embedded Systems
For displaying real-time data and responding to user input, Java program-
mers can use servlets, as introduced in the TINI example in this chapter. A
servlet is a Java class that adds capabilities to a server.

A Web server that runs servlet code must have a container, or servlet engine,
to manage the servlets. The container provides network services for sending
and receiving requests, decodes requests, and formats responses. For security,
a container can also place restrictions on the execution of servlets.

A browser that requests a Web page served by a servlet doesn’t require sup-
port for Java or servlets. When a browser sends a URL to a server, the
browser doesn’t have to know or care whether the URL identifies a static
Web page or a servlet. The text that the browser sends to the server identifies
the servlet. In the DeviceController example, the images of buttons are
hyperlinks that users can click to request the server to run the servlet
DeviceController:

A mapping in the server’s configuration file identifies /servlet/Device-
Controller as a servlet, and button1 following the question mark is the
query string that the browser returns to the server along with the requested
URL.

On receiving a request for a servlet, the server runs the servlet code. The
servlet can generate dynamic data, insert the data into a Web page, and write
the Web page’s contents to an output stream for sending to the client. A
servlet can also do just about anything an ordinary Java program can do,
such as making calculations, performing logical operations, and reading and
writing to files or ports.

The document that defines servlets and their behavior is the Java Servlet
Specification, available from java.sun.com.

Chapter 7

316

On receiving an HTTP request containing the name of a servlet to run, the
server passes the request to the servlet container. The container examines the
request to determine which servlet to call. The container then calls the serv-
let, passing two objects: a request object with information about the request
and a response object that will contain information about the response. A
response object may supply an OutputStream or PrintWriter object that
the servlet uses to respond to the request. The servlet runs, performing its
programmed function and returning a response to the request.

The HTTPServer class in the TINI’s com.dalsemi.tininet.http pack-
age supports static Web pages only. The Tynamo Web server and TiniHt-
tpServer are more powerful alternatives that add support for servlets.

Receiving Form Data
In addition to providing information on Web pages, servers can receive
information from users by hosting Web pages that contain forms. A form
can contain text boxes or other elements where users can enter data or make
selections. When the user clicks a form’s Submit button, the browser sends
the form data to the server in an HTTP GET or POST request. The server
can use the data in any way. An embedded system might use a form to
request configuration data, collect information about users, or request pass-
words. The server may return a page that acknowledges receiving the data or
a response that redirects the user’s browser to another page.

As Chapter 6 showed, the HTML standard includes tags and attributes for
creating forms on a Web page. The examples below show how to host forms
on Rabbit and TINI modules.

Figure 7-4 shows a form that enables the user to enter maximum and mini-
mum temperatures for use in an alarm system. When a user clicks Submit,
the browser sends the temperature values to the server in an HTTP request.
On receiving the values, the server either returns the Web page in Figure 7-5
or a response that instructs the user’s browser to request the page.

Serving Web Pages that Respond to User Input

 317

A server could use the temperature values to configure a temperature alarm
system. In a similar way, you can use forms in just about any application
where the server wants to collect information via a Web page.

Listing 7-6 is the HTML code for the form. Every form has three elements:
form tags that define the start and end of the form, one or more controls
that enable users to provide data to the server, and a Submit button that
enables users to send the data to the server. In addition, most forms include
descriptive text and a Reset button that returns the inputs to the values they
contained when the page was served (before the user made any changes).

In Listing 7-6, the opening tag of the form is:

<form action="/" method="post">

The FORM tag’s action attribute names the URL where the browser will
submit the form data when a user clicks the Submit button. In this exam-
ple, the URL is "/", which refers to the server’s default file. The method
attribute’s "post" value may be lower case in the HTML file. When the

Figure 7-4: This Web page contains a form that enables users to enter values
for use by the server.

Chapter 7

318

browser sends a request, POST is upper case as required by the HTTP stan-
dard.

The method attribute specifies whether the browser will use an HTML
GET or POST request to send form data to the server. In a GET request,
the browser appends the data to the URL being requested. In a POST
request, the browser places the data in the body of the request.

The form’s closing tag is </form>. Everything between the form’s opening
and closing tags is part of the form.

Listing 7-6’s form uses an HTML table to format the information in the
form. Each variable has a name, value, and description in the table. The
names and descriptions are plain text, except for the degree symbol. The
HTML code ° causes the browser to display a degree symbol.

The input tags determine the contents of the cells in the Value column.
This example input tag has four attributes:

<input type="text" name="maximum_temperature"

Figure 7-5: A server might return a page like this to acknowledge receiving form
data from a user.

Serving Web Pages that Respond to User Input

 319

<html>
<head><title>Temperature Alarm Setup</title></head>

<body>
<h1>Temperature Alarm Setup</h1>

<form action="/" method="POST">

<table border>

<tr>
<td>Name</td>
<td>Value</td>
<td>Description</td>
</tr>

<tr>
<td>Minimum Temperature</td>
<td><input type="text" name="minimum_temperature"
 value="72" maxlength="3"></td>
<td>Range 0 - 212 °F</td>
</tr>

<tr>
<td>Maximum Temperature</td>
<td><input type="text" name="maximum_temperature"
 value="78" maxlength="3"></td>
<td>Range 0 - 212 °F</td>
</tr>

</table>

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</p>

</form>
</body>
</html>

Listing 7-6: HTML source code for Figure 7-4‘s form.

Chapter 7

320

 maxlength="3" value="80">

The value of the type attribute is set to "text" to specify that the input is a
single-line text box or other input control for entering text. The name
attribute identifies the control on the form. The maxlength attribute is the
maximum number of characters a user may enter in the text box. The value
attribute is the default data the text box displays.

In addition to text, a variety of other controls use input tags, including
check boxes, radio buttons, passwords, Submit buttons, and Reset buttons.
Every input tag must have a value attribute. All types except text (the
default) must have a type attribute, and most tags require a name attribute.
The other attributes needed vary with the input type and the application’s
requirements.

Two additional input tags in Listing 7-6 add Submit and Reset buttons to
the form. For each, the type attribute specifies the button type and a value
attribute specifies the text to display on the button. When a form has just
one Submit button and one Reset button, the type attribute identifies the
buttons and there’s no need for name attributes to further identify the but-
tons.

Forms on a Rabbit

The RCM3200 RabbitCore module can host Figure 7-4’s form. In the
Device Controller example earlier in this chapter, an #ximport directive
loads a file containing the Web page’s HTML source code into the Rabbit-
Core’s memory. For forms, instead of providing an HTML file containing
the form to serve, you can use functions in Dynamic C’s server utility
library, zserver.lib, to create a form from information provided in the appli-
cation.

An advantage of using zserver.lib to create forms is its automatic handling of
errors in user input according to limits you specify. A limitation of using
zserver.lib is the need to use its 3-column table format, unless you modify
the library’s display handler.

The following code shows how an RCM3200 module can serve the Temper-
ature Alarm form and response.

Serving Web Pages that Respond to User Input

 321

Initial Defines and Declarations

Again, much of the configuration code is similar to the code in previous
examples. TCPCONFIG specifies a macro that sets a network configuration
stored in the file tcp_config.lib. Your program must specify an appropriate
macro for your system and network configuration, as described in Chapter
5.

#define TCPCONFIG 1

Because of the need for forms support, this program uses the ServerSpec
structure defined in zserver.lib, which includes support for basic forms,
instead of the HttpSpec structure in http.lib. When HttpSpec is unneeded,
the HTTP_NO_FLASHSPEC directive saves code space.

#define HTTP_NO_FLASHSPEC

The FORM_ERROR_BUF directive is required for forms. The directive reserves
memory for a buffer used in form processing and must be large enough to
hold the name, value, and four additional bytes for each form variable.

#define FORM_ERROR_BUF 256

On receiving form data, the server redirects the client’s browser to the URL
specified in FORM_RESPONSE_REDIRECTTO. In this application, the URL
points to a file that acknowledges receiving the form data. REDIRECTHOST is
the _PRIMARY_STATIC_IP address defined in tcp_config.lib.

#define REDIRECTHOST _PRIMARY_STATIC_IP
#define FORM_RESPONSE_REDIRECTTO
 "http://" REDIRECTHOST "/formresponse.shtml"

All C functions not declared as root go to extended memory. The dcrtcp.lib
library supports IP and TCP. The http.lib library supports HTTP functions.

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

The #ximport directive loads a file from the development PC into the Rab-
bit’s Flash memory. The directive associates the symbol
form_response_shtml with the file’s address in memory.

#ximport "c:/rabbitserver/formresponse.shtml"
 form_response_shtml

Chapter 7

322

The HttpType structure specifies the handler to use with different file
extensions. Web pages that contain SSI directives have the extension .shtml
and use Dynamic C’s SHTML handler. Plain HTML pages use the default
HTML handler.

const HttpType http_types[] =
{
 { ".html", "text/html", NULL},
 { ".shtml", "text/html", shtml_handler}
};

Responding to Submitted Data

On receiving form data, the form_response() function executes and calls
the cgi_redirectto() function. This function causes the server to return
an HTTP response that redirects the client’s browser to the Web page
named in FORM_RESPONSE_REDIRECTTO.

int form_response(HttpState* state)
{
 cgi_redirectto(state, FORM_RESPONSE_REDIRECTTO);
 return 0;
} // end form_response()

The main() Function

The program’s main() function creates the form, initializes the TCP/IP
stack and Web server, and enters an endless loop that processes received
HTTP requests and can perform any other tasks the system is responsible
for.

The zserver.lib library includes a ServerSpec structure that has information
about the files, functions, and variables that the server can access. The
library contains functions that access elements in the structure. One of the
items in the ServerSpec structure is an array of FormVar structures that
hold information about a form’s variables. This application has two form
variables, so it defines an array (setup) that contains two FormVar struc-
tures. The form, function, and var variables are values returned by
ServerSpec functions.

void main(void) {
 FormVar setup[2];

Serving Web Pages that Respond to User Input

 323

 int form;
 int function;
 int var;

The maximum_temperature and minimum_temperature variables are the
form variables that users can change.

 int maximum_temperature;
 int minimum_temperature;
 maximum_temperature = 212;
 minimum_temperature = 0;

Creating the Form

A series of ServerSpec functions sets up the form and configures the server
to serve the form and the page sent in response to receiving form data.

Adding a Web page. The sspec_addxmemfile() function names the
Web page that users will see after submitting form data:

sspec_addxmemfile ("formresponse.shtml",
 form_response_shtml, SERVER_HTTP);

The function has three parameters:

"formresponse.shtml" is the name of the file containing the Web
page on the server.

form_response_shtml is the location where the #ximport directive
stored the file.

SERVER_HTTP indicates that the file is valid for Dynamic C’s HTTP
server. (Dynamic C also supports SERVER_FTP).

The function returns the location of the file in the ServerSpec structure or
-1 on failure.

Adding a Form. The sspec_addform() function adds a form to the
ServerSpec structure:

 form =
 sspec_addform ("setup.html", setup, 2, SERVER_HTTP);

The function has four parameters:

"setup.html" is the name of the form’s Web page on the server.

setup is the FormVar array defined earlier.

Chapter 7

324

2 is the number of entries in the setup array.

SERVER_HTTP indicates that the form is valid for Dynamic C’s HTTP
server.

The value returned, form, is the form’s location in the ServerSpec array.

The sspec_setformtitle() function sets the title the form will display:

 sspec_setformtitle(form, "Temperature Alarm Setup");

The function has two parameters:

form is the value returned by sspec_addform().

"Temperature Alarm Setup" is the title.

The function returns zero on success or -1 on failure.

Adding a Function. The sspec_addfunction() function adds a function
to the list of objects the Web server recognizes.

 function = sspec_addfunction("form_response",
 form_response, SERVER_HTTP);

The function has three parameters:

"form_response" is the function’s name.

form_response is a pointer to the function.

SERVER_HTTP indicates that the function is valid for Dynamic C’s
HTTP server.

The function value returned is the function’s location in the ServerSpec
structure or -1 on failure.

Adding a Function to Call on Receiving Form Data. The
sspec_setformepilog() function names the function that the server will
call after receiving form data from a client:

 sspec_setformepilog(form, function);

The function has two parameters:

form is the value returned by sspec_addform().

function is the value returned by sspec_addfunction().

The function returns zero on success or -1 on failure.

Serving Web Pages that Respond to User Input

 325

Specifying Form Variables

Another series of ServerSpec functions adds variables to the form and sets a
name, description, number of characters, and range for each.

Adding a Variable. The sspec_addvariable() function adds a variable
to the FormVar array in the ServerSpec structure. This is the function call
for the first variable:

 var = sspec_addvariable("maximum_temperature",
 &maximum_temperature, INT16, "%d", SERVER_HTTP);

The function has five parameters:

"maximum_temperature" is the variable’s name on the form.

&maximum_temperature is a pointer to the variable.

INT16 is the variable type.

"%d" specifies the output format on the form as a decimal number.

SERVER_HTTP indicates that the variable is valid for Dynamic C’s HTTP
server.

The value returned, val, is the function’s location in the ServerSpec struc-
ture or -1 on failure.

The sspec_addfv() function adds a variable in a FormVar array to the
form.

 var = sspec_addfv(form, var);

The function has two parameters:

form is the value returned by sspec_addform().

var is the value returned by sspec_addvariable().

The value returned, var, is the index of the added form variable or -1 on
failure.

Associating a Name with a Variable. The sspec_setfvname() function
sets the name the form will display for the variable.

 sspec_setfvname(form, var, "Maximum Temperature");

The function has three parameters:

form is the value returned by sspec_addform().

Chapter 7

326

var is the value returned by sspec_addfv().

"Maximum Temperature" is the name to display on the form.

The function returns zero on success or -1 on failure.

Adding a Variable Description. The sspec_setfvdesc() function sets a
variable description that the form will display:

 sspec_setfvdesc(form, var, "Range 0 - 212 °F");

The function has three parameters:

form is the value returned by sspec_addform().

var is the value returned by sspec_addfv().

"Range 0 - 212 °F" is the text the form will display in the
Description column for the "Maximum Temperature" variable.

The function returns zero on success or -1 on failure.

Setting a Variable’s Maximum Length. The sspec_setfvlen() function
sets the maximum number of characters the form will accept and display for
a variable’s value:

 sspec_setfvlen(form, var, 3);

The function has three parameters:

form is the value returned by sspec_addform().

var is the value returned by sspec_addfv().

3 is the maximum number of characters.

The function returns zero on success or -1 on failure.

Setting a Variable’s Range. The sspec_setfvrange() function sets a
variable’s minimum and maximum allowed values.

 sspec_setfvrange(form, var, 0, 212);

The function has four parameters:

form is the value returned by sspec_addform().

var is the value returned by sspec_addfv().

0 is the minimum value the server will accept for the variable.

212 is the maximum value the server will accept for the variable.

Serving Web Pages that Respond to User Input

 327

If a user enters a value outside the specified range, the server adds an error
message to the form and redirects the user’s browser to the form so the user
can change the value. The function returns zero on success or -1 on failure.

Adding More Variables. In the same way, calls to these functions add the
minimum_temperature value to the form:

 var = sspec_addvariable("minimum_temperature",
 &minimum_temperature, INT16, "%d", SERVER_HTTP);
 var = sspec_addfv(form, var);
 sspec_setfvname(form, var, "Minimum Temperature");
 sspec_setfvdesc(form, var, "Range 0 - 212 °F");
 sspec_setfvlen(form, var, 3);
 sspec_setfvrange(form, var, 0, 212);

Accessing the Form

The sspec_aliasspec() function enables requesting the form in alternate
ways. In this example, in addition to requesting the file setup.html by its file
name, users can request the file "index.html" or the default Web page at
the IP address ("/").

 sspec_aliasspec(form, "index.html");
 sspec_aliasspec(form, "/");

Starting the Server

When the form has been created, the program is ready to initialize the
TCP/IP stack and the Web server. As in the previous Rabbit HTTP exam-
ple, calling tcp_reserveport() gives improved performance.

 sock_init();
 http_init();
 tcp_reserveport(80);

The program’s main loop calls http_handler() and can perform any other
tasks the RCM3200 is responsible for. For example, for this application, the
main loop might monitor temperatures and generate an alarm when a tem-
perature is outside the minimum and maximum range specified on the
form.

 while (1) {
 http_handler();
 }

Chapter 7

328

} // end main()

Listing 7-7 is the HTML source code for the formresponse.shtml file in Fig-
ure 7-5. The page acknowledges receiving the form data and uses SSI #echo
directives to display the temperature values received from the client.

When the RCM3200 module is running this program, users can access the
form by entering the module’s IP address or domain name in a browser’s
Address text box. Clicking the form’s Submit button sends the temperature
values to the RSM3200, which reads the values and either stores the values
and returns an acknowledgment or returns an error message if either of the
values is outside the accepted range.

Forms on a TINI

A TINI can serve Figure 7-4’s form using the Tynamo Web server or
another Web server with support for servlets. Listing 7-8 is the source code
for the form when served by a TINI running a servlet. The only difference
between the HTML code in Listing 7-6 and the form served by the TINI is
the form tag’s action attribute. For the TINI, form tag is:

<form method=POST action="/servlet/FormResponse">

When a user clicks the Submit button, the browser submits the form data to
the servlet FormResponse on the server. The server’s configuration file iden-
tifies /servlet/FormResponse as a servlet.

Requesting the Servlet

When the Tynamo Web server and FormResponse servlet are loaded into a
TINI, users can request the TINI to run the servlet by entering the TINI’s
IP address or domain name followed by /servlet/ and the servlet’s name:

http://192.168.111.9/servlet/FormResponse

Or the TINI can contain a static Web page with a link to the servlet:

View the Form

The FormResponse servlet serves the form with the current values of
minimum_temperature and maximum_temperature inserted. On receiv-

Serving Web Pages that Respond to User Input

 329

ing new values from a client, the servlet returns a Web page that acknowl-
edges receiving the values.

On receiving an HTTP GET request for the FormResponse servlet, the
servlet returns a Web page that displays the current minimum and maxi-
mum temperature settings and enables users to change the values by typing
new ones and clicking Submit. On receiving form data in a POST request,
the servlet checks for valid data. If the submitted data is valid, the servlet
returns a page that acknowledges receiving the data. If the data isn’t valid,
the servlet returns the form with an error message and a request to retry.

The Servlet

As in the previous TINI example, to support servlets and HTTP, the pro-
gram imports javax.servlet and javax.servlet.http classes for serv-

<html>
<head>
 <title>Form Data Received</title>
</head>

<body>
 <h1>Form Data Received</h1>

 <p> The server has received the following settings: </p>
 <p> Maximum temperature: <!--#echo
 var="maximum_temperature"--></p>
 <p> Minimum temperature: <!--#echo
 var="minimum_temperature"--></p>
 <P>Return to the temperature alarm setup
 page</p>
</body>

</html>

Listing 7-7: HTML code for Figure 7-5‘s Web page when served by a Rabbit
module. SSI directives retrieve the temperature values received when the client
submitted the form.

Chapter 7

330

let support and java.io classes to support input and output functions. The
FormResponse servlet extends the HttpServlet class.

<html>
<head>
 <title>Temperature Alarm Setup</title>
</head>

<body>
 <h1>Temperature Alarm Setup</h1>

 <form method=POST action="/servlet/FormResponse">

 <table border>

 <tr>
 <td>Name</td>
 <td>Value</td>
 <td>Description</td>
 </tr>

 <tr>
 <td> Maximum Temperature </td>
 <td><input type="text" name="maximum_temperature"
 value=80></td>
 <td>Range 0 - 212 °F</td>
 </tr>

 <tr>
 <td> Minimum Temperature </td>
 <td><input type="text" name="minimum_temperature"
 value=60></td>
 <td>Range 0 - 212 °F</td>
 </tr>

 </table>

 <p></p>
 <p><input type="submit" value="Submit">
 <input type="reset" Value="Reset"></p>

 </form>
 </body>
 </html>

Listing 7-8: HTML source code for Figure 7-4’s Web page using a servlet.

Serving Web Pages that Respond to User Input

 331

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FormResponse extends HttpServlet {

A DELAY_TIME constant determines how often the servlet executes a peri-
odic task. The servlet uses the default values DEFAULT_MIN_TEMPERATURE
and DEFAULT_MAX_TEMPERATURE if values previously set by the user aren’t
available. The setup.bin file stores the setup parameters from the setupPa-
rameters array. The timer thread enables the TINI to perform a task at
timed intervals.

 private static final int DELAY_TIME = 6000;
 private static final int DEFAULT_MIN_TEMPERATURE = 0;
 private static final int DEFAULT_MAX_TEMPERATURE = 212;
 private static final String SETUP_FILE = "setup.bin";
 private int[] setupParameters;
 private volatile Thread timer;

The PeriodicTask class implements the Runnable interface so that the
code that performs the periodic task can execute in its own thread. The
class’s run() method executes when FormResponse’s init() method calls
the start() method of the timer thread.

In this example, the run() method contains an endless loop that waits for
the number of milliseconds in DELAY_TIME to elapse, then writes the mini-
mum and maximum settings to the console. In a real-world application, the
run() method might perform tasks such as communicating with a tempera-
ture controller or monitor that uses the minimum and maximum values.

 private class PeriodicTask implements Runnable {

 public void run() {
 while (timer != null) {
 try {
 Thread.sleep(DELAY_TIME);
 System.out.print ("Minimum temperature = ");
 System.out.println (setupParameters[0]);

 System.out.print("Maximum temperature = ";
 System.out.println(setupParameters[1]);

 } catch (InterruptedException ex) {

Chapter 7

332

 }
 }// end while (timer != null)
 } // end run()
 } // end PeriodicTask

The server calls destroy() after it takes a servlet out of service and all
pending requests have either completed or timed out. A servlet should pro-
vide a destroy() method if it has acquired resources that won’t otherwise
be destroyed. In this example, the destroy() method stops the timer
thread started by PeriodicTask’s run() method. Another reason to use a
destroy() method is to save any data that the init() method might need
next time and will otherwise be destroyed.

A call to super.destroy() calls the destroy() method of Generic-
Servlet and writes a message to the log. The destroy() method then sets
the timer thread to null and calls the thread’s interrupt method. This
generates an InterruptedException in PeriodicTask’s run method and
terminates the thread.

 public void destroy() {
 super.destroy();
 timer = null;
 timer.interrupt();
 } // end destroy()

Servicing GET and POST Requests

The doGet() method calls the sendSetupPage() method, which returns a
Web page with a form that enables users to view the current minimum and
maximum temperature values and submit new ones. The parameters
required for sendSetupPage are an HttpServletResponse object and
either an error message to display on the page or null if there is no error
message.

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 sendSetupPage (response, null);
 } // end doGet()

The doPost() method receives and responds to data submitted on the
form. On receiving values, the method checks to see if the values are within

Serving Web Pages that Respond to User Input

 333

the specified ranges. If they are, the servlet returns a page that acknowledges
receiving the data and stores the values in a file. If the values aren’t accept-
able, the servlet returns the form with an error message.

String variables hold the temperature values submitted on the form.
Accepted values are stored as integers in the setupParameters array.

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 String minimumTemperature = null;
 String maximumTemperature= null;
 String errorMessage = null;
 int intMinimumTemperature = setupParameters[0];
 int intMaximumTemperature = setupParameters[1];

Calls to the getParameter() method of the HttpServletRequest object
return the temperature values the client submitted on the form. The Inte-
ger.parseInt method converts the strings to integers. The server uses the
integer values in determining whether the values are in the allowed ranges.
An application that uses the values is also likely to want them in numeric
form, rather than as strings.

For each value, the code tests to find out if the value is within the specified
range. If not, an errorMessage string describes the problem.

 minimumTemperature =
 request.getParameter("minimum_temperature");
 if (minimumTemperature != null) {
 try {
 intMinimumTemperature =
 Integer.parseInt(minimumTemperature);
 if (intMinimumTemperature > 212 ||
 intMinimumTemperature < 0) {
 errorMessage = "Please try again: minimum
 temperature must be between 0 and 212.";
 }
 } catch (NumberFormatException e) {
 log("Invalid minimum temperature: ");
 log("minimumTemperature);

 }
 } // end if (minimumTemperature != null)

Chapter 7

334

 maximumTemperature=
 request.getParameter("maximum_temperature");
 if (maximumTemperature!= null) {
 try {
 intMaximumTemperature =
 Integer.parseInt(maximumTemperature);
 if (intMaximumTemperature > 212 ||
 intMaximumTemperature < 0) {
 errorMessage = "Please try again: maximum
 temperature must be between 0 and 212.";
 }
 } catch (NumberFormatException e) {
 log("Invalid max. temperature: ";
 log(maximumTemperature);

 }
 } // end if (maximumTemperature!= null)

The code also checks to be sure that the minimum value submitted is less
than the maximum. If not, an errorMessage string describes the problem.

 if (intMinimumTemperature >= intMaximumTemperature) {
 errorMessage = "Please try again: the minimum
 temperature must be less than the maximum
 temperature.";
 } // end if

The method then writes a Web page to the client. If the submitted values are
acceptable, they’re stored in the setupParameters array and a call to the
sendAcknowledgementPage() method returns a Web page that acknowl-
edges receiving the values. If the submitted values aren’t acceptable, they
aren’t saved and a call to sendSetupPage() returns the form with the error
message to advise the client to retry.

 if (errorMessage == null) {
 setupParameters[0] = intMinimumTemperature;
 setupParameters[1] = intMaximumTemperature;
 log("New minimum temperature: " +
 minimumTemperature);
 log("New maximum temperature: " +
 maximumTemperature);
 sendAcknowledgementPage(response);
 } else {
 sendSetupPage(response, errorMessage);
 }
 } // end if (errorMessage == null)

Serving Web Pages that Respond to User Input

 335

Performing Tasks on Startup

The GenericServlet class includes an init() method that enables a serv-
let to perform tasks on startup. The init() method is called once, when
the servlet starts, and is optional. In this example, init() calls the get-
SetupParameters() method to initialize the setup parameters and creates
a thread that performs a periodic task.

 public void init() throws ServletException {
 setupParameters = new int[2];
 getSetupParameters();
 timer = new Thread(new PeriodicTask());
 timer.start();
 System.out.println("The timer has started.");
 log("Timer started");
 } // end init()

Saving and Retrieving Data in a File

The getSetupParameters() method retrieves the setup parameters from
a file, if the file is available. Otherwise, the method uses the default values. A
FileInputStream object attempts to read the parameters from the file
whose name is stored in SETUP_FILE. The parameters are the first two val-
ues in the file.

 private void getSetupParameters() {
 try {
 DataInputStream in = new DataInputStream
 (new FileInputStream(SETUP_FILE));
 int intMinimumTemperature = in.readInt();
 int intMaximumTemperature = in.readInt();
 setupParameters[0] = intMinimumTemperature;
 setupParameters[1] = intMaximumTemperature;
 try {
 in.close();
 } catch (IOException ex) {
 }
 } catch (FileNotFoundException ex) {
 log("Setup file not found");
 setupParameters[0] = DEFAULT_MIN_TEMPERATURE;
 setupParameters[1] = DEFAULT_MAX_TEMPERATURE;
 } catch (IOException ex) {
 log("Error reading from setup file", ex);
 setupParameters[0] = DEFAULT_MIN_TEMPERATURE;
 setupParameters[1] = DEFAULT_MAX_TEMPERATURE;

Chapter 7

336

 }
 } // end getSetupParameters

The saveSetupParameters() method saves new setup parameters in the
file whose name is stored in SETUP_FILE. A FileOutputStream object
writes the values to the file. The parameters are the first two bytes in the file.

 private void saveSetupParameters() {
 try {
 DataOutputStream out = new DataOutputStream
 (new FileOutputStream(SETUP_FILE));
 out.writeInt(setupParameters[0]);
 out.writeInt(setupParameters[1]);
 out.flush();
 out.close();
 } catch (IOException ex) {
 log("Error writing to setup file", ex);
 }
 } // end saveSetupParameters

Acknowledging Received Form Data

The sendAcknowledgementPage() method sends a Web page to the client
to acknowledge receiving submitted form data. The doPost method calls
sendAcknowledgementPage() if the submitted data was accepted. A call
to saveSetupParameters() stores the new data in a file. The setCon-
tentType() method of the HttpServletResponse object sets the Con-
tent-Type field of the HTML header in the returned. page. A
ServletOutputStream object writes the Web page to the client.

The Web page displays the received values and also includes a hyperlink that
enables the user to return to the setup page.

As in the previous TINI example, all quotation marks (") in the HTML
code of the page being sent must be preceded by a back slash (\).

 private void sendAcknowledgementPage
 (HttpServletResponse response)
 throws IOException
 {
 saveSetupParameters();
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 out.print ("<html>"
 + "<head>"

Serving Web Pages that Respond to User Input

 337

 + "<title> Form Data Received </title>"
 + "</head>"
 + "<body>"
 + "<h1> Form Data Received </h1>"
 + "<p>"
 + "The server has received the following
 settings:"
 + "</p>"
 + "<p>"
 + "Minimum temperature: ");
 out.print (setupParameters[0]);
 out.print ("</p>"
 + "<p> Maximum temperature: ");
 out.print (setupParameters[1]);
 out.print ("</p>"
 + "<p>"
 + ""
 + "Return to the temperature alarm setup page"
 + "</p>"
 + "</body>"
 + "</html>");
 } // end sendAcknowledgementPage

Sending the Form

The sendSetupPage() method sends a Web page containing a form where
the client can enter minimum and maximum temperature settings. The
method uses the HttpServeletResponse object and the error message, if
any, generated on examining previously submitted values.

The method calls getSetupParameters() to retrieve the values to display
on the form. The setContentType() method of the HttpServletRe-
sponse object sets the Content-Type field of the HTML header in the
returned page. A ServletOutputStream object writes the Web page to the
client.

 private void sendSetupPage(HttpServletResponse
 response, String errorMessage)
 throws IOException
 {
 getSetupParameters();
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 out.print ("<html>"
 + "<head>"

Chapter 7

338

 + "<title>Temperature Alarm Setup</title>"
 + "</head>"
 + "<body>"
 + "<h1>Temperature Alarm Setup</h1>"
 + "<form method=POST action=
 \"/servlet/FormResponse\">"
 + "<table border>"
 + "<tr>"
 + "<td>Name</td>"
 + "<td>Value</td>"
 + "<td>Description</td>"
 + "</tr>"
 + "<tr>"
 + "<td> Minimum Temperature </td>"
 + "<td><input type=\"text\" name=
 \"minimum_temperature\" maxlength=3 value=");
 out.print (setupParameters[0]);
 out.print ("></td>"
 + "<td>Range 0 - 212 °F</td>"
 + "</tr>"
 + "<tr>"
 + "<td> Maximum Temperature </td>"
 + "<td><input type=\"text\" name=
 \"maximum_temperature\" maxlength=3 value=");
 out.print (setupParameters[1]);
 out.print ("></td>"
 + "<td>Range 0 - 212 °F</td>"
 + "</tr>"
 + "</table>");
 if (errorMessage != null)
 {
 out.print ("<p>" + errorMessage + "</p><p>");
 }
 out.print ("<input type=\"submit\"
 value=\"Submit\">"
 + "<input type=\"reset\" Value=\"Reset\">"
 + "</form></body>"
 + "</html>");
 } // end sendSetupPage()

} // end FormResponse

E-mail for Embedded Systems

 339

E-mail’s primary use, of course, is to enable humans to send and receive
messages over a network. But many embedded systems can make good use
of e-mail as well. E-mail can be a convenient way for an embedded system to
exchange information with humans or even communicate with other
embedded systems with no human intervention at all.

For example, a security system can be programmed to send a message when
an alarm condition occurs. Or a data logger might send a message once a
day with the logger’s readings for the previous 24 hours. In the other direc-
tion, an embedded system might receive e-mail containing new configura-
tion settings or other commands, requests, or data.

E-mail has a couple of advantages over other methods of communication.
Recipients can retrieve and read their messages whenever they want. And if
the information isn’t time-critical, the sender might find it easier or more
efficient to place the information in an e-mail and send it off when conve-

Serving Web Pages with Dynamic Data

 243

Chapter 5 showed how to use TCP and UDP to exchange messages contain-
ing application-specific data. Many standard application-level protocols also
use TCP or UDP when exchanging information. One of the most popular
of these is the hypertext transfer protocol (HTTP), which enables a com-
puter to serve Web pages on request.

Because embedded systems almost always serve Web pages that contain
dynamic, or real-time, information, this chapter begins with Rabbit and
TINI examples that serve Web pages with dynamic content. Following the
examples is an introduction to using HTTP and other protocols in serving
Web pages.

Chapter 6

244

Quick Start:
Two Approaches

A Web browser such as Microsoft’s Internet Explorer is a client application
that uses HTTP to request Web pages from servers on the Internet or in a
local network. The servers don’t have to be PCs or other large computers.
Even a small embedded system with limited memory can serve a page con-
taining text and simple images, including pages that display real-time data
and accept and act on user input.

A browser provides a user interface for requesting and displaying pages. The
computers that request Web pages typically have full-screen displays, but for
some applications, an embedded system with limited display capabilities can
function as an HTTP client. If the requested pages are very simple, even a
text-only display of a few lines might suffice. Or an embedded system might
receive and process the contents of a Web page without displaying the page
in a browser at all.

This chapter focuses on Web servers. With an Internet connection, a Web
server can serve pages to any browser on the Internet. Or a server may be
programmed to respond to requests only from specific IP addresses. A Web
server in a local network may serve pages to selected computers or to any
computer in the local network.

An embedded system that functions as a Web server generally has all of the
following:

• Non-volatile memory to hold pages to be served.

• Support for TCP and IP. Requests for Web pages and the pages sent in
response travel in the data portion of TCP segments.

• Support for HTTP. The server must be able to understand and respond
to received requests for Web pages. The HTTP standard specifies the for-
mat for the requests and replies.

• A local-network or Internet connection. To serve pages on the Internet,
the Web server must have an Internet connection. Any firewalls must be

Serving Web Pages with Dynamic Data

 245

configured so the system can receive HTTP requests, as described in
Chapter 10.

• One or more pages to serve. The Web pages are files or blocks of text that
use a form of encoding called hypertext markup language (HTML). The
HTML encoding specifies the formatting of text and images on the page,
including text size and fonts and the positioning of text and other ele-
ments on the page. The HTML code may include links to images that
appear on the page, as well as links to other pages or resources. In serving
a Web page with dynamic content, the software must have a way of
inserting the dynamic content as the page is being served.

A variety of protocols and technologies can work along with HTTP and
HTML to enable a server to provide Web pages that contain real-time data
and respond to user input. This chapter includes two approaches to serving
real-time data, and Chapter 7 covers ways that Web servers can respond to
user input.

Serving a Page with Dynamic Data
Many Web pages are static, where the information on the page doesn’t
change unless someone edits the page’s HTML file and uploads the new file
to the server. Static Web pages are useful for presenting product informa-
tion, articles, or other information that remains constant. But most embed-
ded systems have little use for static pages, other than possibly presenting a
home page with links to other pages. An embedded system that functions as
a Web server will almost certainly want to display real-time information
such as sensor readings or other up-to-the-minute information about the
processes or environments the system is controlling or monitoring.

This section shows how the Rabbit and TINI modules introduced in Chap-
ter 3 can serve Web pages that display dynamic data. Dynamic, or real-time,
data includes any data that can change over time and can be different each
time the page is served. An obvious example is a counter that displays the
number of times the page has been accessed. Dynamic data may also include
sensor or switch readings and time and date information. The supporting
code included with the Rabbit and TINI (and additional sources in the case

Chapter 6

246

of Java servlets on the TINI) greatly reduces the amount of the program-
ming required to serve Web pages with dynamic content.

The dynamic data served by the example applications in this chapter con-
sists of a message that displays the amount of time the system or application
has been up and running. Figure 6-1 shows an example page. The embed-
ded system stores the number of days, hours, minutes, and seconds in vari-
ables. When serving the page, the server application inserts the current
values of the variables in the appropriate places in the page. You can use the
same techniques to create Web pages that display the current values of any
variables in a system.

Although the result is the same, the Rabbit and TINI examples use different
approaches to achieve the result. The Rabbit uses Server Side Include direc-
tives that instruct the server to insert the values of variables in the appropri-
ate locations in the file being served. For the TINI, instead of storing the
Web page in a separate file, the application creates the Web page as it’s being

Figure 6-1: Both the Rabbit and TINI can serve pages that include dynamic, or
real-time, data, such as the days, hours, minutes, and seconds displayed in
these pages.

Serving Web Pages with Dynamic Data

 247

sent, using a series of writes to send the page’s contents to a TCP socket and
inserting the values of variables in the designated locations in the page.

Rabbit Real-time Web Page
To serve its Web page, the Rabbit module uses HTTP functions and struc-
tures provided in Dynamic C to serve the Web page’s file on request. The
main program loop updates the time variables once per second.

Page Design

Listing 6-2 is the HTML code for Figure 6-1’s Web page. The page uses
HTML tags to advise the browser how to display the page’s contents. Each
tag consists of text enclosed by angle brackets (<>). The In Depth section of
this chapter has more details about HTML tags and how to use them. For
now, the relevant section of the code is the five lines that each begin with a
paragraph tag (<p>).

A paragraph tag tells the browser to display the information that follows in a
new paragraph. The first paragraph tag causes the browser to display the
text, “This Rabbit program has been running for:”.

Each of the four lines that follow contains a Server Side Include #echo
directive that inserts the value of a variable on the page. A Server Side
Include directive uses the same delimiters as an HTML comment. A com-
ment, which is text that the browser ignores and doesn’t display, is enclosed
by <!-- and -->. On receiving a page that contains an HTML comment,
the browser displays the page the same as if the comment and its delimiters
weren’t present.

Another use for comment delimiters is to enable a page to specify Server
Side Include (SSI) directives that the server executes before serving the page
to the browser. Before serving a page containing an SSI directive, the server
executes the directive and replaces the delimiters and the text between them
with the result of executing the directive. If for some reason the server
doesn’t support the directive, the server ignores the directive and the browser
treats the directive as a comment, which isn’t displayed.

Chapter 6

248

The #echo directive tells the server to replace the comment tag and its con-
tents with the value of the named variable. For example, in the first direc-
tive, the server replaces <!--#echo var="days"--> with the value of the
variable days on the server. If days equals 5, the browser receives and dis-
plays Days: 5.

The In Depth section of this chapter has more details about #echo and
other Server Side Includes.

Serving the Page

The following is the complete application code the Rabbit requires to serve
Figure 6-1’s Web page.

<html>

<head>
<title>Rabbit Real-time Data Demo</title>
</head>

<body>

<h1>Rabbit Real-time Data Demo</h1>

<p>This Rabbit program has been running for:</p>
<p>Days: <!--#echo var="days"--></p>
<p>Hours: <!--#echo var="hours"--></p>
<p>Minutes: <!--#echo var="minutes"--></p>
<p>Seconds: <!--#echo var="seconds"--></p>

</body>

</html>

Listing 6-2: On serving this Web page, the server retrieves the current values of
“days”, “hours”, “minutes”, and “seconds” and inserts them in the page.

Serving Web Pages with Dynamic Data

 249

Initial Defines and Declarations

As in Chapter 5’s examples, TCPCONFIG specifies a macro that sets a network
configuration stored in the file tcp_config.lib. Your program must specify an
appropriate macro for your system and network configuration.

The #memmap directive stores all C functions not declared as root in the
extended memory area.

#define TCPCONFIG 1
#memmap xmem

The application requires the dcrtcp.lib library, which supports TCP/IP and
related protocols, and the http.lib library, which supports HTTP.

The #ximport directive retrieves a file from the PC being used for project
development, stores the file’s length and contents in the Rabbit’s extended
memory, and associates a symbol (index_html in the example below) with
the file’s address in memory. Application code uses the symbol to locate the
file and determine its length. The path in the #ximport statement must
match the location of the file in your development PC. The file index.shtml
contains the text in Listing 6-2.

#use "dcrtcp.lib"
#use "http.lib"
#ximport "c:/rabbitserver/index.shtml" index_html

Four variables store the values for the units of time the Web page will dis-
play.

unsigned long days;
unsigned long hours;
unsigned long minutes;
unsigned long seconds;

Dynamic C’s HTTP server uses two structures, HttpType and HttpSpec,
which contain information relating to the files the Web server serves.

The HttpType structure matches file extensions with file types and specifies
a handler to use with files with the named extensions. When sending a file
in response to an HTTP request, the server must identify the file type in the
Content-Type field of the HTTP header in the response. The file types are
Multipurpose Internet Mail Extension (MIME) types defined in RFC 2045
through RFC 2049.

Chapter 6

250

The server in this application supports a single Web page with the extension
.shtml, which is the conventional extension for files that use SSI directives.
Dynamic C’s handler for pages with SSI directives is shtml_handler.

The HttpType structure below associates .shtml with the MIME type
text/html, which is a text file that uses HTML encoding. Other MIME types
include text/plain, image/jpeg, and audio/mpeg. The server’s default file ("/")
is associated with the first entry in the Http_types structure.

const HttpType http_types[] =
{
 { ".shtml", "text/html", shtml_handler}
};

The HttpSpec structure contains information about the files, variables, and
structures that the Web server can access. Each entry in the structure has
seven parameters, though not all entry types use all of the parameters. The
structure in this example has entries for two files and four variables:

const HttpSpec http_flashspec[] =
{
 { HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
 { HTTPSPEC_FILE, "/index.shtml", index_html, NULL, 0,
 NULL, NULL},

 { HTTPSPEC_VARIABLE, "days", 0, &days, INT32, "%d",
 NULL},
 { HTTPSPEC_VARIABLE, "hours", 0, &hours, INT32, "%d",
 NULL},
 { HTTPSPEC_VARIABLE, "minutes", 0, &minutes, INT32, "%d",
 NULL},
 { HTTPSPEC_VARIABLE, "seconds", 0, &seconds, INT32, "%d",
 NULL},
};

The HTTPSPEC_FILE entries associate the symbols defined in #ximport
statements with the names of files that browsers may request from the server.
These are the parameters for an HTTPSPEC_FILE entry:

Type. Indicates whether the entry is for a file, variable, or function.
HTTPSPEC_FILE specifies that the entry is for a file.

Name. Names a file the Web server can access. This example has one file,
index.shtml, with two entries to enable browsers to request the file by

Serving Web Pages with Dynamic Data

 251

name ("index.shtml") or as the default file to serve when no name is
specified ("/").

Data. Specifies the file’s physical address. Both HTTPSPEC_FILE entries
point to index_html, where the file index.shtml is stored.

Addr. Unused (NULL) for files.

Vartype. Unused (zero) for files.

Format. Unused (NULL) for files.

Realm. Names an HttpRealm structure that identifies a name and pass-
word required to access the file. NULL if unused.

The four HTTP_VARIABLE entries specify variables for the different units of
time. These are the parameters for an HTTP_VARIABLE entry:

Type. Indicates whether the entry is for a file, variable, or function.
HTTPSPEC_VARIABLE specifies that the entry is for a variable.

Name. Provides the name of a variable the Web server can access. The
server’s Web page displays the values of four variables: "days",
"hours", "minutes", and "seconds".

Data. Unused (zero) for variables.

Addr. A short pointer to the variable.

Vartype. The type of variable. The options are 8-bit integer (INT8),
16-bit integer (INT16), 32-bit integer (INT32), 16-bit pointer (PTR16),
and 32-bit floating-point value (FLOAT32). The PTR16 type is useful for
displaying strings.

Format. The printf specifier to use when displaying the variable. The
specifier %d causes the variable to display as a decimal value.

Realm. Identifies a name and password to access the variable. NULL if
unused.

The main() Function

The application’s main() function begins by declaring variables related to
time, calling sock_init() to initialize the TCP/IP stack, and calling
http_init() to initialize the Web server. Calling tcp_reserveport() to
reserve port 80 for the Web server is optional but can improve performance

Chapter 6

252

in two ways: by allowing a socket to be established even if the server can’t
exchange data yet and by shortening the waiting period for closing a socket.

main()
{
 unsigned long start_time;
 unsigned long total_seconds;

 sock_init();
 http_init();
 tcp_reserveport(80);

Dynamic C’s SEC_TIMER variable contains the number of seconds since
midnight on the morning of January 1, 1980. The program uses this value
to measure how long the program has been running, beginning with an ini-
tial count stored in start_time when the program begins running:

 start_time = SEC_TIMER;

The program’s endless while loop has two responsibilities. It calls
http_handler(), which is required periodically to parse received requests
and pass control to shtml_handler() or another handler specified in the
HttpType structure. And a costatement updates the time variables once per
second. (Chapter 3 introduced Dynamic C’s costatements.)

When one second has elapsed, as specified in the waitfor(DelaySec(1))
statement, the program calculates the number of seconds it has been run-
ning by subtracting the start_time value from the current value of
SEC_TIMER.

The program then divides the number of seconds into days, hours, minutes,
and seconds:

To find the number of days, take the integer result of total_seconds
divided by the number of seconds per day (86,400).

To find the number of hours, divide total_seconds by the number of sec-
onds per hour (3600) to get the total number of elapsed hours. Eliminate
any full days with modulus division by the number of hours per day (24).

To find the number of minutes, divide total_seconds by the number of
seconds per minute (60) to get the total number of elapsed minutes. Elimi-

Serving Web Pages with Dynamic Data

 253

nate any full hours with modulus division by the number of minutes per
hour (60).

To find the number of seconds excluding full minutes, use the result of
modulus division of total_seconds by the number of seconds per minute
(60).

 while (1) {
 http_handler();
 costate {
 waitfor(DelaySec(1));
 total_seconds = SEC_TIMER - start_time;
 days = total_seconds /86400;
 hours = (total_seconds /3600) % 24;
 minutes = (total_seconds /60) % 60;
 seconds = total_seconds % 60;
 }

 //Code to perform other tasks can be placed here.

 } // end while(1)

} // end main()

Dynamic C’s HTTP server and SHTML handler code manage the serving
of the Web page, including accepting requests to connect, returning the
requested pages or other HTTP responses as appropriate, and closing con-
nections.

In a real-world application, the main loop would probably perform other
tasks as well. The costatement ensures that other tasks will get their turn
even while waiting for the costatement’s delay timer to time out.

Accessing the Web Server

When the Rabbit is running this code, you can request its Web page by
entering the module’s IP address in a browser’s Address text box:

http://192.168.111.7

or by specifying the IP address and Web page:

http://192.168.111.7/index.shtml

If a domain name is assigned to the IP address, you can use that as well to
request the page. On receiving a request for a page, the Rabbit’s HTTP

Chapter 6

254

server appends an appropriate HTTP header to the top of the requested file
and writes the header and file to the socket that requested it. The SHTML
handler replaces the #echo directives on the page with the current values of
days, hours, minutes and seconds. And the browser that requested the
file displays Figure 6-1’s Web page, which contains the time values.

Refreshing the page in the browser updates the displayed time. To update
the display automatically at intervals, see Refreshing Pages Automatically
later in this chapter.

TINI Real-time Web Page
To use a TINI to serve Web pages with dynamic content, you have a few
choices. Your first thought might be to use the HttpServer class provided
with the TINI’s operating system. However, this built-in Web server can
only serve static pages. Serving dynamic data would require changing the
data in the stored pages whenever the content changes. It’s more efficient to
retrieve the dynamic data on request and insert it in the page as it’s being
served.

Another option is to install and run a server program that supports Java
servlets. A servlet is a software component that can respond to user input
and generate dynamic content for Web pages. In most cases, servlets are the
most effective and time-saving way to enable a Web server to serve dynamic
content. Chapter 7 has more about servlets and how to use them.

A third option is to write a basic Web server that uses the ServerSocket
class and adds dynamic content as it serves its pages. For some low-volume
applications that serve one or a few pages, this kind of home-brewed server
can do the job without adding too much complexity. The example in this
chapter uses the ServerSocket class to create a basic server that serves a
page that displays the amount of time the TINI has been up and running.
Whether or not you decide to use this approach, the code in this application
is interesting as a demonstration of the responsibilities of a Web server.

The Web server responds to requests to connect to a specific port. When a
connected host sends an HTTP request for a supported page, the server cal-

Serving Web Pages with Dynamic Data

 255

culates the values of variables the page contains, writes the contents of the
page to the socket, and closes the socket.

Serving the Page

Figure 6-3 shows the Web page, and Listing 6-4 is the source code for the
page as received by a browser. The program code below is an application
that serves Figure 6-1’s Web page. The code is very similar to the TcpServer
example in Chapter 5, with the addition of code that parses requests and
returns the Web page or error code.

Figure 6-3: This Web page served by a TINI shows how long the TINI has been
running since it booted up.

Chapter 6

256

Imports and Initial Declarations

The code imports java.net classes for networking functions and java.io
classes to support input and output functions. The TINI-specific TINIOS
class includes an uptimeMillis() method the application uses to retrieve
the number of milliseconds the TINI has been up and running.

import java.net.*;
import java.io.*;
import com.dalsemi.system.TINIOS;

The RealTimeWebPage class implements the Runnable interface so that
the code that does the network communications can execute in its own
thread. This leaves the main thread free to do other things.

public class RealTimeWebPage implements Runnable {

 private ServerSocket server;
 private int readTimeout;
 private Thread serverThread;
 private volatile boolean runServer;

<html>

<head>
 <title>Real-time Data Demo </title>
</head>

<body>
 <h1>Real-time Data Demo</h1>

 <p> This TINI has been running for:</p>
 <p>days: 14 </p>
 <p>hours: 8 </p>
 <p>minutes: 59 </p>
 <p>seconds: 3 </p>

</body>

</html>

Listing 6-4: The HTML code for Figure 6-3‘s Web page.

Serving Web Pages with Dynamic Data

 257

The main() Method

The class’s main() method sets localPort to the port number clients will
connect on and sets readTimeout to the number of milliseconds the server
will wait to receive data after a remote host connects. Port 80 is the default
port for HTTP requests. The timeout is expressed in milliseconds. The
RealTimeWebPage object server uses the localPort and readTimeout
values.

 public static void main(String[] args) throws
 IOException {
 int localPort = 80;
 int readTimeout = 5000;

 RealTimeWebPage server =
 new RealTimeWebPage(localPort, readTimeout);

An endless loop executes while waiting for connections. The thread spends
its time sleeping, but could perform other tasks.

 while (true){
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.print("InterruptedException: ");
 System.out.println(e.getMessage());
 }
 } // end while(true)
 } // end main

Initializing the Server

The constructor for the RealTimeWebPage class creates a thread to handle
connection requests. The constructor’s two parameters are the localPort
and readTimeout values set in main().

 public RealTimeWebPage(int localPort, int readTimeout)
 throws IOException {

A ServerSocket object (server) listens for connection requests at
localPort, and on receiving a request, creates a socket object.

 server = new ServerSocket(localPort);
 System.out.println("The server is listening on port "
 + localPort + ".");

Chapter 6

258

The readTimeout variable used by the run() method below is assigned the
value of the readTimeout parameter.

 this.readTimeout = readTimeout;

A separate thread (serverThread) handles connection requests. Setting the
thread’s setDaemon method true creates the thread as a Daemon thread.
The JVM exits when there are no user (non-Daemon) threads running.
Calling the start() method calls the thread’s run() routine.

 serverThread = new Thread(this);
 serverThread.setDaemon(true);
 serverThread.start();
 } // end RealTimeWebPage constructor

Waiting for Connection Requests

Calling serverThread’s start() method causes the thread’s run()
method to execute. The run() method accepts connections and calls a
method to handle each connection.

 public void run() {

An endless loop runs until the runServer variable is false, which occurs on
an exception or if the class’s stop() method sets runServer false.

 runServer = true;
 while (runServer) {
 try {

On accepting a connection request, the server’s accept() method creates a
socket for exchanging data with the connected host. The class’s handleCon-
nection() method manages communications with the socket.

When handleConnection() returns or if there is an exception, the
method closes the socket to release any resources used by it. If there is an
exception when attempting to close the socket, no action needs to be taken.

If an exception occurs while attempting to accept a connection, runServer
is set to false to stop the thread.

 Socket socket = server.accept();

 try {
 handleConnection(socket);
 } catch (IOException e) {

Serving Web Pages with Dynamic Data

 259

 System.out.print("IOException: ");
 System.out.println(e.getMessage());
 } finally {
 try {
 socket.close();
 } catch (IOException e) {
 }
 }
 } catch (IOException e) {
 runServer = false;
 System.out.print("IOException: ");
 System.out.println(e.getMessage());
 }
 } // end while(runServer);
 } // end run

Stopping the Server

The stopServer() method provides a way to stop the server under pro-
gram control by setting runServer false and closing the socket.

 public void stopServer() {
 runServer = false;
 try {
 server.close();
 } catch (IOException e) {
 }
 } // end stopServer

Handling a Connection

The handleConnection() method handles a single connection with a
remote host. The socket timeout is set to the readTimeout value set in the
main() routine.

 private void handleConnection(Socket socket)
 throws IOException {

 System.out.println("Connected to " + socket);
 socket.setSoTimeout(readTimeout);

An InputStream object reads data from the remote host, and a Print-
Stream object writes to the remote host.

 InputStream in = socket.getInputStream();
 PrintStream out =
 new PrintStream(socket.getOutputStream());

Chapter 6

260

The class’s processRequest() method reads the received data and returns
the requested web page or an error page.

When processRequest returns, the Printstream object’s checkError()
method flushes the output stream and returns true if an IOException other
than InterruptedIOException has occurred or if the Printstream object’s
setError() method has been invoked.

 try {
 processRequest(in, out);
 if (out.checkError()) {
 System.out.println("An error occurred while
 sending a web page.");
 } else {
 System.out.println("A response was sent.");
 }
 } catch (InterruptedIOException e) {
 System.out.print("InterruptedIOException: ");
 System.out.println(e.getMessage());
 System.out.print("The connection timed out after
 receiving no data for : ");
 System.out.print(readTimeout / 1000);
 System.out.println(" seconds.");
 }
 } // end handleConnection

Processing a Request

The processRequest() method reads an incoming request and takes
appropriate action.

 private void processRequest(InputStream in,
 PrintStream out) throws IOException
 {

The first step is to read the first four bytes from the PrintStream object.

 int b1 = in.read();
 int b2 = in.read();
 int b3 = in.read();
 int b4 = in.read();

This server supports GET requests only. The HTTP standard requires GET
to be upper case, followed by a space. If the received bytes equal GET, fol-
lowed by a space, the code reads any bytes that follow and stores them in the
StringBuffer object requestBuffer. Reading the input stops on detect-

Serving Web Pages with Dynamic Data

 261

ing a space character, a carriage return (\r), line feed (\n), or an end of file
marker (-1).

 if (('G' == b1) && ('E' == b2) && ('T' == b3) &&
 (' ' == b4)) {
 StringBuffer requestBuffer = new StringBuffer();
 int b = in.read();
 while ((b != -1) && (b != ' ') && (b != '\r') &&
 (b != '\n')) {
 requestBuffer.append((char)b);
 b = in.read();
 }

The StringBuffer object is converted to a String to enable examining its
contents. The server accepts requests for the default page (indicated by “/”)
or for the file /index.html. If there is a match with either of these, the class’s
sendWebPage routine returns the real-time Web page to the requesting
host. If there isn’t a match, a call to the sendErrorPage() method returns
error code 404 and an error message to the requesting host.

 String requestedPage = requestBuffer.toString();
 String defaultPage = "/";
 String indexPage = "/index.html";

 if ((requestedPage.equals(defaultPage)) ||
 (requestedPage.indexOf(indexPage) != -1)) {

 sendWebPage(out);

 } else {
 sendErrorPage(out, "404 Not Found");
 }
If “GET ” wasn’t received, the program checks to see if -1 was returned. If
so, the input stream is closed, so there is nothing to return to the remote
host. For any received data besides “GET ” or -1, a call to the sendEr-
rorPage() method returns error code 501 and the error message “Not
Implemented” to the requesting host.
 } else {
 if ((b1 | b2 | b3 | b4) != -1) {
 sendErrorPage(out, "501 Not Implemented");
 }
 } // end if ('G'==b1||'E'==b2||'T'==b3||' '==b4)
 } // end processRequest

Chapter 6

262

Sending the Web Page

The sendWebPage() method uses the PrintStream object to send the
page containing real-time data.

 private void sendWebPage(PrintStream out)
 throws IOException {

The page begins with the response’s start line and HTML headers. A blank
line (\r\n) after the HTTP header indicates the end of the header. The In
Depth section of this chapter has more about these elements of a response.

 out.print("HTTP/1.0 200 OK\r\n"
 + "Content-Type: text/html\r\n"
 + "\r\n");

A call to the TINIOS class’s uptimeMillis() method returns the number
of milliseconds that have elapsed since the TINI booted up. The page dis-
plays the time in days, hours, minutes, and seconds. To obtain the total
number of seconds, divide uptimeMillis() by 1000.

 long totalSeconds = TINIOS.uptimeMillis()/1000;

 For the number of days, divide by the number of seconds per day:

 long days = totalSeconds / 86400;

For the number of hours, divide by the number of hours per day and use
modulus division to subtract any full days:

 long hours = (totalSeconds /3600) % 24;

For the number of minutes, divide by the number of minutes per day and
use modulus division to subtract any full hours:

 long minutes = (totalSeconds / 60) % 60;

For the number of seconds, use modulus division to subtract any full min-
utes:

 long seconds = totalSeconds % 60;

A series of out.print statements sends the page’s contents to the requesting
host. The page consists of blocks of static text, plus the values of the four
variables inserted at the appropriate locations in the page. The out.print
statements use the + operator to concatenate multiple String constants. This
method keeps the code readable while limiting the number of writes to the

Serving Web Pages with Dynamic Data

 263

PrintStream object. The four variables each have their own out.print
statements, however. This is because concatenating String variables uses
large amounts of memory and processing power in the TINI. String con-
stants don’t have this effect, so concatenating these has no ill effects.

 out.print("<html>"
 + "<head> <title> "
 + "Real-time Data Demo "
 + "</title> </head>"
 + "<body>"
 + "<h1> Real-time Data Demo</h1>"
 + "<p> This TINI has been running for:</p>"
 + "<p> days: ");
 out.print(days);
 out.print(" </p>"
 +"<p>"
 + "hours: ");
 out.print(hours);
 out.print(" </p>"
 + "<p>"
 + "minutes: ");
 out.print(minutes);
 out.print(" </p>"
 + "<p>"
 + "seconds: ");
 out.print(seconds);
 out.print (" </p>"
 + "</body>"
 + "</html>");
 } // end sendWebPage()

Sending an Error Page

If the connected host sends a request for a non-existent page or a request
other than GET, the sendErrorPage method uses a series of out.print
statements to return an error code and a page that displays an error message.
The errorMessage parameter contains the message.

 private void sendErrorPage(PrintStream out,
 String errorMessage) throws IOException
 {

The first text sent is the response’s start line containing the error message
and Content-Type header, followed by the required blank line.

 out.print("HTTP/1.0 ");

Chapter 6

264

 out.print(errorMessage);
 out.print("\r\n"
 + "Content-Type: text/html\r\n"
 + "\r\n");

Another series of out.print statements then sends a Web page that dis-
plays the error message.

 out.print("<html>"
 + "<head><title>");
 out.print(errorMessage);
 out.print("</title></head>"
 + "<body>"
 + "<h1>");
 out.print(errorMessage);
 out.print("</h1>"
 + "</body>"
 + "</html>");
 } // end sendErrorPage
} // end RealTimeWebPage

Running the Server

As in the Rabbit example, you can request the TINI’s Web page by entering
its IP address, IP address and file name, or domain name (if available) in a
browser’s Address text box.

These examples show two different but equally useful ways to serve Web
pages with dynamic data. Chapter 7 expands on this topic by showing two
ways to create Web pages that can respond to user input in addition to dis-
playing dynamic content.

In Depth:
Protocols for Serving Web Pages

The examples in this chapter showed how Web browsers use the hypertext
transfer protocol (HTTP) to request Web pages, and the Web pages them-
selves are encoded using the hypertext markup language (HTML). In addi-
tion, some pages use server-side include (SSI) directives to enable a Web
page to display dynamic data or to add other capabilities not available with
HTML alone.

Serving Web Pages with Dynamic Data

 265

This section has more details about HTTP, HTML, and SSI, with the focus
on how embedded systems can use each in serving pages with dynamic con-
tent.

Using the Hypertext Transfer Protocol
HTTP is one of many standard application-level protocols used in network
communications. Figure 6-5 shows the location of HTTP in a network pro-
tocol stack. Although in theory an HTTP communication can use any reli-
able protocol to reach its destinations on a network, in practice just about all
network stacks pass HTTP communications through TCP and IP layers. An

Figure 6-5: HTTP is an application-level protocol layer communicates with the
Ethernet driver and either a UDP or TCP layer or the application layer.

Chapter 6

266

application that uses HTTP may be a Web browser, which requests Web
pages, or a Web server, which returns Web pages on request.

Anyone who has browsed the Internet has used HTTP. When a browser
sends a request for a Web page onto the network, the request contains a
URL that identifies the location and file name of the page. Chapter 4
described how a network uses the information in the URL to determine
where to route a communication.

On learning the IP address that is hosting the desired Web page, the client
requests to open a TCP connection with the computer at that address. By
default, Web servers serve pages on port 80. If a server is using a different
port number, the URL specifies the number, as explained in Chapter 4.
When the connection has been established, the browser sends a message
containing an HTTP request for a page, and the receiving computer
responds by serving, or sending, the Web page to the requesting computer
over the TCP connection.

A benefit of using Web pages to provide information is that the browser
interface is universal. If you place a Web server on the Internet, anyone with
a browser and an Internet connection can view the server’s pages. Search
engines make it possible for users to find your page even if they don’t know
the IP address or domain name. Web pages don’t have to be on the Internet,
however. You can make a page available only within a local network. If
desired, you can also restrict access by specifying what IP addresses can
access a page or by requiring a password to access the page. In any case, you
don’t have to limit communications to users who are using specific hardware
or software.

As the examples in Chapter 7 show, a server can also receive information
from a browser. A Web page can enable users to send information to the
computer that is serving a page, and the computer can use this information
for any purpose.

HTTP Versions
HTTP version 1.1 is specified in RFC 2616: Hypertext Transfer Protocol --
HTTP/1.1. RFC1945 contains the previous versions, HTTP 1.0 and 0.9.

Serving Web Pages with Dynamic Data

 267

Version 1.1 adds capabilities for conserving network bandwidth, improving
security and error notification, enabling clients to specify preferred lan-
guages or character sets, and allowing more flexible buffering by dividing
data into chunks.

Many embedded systems serve small and simple Web pages. These systems
may gain little benefit in supporting HTTP 1.1 and thus may use 1.0 for
simplicity. HTTP 1.0 servers must also respond appropriately to requests
from 0.9 clients. A browser that supports HTTP 1.1 should have no trouble
communicating with a 1.0 server. Dynamic C’s HTTP server complies with
HTTP 1.0. The Tynamo Web server used in Chapter 7’s TINI examples
implements the required elements in HTTP 1.1.

Probably the main reason an embedded system might use HTTP 1.1 is its
support for persistent connections, which can reduce the number of connec-
tions the server must open and close. With HTTP 1.0, each request requires
a new connection. If a client requests a Web page that contains several links
to images, the request for the page as well as each request for an image
requires its own connection, which in turn requires the server and client to
do the handshaking to open and close each connection. Requesting multiple
pages within a short time also requires a new connection for each page. In
contrast, with HTTP 1.1, the default behavior is persistent connections,
where a connection is left open until either the client or server determines
that the communication is complete or the server closes the connection after
a period of no activity.

The RFC documents spell out the minimum capabilities that an HTTP
server must have. The requirements vary with the HTTP version.

Elements of an HTTP Message
An HTTP message consists of an initial request or status line, optional mes-
sage headers, a blank line, and an optional entity body. (HTTP 0.9 doesn’t
support status lines or headers.)

HTTP supports two types of messages, requests and responses. A client
sends a request to ask a server for a resource, and the server returns a
response containing the resource or status information.

Chapter 6

268

Requests

An HTTP 1.0 request must contain at least two lines: the request line and a
blank line. Some requests also have one or more message headers between
the request line and the blank line, and some requests have an entity body
following the blank line. Here is an example request for the file /index.html
from the host at www.example.com:

GET /index.html HTTP/1.0\r\n
Host: www.example.com\r\n
Accept: */*\r\n
Connection: close\r\n
\r\n

Each line in the request terminates in \r\n, which is a pair of escape
sequences equivalent to a carriage return, or return to the beginning of the
line (\r), followed by a line feed, or drop to a new line immediately below
the current line (\n). Escape sequences provide a way of expressing text for-
matting commands such as these using plain text.

The Request Line

In the following request line:

GET /index.html HTTP/1.0

GET is a method that tells the server that the client is requesting a resource
from the server. The HTTP/1.0 in the request line tells the server that the
highest version of HTTP the client supports is 1.0.

/index.html is the name and path of the resource the client is requesting
from the server. The “/” indicates that the file is in the server’s root direc-
tory. The server’s root directory may be, but doesn’t have to be, the same as
the root directory in the system’s file system. For example, a server may
define its root directory as /http-root. Clients can then access files in
/http-root and its subdirectories (such as /http-root/images), but not files in
other directories under the system’s root directory (such as /private).

A GET request often contains only the file name and path, but an HTTP
1.1 server must also accept a request that contains a full URL such as this:

GET http://www.Lvr.com/index.html HTTP/1.1

Serving Web Pages with Dynamic Data

 269

On receiving a page that includes images, the client typically sends a GET
request for each image.

In addition to the GET method, HTTP 1.0 and later define the HEAD and
POST methods (Table 6-1). HEAD is similar to GET except that the server
returns only the headers it would send in responding to a GET request for
the resource, but not the resource itself. The POST method enables a client
to send data to a resource on the server. The server passes the data received
in the message body to the program, process, or other resource specified in
the request line. The named resource uses the data. A common use for
POST is to enable users to send data entered on a form to a CGI program,
which processes the data and sends a response to the client. (Chapter 7 has
more about CGI.) But a POST request can specify any resource, and the
resource can use the data in any way.

The HTTP 1.1 standard says that all general-purpose servers must at mini-
mum support the GET and HEAD methods.

HTTP 1.1 defines additional methods. One that embedded systems might
use is PUT, which like POST, enables the client to send data to the server.
But instead of naming a resource to receive the message body’s data, a PUT
request names a file or other entity where the server should store the message
body’s data. PUT can be useful for file transfers, where the request line
names the file on the server where the server should store the received data.

HTTP 0.9 supports only the GET method, and the request line includes
only the request and the URL, not the HTTP version. If no HTTP version
is specified, the server should assume it’s version 0.9.

Methods specified in requests must be upper case and followed by a space.

Headers

A message may contain headers between the request line and the blank line.
A header can contain additional information about the request, such as the
number of data bytes in the message body, or more general information,
such as a date. Headers generally have the following format:

header_name: data

Chapter 6

270

The HTTP standard specifies valid header names and what data each header
provides. For example, a client might include an Accept header in a request
for a Web page to inform the server of what types of content the client can
accept. In this example, the client accepts images in .gif and .jpeg formats:

Accept: image/gif, image/jpeg

This means that the client accepts all media types:

Accept: */*

If an HTTP 1.0 request includes data in the message body, the standard
requires a Content-Length header that specifies the number of bytes in the
message body:

Content-Length: 256

HTTP 1.1 also requires requests that include data in the message body to
transmit the content length, but supports additional ways of doing so.

This HTTP 1.1 header:

Connection: close

indicates that the current connection is not persistent and should be closed
after the response is sent. An HTTP 1.1 host that doesn’t support persistent
connections must send this header with every connection. HTTP 1.0 hosts
don’t support persistent connections or this header, which they can ignore if
received.

Table 6-1: Selected HTTP Methods Used in Requests
Method HTTP Version

Introduced In
Description

GET 0.9 Retrieve the specified Web page or other information

HEAD 1.0 Retrieve only the HTTP headers for the specified informa-
tion (not the message body)

POST 1.0 Pass the information in the message body to the resource
identified in the request line

PUT 1.1 Store the information in the message body in the file or
other entity identified in the request line

Serving Web Pages with Dynamic Data

 271

An Authorization header enables a client to send authentication information
such as a user name and password, usually after receiving a response with a
WWW-Authenticate header, as described in Chapter 10.

An HTTP 1.1 request must include a Host header in each request. The
Host header specifies the Internet host name (such as www.Lvr.com) of the
resource being requested. The requirement for a Host header was added in
the hope of conserving IP addresses by making it easier for a single IP
address to support multiple host names. For example, a server might host
both www.example.com and www.Lvr.com at the same IP address. On receiv-
ing a GET request for a default page, the server’s HTTP software can exam-
ine the Host header to find out which host’s page the client is requesting.
Without the Host header, each host name needs its own IP address.

When a request is directed to a port other than the protocol’s default port,
the Host header includes this information as well:

Host: www.Lvr.com:5501

If a server doesn’t have an Internet host name, the request must include a
Host header with an empty value. The HTTP 1.1 standard says that when
an HTTP 1.1 server receives an HTTP 1.1 request that doesn’t include a
Host header, the server must return a status code of 400 (Bad Request).
HTTP 1.0 doesn’t support the Host header, so HTTP 1.0 requests don’t
include it and 1.0 servers can ignore it if received.

The Message Body

The message body contains data the client is providing to the server, such as
the data in a POST or PUT request.

Responses

On receiving an HTTP request, the server returns a response. An HTTP 1.0
response must contain at least two lines: a status line and a blank line to
indicate the end of the headers. Some responses also have one or more mes-
sage headers between the status line and the blank line, and some responses
have a message body following the blank line. HTTP 0.9 servers return the

Chapter 6

272

message body only. Here are the status line and headers sent in reply to a
request for a Web page:

HTTP/1.0 200 OK\r\n
Date: Wed, 09 Jul 2003 12:02:51 GMT\r\n
Content-Type: text/html\r\n
Content-Length: 432\r\n
\r\n

As with requests, each line in the response terminates with a carriage return
and line feed (\r\n).

The Status Line

The status line contains the version of HTTP supported by the server and a
status code and text phrase that give the result of the request. On success,
this is the status line from an HTTP 1.0 server:

HTTP/1.0 200 OK

If the client requests a non-existent file, the response is this:

HTTP/1.0 404 Not Found

The HTTP standard includes a series of status codes and suggested text
phrases to use with them.

Response Headers

A response can use headers to send additional information about a response
or to return general information about the message or connection.

The HTTP 1.0 standard says that the header for a response that contains a
message body should include a Content-Length field that gives the length of
the message body in bytes:

Content-Length: 14092

If the Content-Length field isn’t included, the closing of the connection
determines the length of the message body.

A Date field indicates when the response message was generated (not when
the Web page or other resource was created):

Date: Thu, 08 May 2003 02:45:58 GMT

Serving Web Pages with Dynamic Data

 273

If possible, servers should include a Date field in responses. However, a
server that doesn’t have a reasonably accurate clock must not include a Date
field. The preferred format for the contents of the Date field is the
rfc1123-date format specified in the HTTP 1.1 standard and RFC 1123.
This format uses a fixed-length field for each element in the date. The exam-
ple above uses this format. A computer that receives a response without a
date can add a date to a received response if needed.

When a client requests a password-protected resource, the server can return
a WWW-Authenticate header to request the client to provide a user name,
password, or other authentication information before gaining access to the
resource. Chapter 10 has more about using this header.

The HTTP standards specify the headers supported by each HTTP version.

Message Body

The message body contains any data the response wants to return to the cli-
ent. In a response to a GET request, the message body contains the
requested Web page or other resource.

Using HTTP with Other Client Applications

The main use for HTTP is for communicating with Web browsers, but
other applications can send HTTP requests as well. For example, to retrieve
and store information from a Web page, you could write an application that
requests a page and then searches the response for desired information. A
timer routine can trigger a page retrieval periodically.

Inside the Hypertext Markup Language
Related to HTTP is the Hypertext Markup Language (HTML) used in Web
pages. HTML defines codes that specify how text and images appear on a
Web page.

The HTML specification is available from the World Wide Web Consor-
tium (W3C), at www.w3.org. The members of W3C are organizations inter-
ested in developing common protocols for the World Wide Web. HTML
version 4.01 was released in 1999. Rather than continuing to update the

Chapter 6

274

HTML specification, W3C has switched development to Extensible HTML
(XHTML), a more flexible and powerful language whose roots are in
HTML. For basic Web pages, you don’t need anything beyond what’s avail-
able in HTML. It’s possible to create HTML Web pages that also comply
with the XHTML specification.

Creating HTML Pages

You can create HTML pages using any text editor, including Windows
Notepad. Or you can use a Web-design application such as Macromedia
Inc.’s Dreamweaver, which enables you to create pages visually using tool-
bars and menus to add page elements and formatting. The application
inserts the appropriate HTML code as needed. Some embedded systems
serve very basic pages that require little in the way of fancy formatting or
other features. When this is the case, using a text editor to create the pages is
a reasonable choice. But even if you use a specialized application to create
your pages, a little knowledge of HTML can be useful in ferreting out the
inevitable problems that crop up.

The conventional extension for HTML-encoded files is .html or .htm.

This book provides only the most basic introduction to HTML. For more
detail, refer to the specification or a book such as HTML 4 for the World
Wide Web by Elizabeth Castro (Peachpit Press).

Using Tags

Figure 6-6 shows a basic Web page that displays text and an image. Listing
6-7 is the file that contains the HTML code for the page. HTML tags spec-
ify the text formatting and placement of the image. Each tag contains an
HTML element enclosed in angle brackets (<>). Some elements have one or
more required or optional attributes, which provide additional information
about the element. For example, in this tag:

<input type="submit" value="Submit">

the element is input, and type and value are attributes that name the
input type and the text the input button displays.

Serving Web Pages with Dynamic Data

 275

HTML elements and attributes are case-insensitive. However, elements and
attributes in XHTML files must use lower case, so for XHTML compliance,
use lower case for elements and attributes.

An HTML file can contain blank lines, indenting, and spaces between ele-
ments as needed for readability.

Everything between the HTML start (<html>) and end (</html>) tags is
HTML-encoded text. The HTML start and end tags are optional.

The HTML-encoded text has two sections, the head and body.

The HEAD Section

The HEAD section contains information that doesn’t display on the page.
Everything between the <head> and </head> tags is in the HEAD section.

In the HEAD section, the <title> and </title> tags surround a title that
displays in the browser window’s title bar. The title also appears in the
browser’s Bookmarks or Favorites list if you add the page to the list.

Figure 6-6: This basic Web page displays text and an image.

Chapter 6

276

The BODY Section

Everything between the <body> and </body> tags is in the BODY section,
which contains the material that appears in the browser’s main window.

Ordinary paragraph text on a Web page begins with the paragraph start tag
(<p>). Each paragraph requires a start tag. HTML doesn’t require closing
paragraph tags (</p>), but XHTML does, so include closing tags for
XHTML compliance.

Header tags provide a way to specify that paragraph text should display
more prominently than ordinary text. In Figure 6-6, the word Hello is dis-
played as a level-1 header, enclosed by the tags <h1> and </h1>. A page can
have up to six levels of headers (<h1> through <h6>). The font and size of
the header text vary with the browser and how the user has configured it.

Many tags have required or optional attributes, which provide additional
information to the command. The following tag tells the browser to request
and display the image contained in the file earth.gif:

The img tag includes two attributes. A src attribute specifies the file name
and the path to the file, relative to the Web site’s root directory. For browsers
that don’t display images, the alt attribute specifies the text to display in
place of the image.

<html>

<head>
 <title>Hello World</title>
</head>

<body>
 <h1> Hello </h1>
</body>

</html>

Listing 6-7: The HTML code for Figure 6-6’s Web page.

Serving Web Pages with Dynamic Data

 277

The text that follows an attribute’s equals sign is the attribute’s value. In
HTML, not all values need to be enclosed in quotation marks. XHTML
requires quotation marks for all attribute values, so include the quotation
marks for XHTML compliance.

Hyperlinks

The formatting of text and placement of images are useful in designing
pages, but ultimately what made HTML and the Web popular was clickable
hyperlinks to other pages. Here is an example:

World Wide Web Consortium

The <a> tag specifies that what follows is a link to another page. The text in
quotes that follows the HREF attribute in the tag (http://www.w3.org in
the example) names the URL to link to. The label that follows the <a> tag
(World Wide Web Consortium in the example) is the text users will see on
the Web page. The tag ends the hyperlink.

The formatting that indicates a clickable link varies with the browser and
how it’s configured, but typically, links are underlined. With underlined
links, for the above example, the browser would display only this label:

World Wide Web Consortium

Clicking the label causes the browser to send a request for the default Web
page (since no file name is specified) at the host www.w3.org.

Using Tables to Format Text and Images

A popular way of formatting information on Web pages is with the use of
tables. An HTML table specifies the placement of cells in rows and col-
umns. Each cell can contain page elements such as text, an image, a hyper-
link, or a combination. A table makes it easy to ensure that the page
elements line up as intended on the page.

Figure 6-8 shows a Web page containing basic HTML table, and Listing 6-9
is the page’s HTML code. Everything between these tags:

<table frame="border" border="2" rules="all">
</table>

Chapter 6

278

is part of the table. In the table tag, the frame="border" attribute speci-
fies that the table will display a border around its perimeter. The bor-
der="2" attribute specifies a border width of 2 pixels. The rules="all"
attribute specifies that the rows and columns will display rules, or lines that
delineate the rows and columns in the table.

Everything between <tr> and </tr> is in a table row. Everything between
<td> and </td> is data that appears in a table cell in a row. Figure 6-8’s
table has three rows, with two cells in each row.

The HTML specification has more about tables and the options for format-
ting them.

Refreshing a Page Automatically

One limitation of Web servers is that the server won’t send a page unless a
client requests it. For example, a server may provide a Web page with cur-
rent weather information. After a client has requested the page, the page dis-

Figure 6-8: HTML tables provide a way of formatting information on a Web
page.

Serving Web Pages with Dynamic Data

 279

played in the browser doesn’t update automatically if the conditions change.
If a browser wants to continuously display the current conditions, it must
periodically request a new, refreshed page.

You can request the latest version of a page by clicking the Refresh icon
available on most browsers. It’s also possible to add code that will cause a
browser to refresh the page periodically without user intervention. Placing
the following line of HTML code in a Web page’s HEAD section will cause
the browser to send a request for the page every 300 seconds:

<HTML>

<head> <title> Basic HTML Table </title> </head>

<body>

<h1> Basic HTML Table </h1>

<table frame="border" border="2" rules="all">

<tr>
<td> Parameter </td>
<td> Value </td>
</tr>

<tr>
<td> Minimum Temperature </td>
<td> 0 </td>
</tr>

<tr>
<td> Maximum Temperature </td>
<td> 212 </td>
</tr>

</table>

</body>

</html>

Listing 6-9: HTML code for ‘s Web page, which displays a table.

Chapter 6

280

<meta http-equiv="Refresh" Content="300">

The Content attribute specifies the number of seconds to wait before
refreshing. Most browsers support this method of automatic refresh, though
they may include an option to disable it.

Server Side Include Directives
A Server Side Include (SSI) directive requests a server to perform an action
before serving a Web page that contains the directive. The capabilities of
SSIs are limited but convenient for some applications. The Rabbit example
earlier in this chapter used SSI directives to retrieve the values of variables to
display on a Web page.

Server Side Includes were introduced by the Apache Group, which was
formed to develop Apache HTTP Server, a popular open-source application
used by many Web servers that run under UNIX, Windows, and other oper-
ating systems. Server Side Includes are now supported by many Web servers,
including some embedded systems that function as Web servers. A server
that supports Common Gateway Interface (CGI) programs is likely to sup-
port SSI as well. The documentation for the Apache HTTP Server includes
documentation for SSI and is available from the Apache Software Founda-
tion at www.apache.org.

Basics

As explained earlier in this chapter, in Web pages, SSI directives use the
same delimiters as HTML comments (<!-- and -->). Before serving a page
that contains a directive supported by the server, the server executes the
directive and replaces the delimiters and everything between them with the
result of the directive. (Some directives, such as a #config directive that
specifies formatting for other directives, have no result to display.)

Spacing is critical in SSI directives. There must be no space between the
opening delimiter (<!--) and the directive’s number sign (#), and there
should be a space immediately preceding the closing delimiter (-->).

Because the server does all of the work of implementing the SSI directives,
the requesting computer and its browser don’t need to know anything about

Serving Web Pages with Dynamic Data

 281

SSI. The browser never sees the directives, just the results placed in the
received Web pages.

Using Directives

Rabbit Semiconductor’s Dynamic C supports three SSI directives: #echo,
#include, and #exec.

#echo

The #echo directive inserts the current value of a variable in a requested
Web page. If your server supports this directive, it’s an obvious choice for
displaying real-time information. To insert the value of the variable tempera-
ture, a Web page might contain this code:

<p>The temperature is <!--#echo var="temperature" --></p>

When the server serves the page, it retrieves the value of the temperature
variable and replaces the <!-- and --> delimiters and everything between
them with this value. If the temperature variable equals 72, the paragraph
appears on the page as:

The temperature is 72

The variable specified in the directive must be defined as an environment
variable on the server. In Dynamic C, you define environment variables by
adding an HTTP_VARIABLE entry for the variable in an HttpSpec structure,
as shown in the Rabbit example earlier in this chapter. Other servers use dif-
ferent methods for defining environment variables.

In addition to displaying text, you can use #echo to display an image that
reflects real-time status or conditions. In the example below, an HTML img
tag causes the Web page to display the image contained in the file whose
name is stored in the string variable led1_image:

<img src="<!--#echo var="led1_image" -->">

The server can set led1_image to different file names, such as led_on.gif
and led_off.gif, depending on the current state of an LED at the server.
On receiving a request for the Web page, the server inserts the current value
of led1_image, and the Web page displays an image that matches the
LED’s current state.

Chapter 6

282

The complement to #echo is #set, which sets the value of a variable.
Dynamic C doesn’t support #set, however.

#include

The #include directive causes the server to place the contents of the specified
file in the Web page. The following #include directive:

<pre>
<!--#include file="myfile.txt" -->
</pre>

places the contents of myfile.txt in a Web page, at the location of the direc-
tive in the page. If the included file isn’t HTML-encoded, precede the direc-
tive with an HTML <pre> tag, which tells the browser to maintain the line
breaks and spacing in the file’s contents. The </pre> tag ends the prefor-
matted content.

#exec

The #exec directive can execute a command or CGI program and place the
result in the Web page being served. In Dynamic C’s implementation of
#exec, the functions that the directive can execute must be specified in an
HTTPSPEC_FUNCTION item in an HttpSpec structure.

The #exec directive can be a security risk if the system software doesn’t
have appropriate restrictions on what the directive can execute. For example,
a Web site might display a guest book of comments from Web-site visitors.
If a malicious visitor enters an #exec directive in the guest book, when a cli-
ent requests the Web page containing the guest book, the server will parse
the page for SSI directives and will attempt to execute the #exec directive,
with possibly disastrous results.

Identifying Files that use Server Side Includes

The security issues with #exec directives suggest that there is good reason to
limit which files a server parses for SSI directives. If the server doesn’t look
for directives, any directives that happen to be present won’t execute and the
browser will ignore them as HTML comments. Another reason to limit the

Serving Web Pages with Dynamic Data

 283

files a server parses for SSI directives is to save the server from wasting time
needlessly looking for directives on pages that don’t have any.

The usual way to identify pages that use SSI is to give the filenames the
extension .shtml, while plain HTML files use .htm or .html.

In Dynamic C, the HttpType structure specifies a handler to use with each
supported file extension. In the Dynamic C example below, files with the
extensions .shtml and .html each use a different handler. The .shtml handler
parses the files for SSI directives, while the .html handler doesn’t.

const HttpType http_types[] =
{
 { ".shtml", "text/html", shtml_handler},
 { ".html", "text/html", html_handler}
};

Other Web servers use other methods for specifying the handlers to use with
different file types, but the concept is the same.

Chapter 6

284

Serving Web Pages that Respond to User Input

 285

Chapter 6 showed how a Web page can use HTML to display text and
images, including real-time data. Many embedded Web servers also need to
display pages that can respond to user input. For example, a Web page
might display a virtual control panel that enables users to start, stop, or
modify processes controlled by an embedded system. Or a page might dis-
play a form that enables users to enter or select values for use in configuring
or controlling a device.

‘Two technologies for enabling Web pages to respond to user input are com-
mon gateway interface (CGI) programming and Java servlets. CGI pro-
grams and Java servlets can do the following:

• Retrieve the current values of variables and place them on a Web page to
return to a client.

• Receive and act on data provided by a client who clicks a hyperlink or
submits an HTML form.

Exchanging Messages Using UDP and TCP

 183

This chapter shows how embedded systems can use the User Datagram Pro-
tocol (UDP) and the Transmission Control Protocol (TCP) to send mes-
sages over a network. The messages can contain any type of data. The
systems must support IP, because TCP and UDP use IP addresses to identify
a message’s source and destination. The In Depth section of the chapter dis-
cusses UDP and TCP in detail, including when to use each and what’s
involved in supporting the protocols in an embedded system.

Quick Start:
Basic Communications

UDP and TCP are standard, well-supported protocols for computers that
need to send and receive messages within local networks or on the Internet.
Many application protocols transfer information using UDP or TCP. For

Chapter 5

184

example, a computer that sends a request for an IP address to a DNS server
places the request in a UDP datagram. A request to a server for a Web page
and the page sent in response both travel in TCP segments. But you can also
use UDP and TCP to transfer messages of any type, including information
in application-specific formats.

In general, UDP is a simpler protocol to implement but has no built-in sup-
port for acknowledging receipt of messages, determining the intended order
of messages, or flow control. If you use a module with support for both
UDP and TCP, the programming effort to use the protocols is likely to be
about the same for each. In some cases, TCP programming may be easier.

This section presents examples of UDP and TCP communications. The
embedded systems in the examples are the Rabbit and TINI modules intro-
duced in Chapter 3. For both modules, the amount of programming
required to exchange messages is greatly simplified because of the supporting
code provided with the modules.

Before using a Rabbit or TINI module in networking applications, you need
to configure the module with the networking parameters appropriate for
your module and network. This chapter has information about how to con-
figure Rabbit and TINI modules to enable communicating on a network
and the Internet.

And because many embedded systems communicate with PCs, I’ve included
some tips for VB.NET programming on a PC that communicates with
embedded systems. Even if there will be no PCs in your final network
design, the display, keyboard, and programming resources of a PC can make
it a useful tool in the initial stages of a project.

Configuring a Device for Network Communications
As Chapter 4 explained, communications that use UDP, TCP, or other
Internet protocols must use IP addresses to identify the sender and receiver
of the communications (with the exception that a UDP datagram doesn’t
have to specify a source address). In addition, sending a message using IP
may require any or all of the following: a netmask value, the IP address of a
gateway, or router, and the IP address of a domain-name server. The device

Exchanging Messages Using UDP and TCP

 185

firmware may specify these values, or the device may request the values from
a DHCP server.

Rabbit Configuration

For Rabbit modules, Dynamic C supports several ways for a network inter-
face to obtain an IP address and related values. An application can provide
the values or obtain values from a DHCP server. The program code that
specifies the values or how to obtain them can be in the main application or
in a macro that the main program calls. Using a macro keeps the main pro-
gram free of system-specific values, makes it easy to use the same configura-
tion in multiple programs, and enables changing a configuration by just
specifying a different macro.

Dynamic C’s tcp_config.lib file defines constants for use in static configura-
tions and macros for implementing a variety of common configurations.
You can edit the file as needed for your devices and network, or you can pro-
vide your own configuration macros in a file you create called
custom_config.lib.

To specify a configuration macro, the program code must include the fol-
lowing statement:

TCPCONFIG macro_number

where macro_number names the configuration in a configuration file. The
statement must occur before the statement #use "dcrtcp.lib".

Configuring in the Application

The default macro, TCPCONFIG 0, does no configuring, so with this option,
the main program has to provide the configuration information. TCPCON-
FIG 0 is the default, so a program that uses TCPCONFIG 0 doesn’t require a
TCPCONFIG statement at all. To use TCPCONFIG 0 with a static IP address, a
program should define values for the constants below, as needed:

#define _PRIMARY_STATIC_IP "192.168.111.7"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_NAMESERVER "192.168.111.2"
#define MY_GATEWAY "192.168.111.1"

Chapter 5

186

The _PRIMARY_STATIC_IP and _PRIMARY_NETMASK strings should

match the Rabbit module’s IP address and the netmask of the subnet the
Rabbit module resides in. If the module will access a domain name server,
set MY_NAMESERVER to the IP address of the network’s name server. If the
module will communicate outside the local network, set MY_GATEWAY to the
IP address of the subnet’s gateway, or router, that connects to the outside
world.

Using a Configuration File

To use static values defined in tcp_config.lib, use TCPCONFIG 1 in the appli-
cation. The tcp_config.lib file defines the four constants above. Edit the
statements with the values your system requires.

The following code in tcp_config.lib configures the interface using the values
stored in _PRIMARY_STATIC_IP and _PRIMARY_NETMASK:

#if TCPCONFIG == 1
 #define USE_ETHERNET 1
 #define IFCONFIG_ETH0 \
 IFS_IPADDR,aton(_PRIMARY_STATIC_IP), \
 IFS_NETMASK,aton(_PRIMARY_NETMASK), \
 IFS_UP
#endif

The USE_ETHERNET macro is set to 1 to specify that the interface uses the
system’s first Ethernet port.

The IFCONFIG_ETH0 macro configures the first Ethernet port. The value of
the macro is a parameter list, whose items are also macros. The IFS_IPADDR
and IFS_NETMASK macros set the interface’s IP address and netmask using
the values defined earlier. The aton function converts strings in dot-
ted-quad format to the binary values required by the macros. The IFS_UP
macro brings up, or enables, the interface.

In a similar way, tcp_config.lib contains additional macros for other common
configurations. For example, TCPCONFIG 3 specifies that the first Ethernet
interface will obtain its IP address and other configuration values from a
DHCP server. You can add your own custom configuration macros to the
file as well.

Exchanging Messages Using UDP and TCP

 187

TCPCONFIG values greater than 99 must be in a file called custom_config.lib.
Create this file if you want to store custom configurations in your own file,
rather than using tcp_config.lib.

Using ifconfig() to Set and Retrieve Network Settings

Dynamic C’s ifconfig() function enables firmware to set and retrieve var-
ious network values at runtime. For example, on receiving a request to run a
CGI program, a Web server might want to return a response containing a
code that requests the browser to refresh the page. The response must
include the URL of the page the browser should request. If the Rabbit’s
interface obtained its address from a DHCP server, a program can use
ifconfig() to obtain the IP address to use in the URL.

Calls to ifconfig() can contain varying numbers of parameters. In the
example below, the IFG_IPADDR macro returns the IP address for the
default interface (IF_DEFAULT) in the variable my_ip_address. A
sprintf() statement stores a URL containing the retrieved IP address in
the character array redirect_to. The inet_ntoa() function converts the
binary IP address returned by IFG_IPADDR to dotted-quad format.

longword my_ip_address;
char redirect_to[127];
char ip_dotted_quad[16];

ifconfig(IF_DEFAULT,
 IFG_IPADDR, &my_ip_address,
 IFS_END);

sprintf(redirect_to, "http://%s/index.shtml",
 inet_ntoa(ip_dotted_quad, my_ip_address));

Dynamic C’s documentation has more details and examples for ifcon-
fig().

Viewing Debugging Information

For debugging applications that use networking functions, the following
directives are useful:

#define DCRTCP_DEBUG
#define DCRTCP_VERBOSE

Chapter 5

188

DCRTCP_DEBUG enables debugging within the TCP/IP libraries.
DCRTCP_VERBOSE prints debugging messages to Dynamic C’s STDIO win-
dow. The global variable debug_on controls the number of messages, and
thus the amount of detail revealed. To set debug_on from 0 (few messages)
to 5 (maximum messages), set the third parameter in this ifconfig()
statement:

ifconfig(IF_ANY, IFS_DEBUG, 5, IFS_END);

Use a lower value to decrease the number of messages and thus the amount
of root memory required to display the messages. Another way to decrease
the number of messages is to use directives that apply only to a specific
library, such as FTP_DEBUG and FTP_VERBOSE.

When debugging is complete, remove the debugging directives and any
related ifconfig() statements.

TINI Configuration

TINI modules can also configure their network interfaces using static values
or values obtained from a DHCP server.

Using ipconfig

During project development, you can view and set the network configura-
tion from within the JavaKit utility, using the command ipconfig. This
ipconfig command is similar to the ipconfig utility that you can run
from a command prompt under Windows.

Typing ipconfig from a command prompt in JavaKit displays information
about the TINI’s current network configuration:

TINI /> ipconfig

Hostname : tini00e254
Current IPv4 addr.: 192.168.111.3/24 (255.255.255.0)
(active)
Current IPv6 addr.: fe80:0:0:0:260:35ff:fe00:e254/64
(active)
Default IPv4 GW : 192.168.111.1
Ethernet Address : 00:60:35:00:e2:54
Primary DNS :
Secondary DNS :

Exchanging Messages Using UDP and TCP

 189

DNS Timeout : 0 (ms)
DHCP Server : 192.168.111.1
DHCP Enabled : true
DHCP Lease Ends : Tue Apr 23 08:21:48 GMT 2002
 (23 hr, 58 min, 33 seconds left)
Mailhost : 0.0.0.0
Restore From Flash: Not Committed

Typing help ipconfig displays the command-line options supported for
performing other functions related to the network configuration:

TINI /> help ipconfig
ipconfig [options]

Configure or display the network settings.
 [-a IP -m mask] Set IPv4 address and subnet mask.
 [-n domainname] Set domain name
 [-g IP] Set gateway address
 [-p IP] Set primary DNS address
 [-s IP] Set secondary DNS address
 [-t dnstimeout] Set DNS timeout (set to 0 for
 backoff/retry)
 [-d] Use DHCP to lease an IP address
 [-r] Release currently held DHCP IP address
 [-x] Show all Interface data
 [-h mailhost] Set mailhost
 [-C] Commit current network configuration
 to flash
 [-D] Disable restoration of configuration
 from flash
 [-f] Don't prompt for confirmation

For example, to set the static IP address 192.168.111.3 and a netmask of
255.255.255.0, type:

ipconfig -a 192.168.111.3 -m 255.255.255.0

To specify that the TINI should obtain its settings from a DHCP server,
type:

ipconfig -d

Saving a Network Configuration

By default, the TINI stores its network configuration values in a special area
of RAM whose contents are preserved on rebooting. In the DSTINIm400
module, the RAM has battery backup, so the contents also persist after pow-

Chapter 5

190

ering down. There is still a chance that the configuration data will be lost,
however, either due to battery failure, or if an application calls the
blastHeapOnReboot method, which causes the RAM’s contents to be
erased on the next reboot, or if a user types reboot -a in JavaKit, which
clears the heap and system memory before rebooting.

A solution is to store the network configuration in the DSTINIm400’s Flash
memory, in the area reserved for this information. This area is a portion of
bank 47, which is a 64-kilobyte sector that stores both network configura-
tion data and slush.tbin or another application loaded into Flash memory for
running on startup. To store the network configuration data in Flash mem-
ory, execute the ipconfig -C command in JavaKit or call the TINI’s com-
mitNetworkState() method. A configuration committed to Flash
memory persists after boot-up, powering down, and erasing of the RAM’s
contents.

It’s possible for the TINI to override, or ignore, a committed configuration.
To do so, execute the ipconfig -D command in JavaKit or call the TINI’s
disableNetworkRestore() method. The TINI will then behave as if the
Flash memory had no stored parameters.

To change a configuration in Flash memory, you first need to erase bank 47
in the Flash memory. The easiest way to do this is to use JavaKit to reload
slush or another .tbin application. To load slush, open a JavaKit session with
the TINI. At the JavaKit prompt, type B0, press Enter, then type F0 and
press Enter. This clears the TINI’s RAM. From the File menu, select Load
File. Browse to the location of slush_400.tbin and click Open. When the
JavaKit window displays Load complete, the file has been loaded into the
Flash memory. You now should be able to execute ipconfig -C again to
commit new network configuration parameters to Flash memory.

Banks 40–46 in the Flash memory store critical files such as the boot loader
and files that implement the runtime environment. You don’t want to cor-
rupt these files, so use caution when executing commands that write to the
Flash memory.

Exchanging Messages Using UDP and TCP

 191

Sending UDP Datagrams
Now that you know something about how to configure the Rabbit and
TINI modules for network communications, it’s time to try an application.
The first example is an embedded system that periodically sends datagrams
to a remote host. To make it easy to detect missing or out-of-order data-
grams in this example application, each datagram contains a byte with a
sequence number. The sequence number increments on each send, resetting
to zero after sending 255. A second byte in the datagram is the value of a
port bit on the module. A timer determines how often to send the data-
grams. The first example uses a Rabbit module and the second example uses
a TINI.

A UDP communication takes place between two sockets. A socket is one
end of a communication path on a network. Each socket has an IP address
and a port number. In a typical application, the destination is programmed
to receive UDP datagrams on a specific port. As explained later in this chap-
ter, many standard application protocols have an assigned well-known port.
Other applications are generally free to use any port number greater than
1023.

A destination may accept datagrams from any host or only from a specific
host or hosts. The destination usually doesn’t care what port the source
sends from.

For a Windows application that receives the datagrams sent by the Rabbit
and TINI modules, see Lakeview Research’s Embedded Ethernet page at
www.Lvr.com.

Rabbit Code

The Rabbit module’s Dynamic C libraries include functions and constants
for use in UDP communications. Rabbit Semiconductor also provides a
variety of basic example programs that show how to do common tasks such
and sending and receiving data using UDP and TCP. The Rabbit example
code in this chapter is adapted from Rabbit Semiconductor’s examples.

In the application, the firmware specifies the IP addresses and port numbers
to use and sends a datagram periodically. A real-world application could per-

Chapter 5

192

form additional tasks when not transmitting. As a debugging aid, in various
locations in the code, a printf statement displays status messages in the
STDIO window of Dynamic C’s programming environment.

Initial Defines and Declarations

The firmware uses the TCPCONFIG 1 macro to configure the network inter-
face to use the static IP address and netmask specified in the tcp_config.lib
file, as described above. LOCAL_PORT is the port the Rabbit will use to send
the datagrams. REMOTE_IP is the IP address of the computer the Rabbit will
send datagrams to. REMOTE_PORT is the port on the remote computer that
will receive the datagrams. In your application, you must set REMOTE_IP
and REMOTE_PORT to appropriate values for your remote computer.

#define TCPCONFIG 1

#define LOCAL_PORT 5551
#define REMOTE_IP "192.168.111.5"
#define REMOTE_PORT 5550

The MAX_UDP_SOCKET_BUFFERS constant sets the maximum number of
socket buffers for the application. This application, which communicates
with a single host, requires just one buffer:

#define MAX_UDP_SOCKET_BUFFERS 1

The #memmap xmem directive stores all C functions not declared as root in
the extended memory area, rather than limiting storage to the 64 kilobytes
of root memory.

#memmap xmem

The dcrtcp.lib file is the Dynamic C library that supports TCP/IP commu-
nications. Unlike other C compilers, the Dynamic C compiler doesn’t use
#include directives because its library system automatically provides the
needed function prototypes and header information normally contained in
included files. In place of #include, to enable using a library, Dynamic C
requires a #use directive that names the file:

#use "dcrtcp.lib"

The mysocket variable is a Dynamic C udp_Socket structure that contains
information about the UDP socket that will communicate with the remote

Exchanging Messages Using UDP and TCP

 193

host. The sequence variable contains the number the Rabbit will send to
the remote host.

udp_Socket mysocket;
int sequence;

The main() Function

The application’s main() function begins by calling sock_init() to ini-
tialize the TCP/IP stack. This call is required before calling any functions in
dcrtcp.lib, ncluding any functions that use UDP or IP. If successful, the
function returns zero. If the function doesn’t return zero, the network isn’t
available and the program ends.

main()
{
 int return_value;
 sequence = 255;
 return_value = sock_init();
 if (return_value == 0) {
 printf("Network support is initialized.\n");
 }
 else {
 printf("The network is not available.\n");
 exit(0);
 }

A call to udp_open() opens the specified UDP socket, enabling communi-
cations. The call requires a pointer to the local socket (&my_socket), a local
port number (LOCAL_PORT), a remote IP address (resolve(REMOTE_IP))
and port number (REMOTE_PORT) to communicate with, and either a func-
tion to call on receiving data or NULL to place received data in the socket’s
receive buffer. This application doesn’t receive datagrams, so the parameter
is null. The resolve() function converts an IP address string in dot-
ted-quad format to the longword required by udp_open().

If the remote IP address is zero, the socket connects to the IP address and
port of the first received datagram on the socket. If the remote IP address is
-1, the socket accepts datagrams from any remote host and port and sends
all datagrams as broadcasts.

 if(!udp_open(&my_socket, LOCAL_PORT,
 resolve(REMOTE_IP), REMOTE_PORT, NULL)) {

Chapter 5

194

 printf("udp_open failed.\n");
 exit(0);
 }
 else {
 printf("udp_open succeeded.\n");
 }

The WrPortI() function configures Port G, bit 6 as an output. This bit
controls LED DS1 on the RCM3200 module’s prototyping board. This
application sends the state of bit 6 in the datagram.

 WrPortI(PGDDR, NULL, 0x40);

An endless while loop calls the tcp_tick() function and a costatement.
The application must call tcp_tick() periodically to process network
packets. Chapter 3 introduced Dynamic C’s costatements. In this applica-
tion, the costatement calls a routine that sends a datagram with a delay
between each send. Dynamic C’s DelaySec() function specifies the num-
ber of seconds to wait between datagrams. The application’s
send_packet() function sends the datagram.

 while(1) {
 tcp_tick(NULL);
 costate {
 waitfor(DelaySec(1));
 send_packet();
 }
 } // end while(1)
} // end main()

Sending a Datagram

The send_packet() function creates and sends a datagram. The
send_buffer array holds the data to send. For each send, the application
increments the sequence number and places the number in the first byte of
the send_buffer array. The sequence number resets to zero after sending
255.

int send_packet(void)
{
 char send_buffer[2];
 int buffer_length;
 int return_value;
 int test_bit;

Exchanging Messages Using UDP and TCP

 195

 sequence++;
 if (sequence > 255) {
 sequence = 0;
 }
 send_buffer[0] = (char)sequence;

The application then places the current value of Port G, bit 6 in
send_buffer’s second byte and toggles the port bit. (The application tog-
gles the bit only so that the value changes with each send for this example
application.)

The BitRdPortI() function reads the bit, and BitWrPortI() writes to
the bit. Chapter 7 has more about these functions.

 test_bit = (BitRdPortI(PGDR, 6));
 send_buffer[1] = (char)test_bit;

 if (test_bit == 0) {
 BitWrPortI(PGDR, &PGDRShadow, 1, 6);
 } else {
 BitWrPortI(PGDR, &PGDRShadow, 0, 6);
 }

Dynamic C’s udp_send() function sends the datagram. The function call
requires a pointer to the local socket (&my_socket), a buffer with data to
send (send_buffer), and the number of bytes in the buffer to send
(sizeof(send_buffer). On success, udp_send() returns the number of
bytes sent. On failure, the program closes and attempts to reopen the socket.
If the call to udp_open() fails, the application ends.

 return_value = udp_send(&my_socket, send_buffer,
 sizeof(send_buffer);

 if (return_value < 0) {
 printf("Error sending datagram. Closing and reopening
 socket.\n");
 sock_close(&my_socket);

 if(!udp_open(&my_socket, LOCAL_PORT,
 resolve(REMOTE_IP), REMOTE_PORT, NULL)) {
 printf("udp_open failed.\n");
 exit(0);
 }
 }
 else {

Chapter 5

196

 printf("Sent: Message number %d \n", sequence);
 }
 return 1;
} // end send_packet()

TINI Code

TINI users can also use UDP to communicate with remote hosts. Java’s
java.net.DatagramSocket class includes methods for sending and
receiving UDP datagrams.

As a debugging aid, in various locations in the code below and the other
TINI applications in this book, System.out.println statements write
status messages to the standard output stream. If you run the TINI applica-
tion from a Telnet session, the status messages display in the Telnet window.

This and some of the other example applications in this book start an end-
less loop that runs the application until its process is killed or a reboot. To
kill a process, type ps at the command prompt to obtain a list of the pro-
cesses currently running and the number assigned to each:

ps
3 processes
1: Java GC (Owner root)
2: init (Owner root)
4: UdpSend.tini (Owner root)

To kill a specific process, type kill followed by the number of the process.

kill 4

The specified process then ends.

Imports and Initial Declares

The application imports java.io classes to support input and output oper-
ations, java.net classes to support networking functions, and the
TINI-specific BitPort class to enable reading and writing to port bits.

import java.io.*;
import java.net.*;
import com.dalsemi.system.BitPort;

For this example, the UdpSend class implements the Runnable interface to
enable the code that sends the datagrams to run in its own thread. Using a

Exchanging Messages Using UDP and TCP

 197

separate thread makes the code a little more complicated but also more use-
ful because the program’s main thread can perform other tasks at the same
time.

The testBit variable is Port 5, bit 2 on the DSTINIm400’s CPU. This bit
controls LED1 on the module.

public class UdpSend implements Runnable {

 private BitPort testBit =
 new BitPort(BitPort.Port5Bit2);
 private byte[] dataToSend;
 private DatagramPacket udpPacket;
 private DatagramSocket udpSocket;
 private int delayTime;
 private int messageCount;
 private Thread datagramSender;
 private volatile boolean sendDatagrams;

Starting the Thread to Send Datagrams

The class’s constructor has three parameters: the IP address and port of the
computer to send datagrams to (destinationInetAddress and desti-
nationPort) and the amount of time to delay between sending datagrams
(delayTime). A SocketException is thrown if the socket can’t be created.

 public UdpSend(InetAddress destinationInetAddress,
 int destinationPort, int delayTime)
 throws SocketException {

The byte array dataToSend holds the data to send to the remote host. For
this application, the datagrams are just two bytes.

 byte[] dataToSend = new byte[2];

The delayTime variable that the datagramSender thread will use is set to
the value of the delayTime parameter.

 this.delayTime = delayTime;

Communications with the remote host use the DatagramSocket object
udpSocket. The socket uses an available local port; the program code
doesn’t have to specify a port.

 udpSocket = new DatagramSocket();

Chapter 5

198

The datagrams sent to the remote host are stored in the DatagramPacket
object udpPacket. The object specifies a byte array that contains the data to
send (dataToSend), the length of the byte array (dataToSend.length),
and the IP address and port number to send the datagrams to (destina-
tionInetAddress, destinationPort).

 udpPacket = new DatagramPacket(dataToSend,
 dataToSend.length, destinationInetAddress,
 destinationPort);

The datagramSender thread manages the sending of the datagrams. Using
a separate thread enables the application to perform other tasks without hav-
ing to wait for the thread’s timer to time out. Setting the thread’s setDae-
mon() property true creates the thread as a Daemon thread. The JVM exits
when there are no user (non-Daemon) threads running. Calling the thread’s
start() method calls UdpSend’s run() method (below).

 datagramSender = new Thread(this);
 datagramSender.setDaemon(true);
 datagramSender.start();
 } // end UdpSend constructor

The main() Method

The main() method sets the values of three variables that may change
depending on the application: the delayTime value in milliseconds and the
values of destinationIPAddress and destinationPort. The get-
ByName method of InetAddress converts the IP address in dotted-quad
format to the InetAddress object required by the DatagramPacket
object.

 public static void main(String[] args)
 throws IOException {

 int delayTime = 1000;

 int destinationPort = 5550;
 String destinationIPAddress = "192.168.111.5";

 InetAddress destinationInetAddress =
 InetAddress.getByName(destinationIPAddress);

Exchanging Messages Using UDP and TCP

 199

A call to the UdpSend constructor creates the myUdpSend object with the
specified destination address, destination port, and delay time.

 UdpSend myUdpSend =
 new UdpSend(destinationInetAddress,
 destinationPort, delayTime);

A while loop keeps the main thread alive. In this example application, the
thread spends most of its time sleeping.

 while(true) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.print("InterruptedException: ");
 System.out.println(e);
 }
 } // end while(true)
 } // end main

Stopping the Sending of Datagrams

A stop() method enables program code to end the datagramSender
thread and close the socket. Otherwise, the thread ends when no user
threads are running.

 public void stop() {
 sendDatagrams = false;
 datagramSender.interrupt();
 udpSocket.close();
 } // end stop()

Sending Datagrams

The run() method executes when the main() method calls the datagram-
Sender thread’s start() method.

 public void run() {

The sendDatagrams variable is initialized to true and messageCount is
initialized to 255 so it wraps back to zero on the first message sent.

 sendDatagrams = true;
 int messageCount = 255;

Chapter 5

200

A while loop repeatedly creates and sends a datagram, then waits delay-
Time. The loop ends when an exception or the stop() method sets send-
Datagrams false.

 while (sendDatagrams) {
 try {
 createDatagrams();

DatagramSocket’s send() method sends the datagram to the IP address
and port specified in udpSocket.

 udpSocket.send(udpPacket);

After sending a datagram, the program toggles the port bit whose value was
sent in the datagram. BitPort’s readLatch() method returns the last
value written to the specified bit. (The application toggles the bit only so the
value changes with each send for this example application.)

 if (testBit.readLatch() == 0) {
 testBit.set();
 } else {
 testBit.clear();
 }

The thread then sleeps for the specified delay time. Calling the thread’s
interrupt() method causes an InterruptedException, whose catch
block sets sendDatagrams false, ending the thread. An error when attempt-
ing to send a packet causes an IOException, whose catch block also sets
sendDatagrams false, ending the thread.

 Thread.sleep(delayTime);

 } catch (InterruptedException e) {
 System.out.println("InterruptedException: ");
 System.out.println(e);
 sendDatagrams = false;

 } catch (IOException e) {
 System.out.print("IOException: ");
 System.out.println(e);
 sendDatagrams = false;
 }
 } // end while(sendDatagrams)
 } // end run()

Exchanging Messages Using UDP and TCP

 201

Creating the Datagram

The createDatagram() method stores the datagram’s two bytes in the
dataToSend byte array. The first byte is the messageCount variable, which
increments on each send, resetting to zero after sending 255. The second
byte is the value of Port 5, bit 2. The message is stored in the byte array
dataToSend.

 private void createDatagram() {

The message count in the datagram’s first byte increments with each data-
gram, resetting to zero on 255.

 if (messageCount == 255) {
 messageCount = 0;
 } else {
 messageCount = ++messageCount;
 }

 dataToSend[0] = (byte)messageCount;

The datagram’s second byte is the last value written to the testBit port bit.

 dataToSend[1] = (byte)testBit.readLatch();

The setData() method of DatagramPacket stores the byte array in the
DatagramPacket object. The setLength() method trims the datagram to
match the length of the data. The size of dataToSend sets the datagram’s
maximum length.

 udpPacket.setData(dataToSend);
 udpPacket.setLength(dataToSend.length);
 System.out.print("Message number: ");
 System.out.println(messageCount);
 } // end CreateDatagram()

} // end UdpSend

Receiving UDP Datagrams
The other side of UDP communications is receiving datagrams. The follow-
ing applications are complements to the previous examples. A Rabbit and
TINI program each wait to receive a datagram from a remote host, then dis-
play the contents of the datagram.

Chapter 5

202

Rabbit Code

Much of the Rabbit code for receiving datagrams is similar to the code in
the previous Rabbit example.

Initial Defines and Declarations

A TCPCONFIG 1 macro selects a network configuration from the
tcp_config.lib file.

The MAX_UDP_SOCKET_BUFFERS macro specifies the number of socket
buffers to allocate for UDP sockets. This application requires one socket
buffer.

LOCAL_PORT specifies the port that the Rabbit will receive datagrams on.
Generally, any port over 1023 is acceptable. The remote host will need to
know this value when sending datagrams.

REMOTE_IP is the IP address of the host to receive datagrams from. Set this
value to the IP address of the sending host. To accept datagrams from any
host, set REMOTE_IP to zero. To accept only broadcast packets, set
REMOTE_IP to 255.255.255.255.

#define TCPCONFIG 1
#define MAX_UDP_SOCKET_BUFFERS 1
#define LOCAL_PORT 5550
#define REMOTE_IP "192.168.111.5"

The #memmap directive stores all C functions not declared as root in the
extended memory area, rather than limiting storage to the 64 kilobytes of
root memory.

The dcrtcp.lib file is the Dynamic C library that supports TCP/IP commu-
nications.

#memmap xmem
#use "dcrtcp.lib"

The datagram_socket variable is a Dynamic C udpSocket structure.

udp_Socket datagram_socket;

Exchanging Messages Using UDP and TCP

 203

Receiving a Datagram

The receive_packet() function checks for a received datagram and if
there is one, writes its contents to Dynamic C’s STDIO window. The
received_data array holds the contents of the received datagram.

int receive_packet()
{
 static char received_data[128];

The GLOBAL_INIT section executes only once. The memset() function ini-
tializes the block of memory that will hold a received datagram.

 #GLOBAL_INIT
 {
 memset(received_data, 0, sizeof(received_data));
 }

The udp_recv() function receives a datagram from the host specified in
datagram_socket. The datagram is stored in received_data. If the
return value is -1, there is no datagram and the function returns.

 if (-1 == udp_recv(&datagram_socket, received_data,
 sizeof(received_data))) {
 return 0;
 }

If there is a datagram, a printf() statement writes its contents to the
STDIO window.

printf("Received bytes: %d, %d\n",received_data[0],
 received_data[1]);
return 1;
}

The main() Function

As in the previous Rabbit example, the main() function calls sock_init()
to initialize the TCP/IP stack. If the return value isn’t zero, the network isn’t
available.

main()
{
 int return_value;
 return_value = sock_init();
 if (return_value == 0) {
 printf("Nework support is initialized.\n");

Chapter 5

204

 }
 else {
 printf("The network is not available.\n");
 exit(0);
 }

 printf("Opening UDP socket\n");

A call to udp_open() opens the specified UDP socket, enabling communi-
cations. The call requires a pointer to the local socket (&datagram_socket)
and a local port number (LOCAL_PORT). The socket connects to the remote
IP address in resolve(REMOTE_IP). The fourth parameter is zero to indi-
cate that the socket will accept datagrams from any port on the remote host.
To limit the datagrams to a specific source port at the remote host, this value
can instead specify a port number. The final parameter is either a function
to call on receiving data or NULL to place received data in the socket’s receive
buffer. The resolve function converts an IP address string in dotted-quad
format to the longword required by udp_open.

 if(!udp_open(&datagram_socket, LOCAL_PORT,
 resolve(REMOTE_IP), 0, NULL)) {
 printf("udp_open failed!\n");
 exit(0);
 }

An endless while loop calls the tcp_tick() function to process network
packets and the receive_packet() function to check for received data-
grams.

 while(1) {
 tcp_tick(NULL);
 receive_packet();
 }

} // end main()

TINI Code

The java.net.DatagramSocket class includes methods for receiving
UDP datagrams as well as sending them. The TINI’s TINIDatagram-
Socket class is a faster, memory-conserving replacement for Datagram-
Socket. In the DatagramSocket class in Sun’s JDK, the receive()
method allocates a new InetAddress object on every receive, while TINI-

Exchanging Messages Using UDP and TCP

 205

DatagramSocket overwrites the address instead of creating a new object.
This example uses TINIDatagramSocket.

Initial Imports and Declarations

In addition to the TINIDatagramSocket class, the application imports
java.io classes to support input and output operations, and java.net
classes to support networking functions.

import java.io.*;
import java.net.*;
import com.dalsemi.tininet.TINIDatagramSocket

The UdpReceive class implements the Runnable interface so the code that
waits for and receives datagrams can run in its own thread. The program’s
main thread can then perform other tasks at the same time.

public class UdpReceive implements Runnable {

 private TINIDatagramSocket udpSocket;
 private DatagramPacket udpPacket;
 private byte[] dataReceived;
 private Thread datagramReceiver;
 private volatile boolean receiveDatagrams;

Starting a Thread to Receive Datagrams

In the class’s constructor, the localPort parameter specifies the local port
to receive datagrams on. A SocketException is thrown if the socket can’t
be created.

The byte array dataReceived holds the data received from a remote host.
Communications with the remote host use the TINIDatagramSocket
object udpSocket. The socket uses a specific local port. The sending host
must send the datagrams to this port.

The datagrams received from the remote host are stored in the Datagram-
Packet object udpPacket. The object specifies a byte array to contain the
received data (dataReceived) and the length of the byte array (dataRe-
ceived.length). For this example, the received datagrams contain just two
bytes.

 public UdpReceive(int localPort) throws SocketException

Chapter 5

206

 {
 byte[] dataReceived = new byte[2];
 udpSocket = new TINIDatagramSocket(localPort);

 udpPacket = new DatagramPacket(dataReceived,
 dataReceived.length);

The datagramReceiver thread manages the receiving of the datagrams.
Using a separate thread enables the application to perform other tasks with-
out having to wait for a datagram to arrive. Setting the thread’s setDae-
mon() property true creates the thread as a Daemon thread, which ends
when no user threads are running. Calling the thread’s start() method
calls UdpReceive’s run() method (below).

 datagramReceiver = new Thread(this);
 datagramReceiver.setDaemon(true);
 datagramReceiver.start();
 } // end UdpReceive constructor

The main() Method

The main() method sets the value of localPort, and a call to the UdpRe-
ceive constructor creates the myUdpReceive object with the specified port.

 public static void main(String[] args)
 throws IOException {

 int localPort = 5550;
 UdpReceive myUdpReceive = new
 UdpReceive(localPort);

A while loop keeps the DatagramReceiver thread alive. The loop spends
its time sleeping. A real-world application could perform other functions
here.

 while(true) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.print("InterruptedException: ");
 System.out.println(e.getMessage());
 }
 } // end while(true)
 } // end main

Exchanging Messages Using UDP and TCP

 207

Stopping the Receiving of Datagrams

A stop() method enables program code to end the datagramReceiver
thread and close the socket. Otherwise, the thread ends when no user
threads are running.

 public void stop() {
 receiveDatagrams = false;
 datagramReceiver.interrupt();
 udpSocket.close();
 } // end stop

Receiving Datagrams

The run() method executes when the main() method calls the datagram-
Receiver thread’s start() method.

 public void run() {

 InetAddress senderAddress;
 receiveDatagrams = true;

A while() loop waits for datagrams until the stop() method sets
receiveDatagrams false or an error occurs while receiving a datagram.
The receive() method of TINIDatagramSocket returns on receiving a
datagram. The getAddress() method returns the IP address of the sender.
The getData() method returns a byte array with the datagram’s contents.

A series of System.out.println statements writes the message and the
sender’s IP address to the console.

 while (receiveDatagrams) {
 try {

 System.out.println("Waiting for datagram ...");
 udpSocket.receive(udpPacket);

 senderAddress = udpPacket.getAddress();
 dataReceived= udpPacket.getData();

 System.out.println("Received message: ");
 System.out.println(dataReceived[0]);
 System.out.println(dataReceived[1]);
 System.out.println();
 System.out.print("from: ");
 System.out.println

Chapter 5

208

 (senderAddress.getHostAddress());
 } catch (IOException e) {

If an error occurs while trying to receive a packet, receiveDatagrams is set
to false, which ends the while(receiveDatagrams) loop and stops the
thread.

 System.out.print("IOException: ");
 System.out.println(e.getMessage());
 receiveDatagrams = false;
 }
 } // end while(receiveDatagrams)
 } // end run()

} // end UdpReceive

Exchanging Messages using TCP
With UDP, you can send a message at any time, to any computer, without
first finding out if the remote computer is available to receive the message.
With TCP, before exchanging data, one computer must request a connec-
tion to the other computer. The connection is between two sockets, with
each socket defined by an IP address and port number.

The remote computer must respond to the request and the requesting com-
puter must acknowledge receiving the response. When these events have
occurred, a connection has been established and the computers can
exchange other data. In a similar way, to close a connection, each computer
sends a request to close and acknowledges the request to close received from
the remote computer.

In the examples below, the embedded system’s program waits for and
responds to a request for a connection. When the connection has been
established, the embedded system waits to receive data, reads a byte, incre-
ments it, sends it back to the remote host, and closes the connection. This
code can server as a model for applications where a computer sends a request
or command to an embedded system, which then returns a reply.

Exchanging Messages Using UDP and TCP

 209

Rabbit Code

A Dynamic C application performs the TCP communications in the Rabbit
module.

Initial Defines and Declarations

As in the Rabbit UDP example, the code begins by specifying a network
configuration macro with TCPCONFIG and a local port for network commu-
nications. In this application, the Rabbit module accepts connection
requests from any host and port, so there is no need to specify a remote IP
address or port. The dcrtcp.lib file is the Dynamic C library that supports
TCP/IP communications.

#define TCPCONFIG 1
#define LOCAL_PORT 5551
#memmap xmem
#use "dcrtcp.lib"

char server_buffer[255];
int bytes_read;
int return_value;

The server_socket variable is a Dynamic C tcp_Socket structure that
specifies the socket to use for TCP communications.

tcp_Socket server_socket;

The function prototype for service_request() enables the main() func-
tion to call service_request() before it has been compiled.

void service_request();

The main() Function

The main() function begins by calling sock_init() to enable using
TCP/IP functions. An endless while loop then alternates between execut-
ing the statements in a costatement that handles TCP communications and
performing whatever other tasks the device is responsible for. Using a cos-
tatement for the TCP communications enables the device to do other things
while waiting for a connection request or data from a remote host.

main() {
 int data_available;

Chapter 5

210

 return_value = sock_init();
 if (return_value == 0) {
 while(1) {

In the costatement, Dynamic C’s tcp_listen() function begins waiting
for a connection request from a remote host to the specified local port. The
call to tcp_listen() requires several parameters:

A pointer to a TCP socket (&server-socket).

The port number to listen on (LOCAL_PORT).

The remote computer’s IP address (0 to accept requests from any IP
address).

The port on the remote computer to communicate with (0 to communi-
cate with any port).

Either a function to call when data is received or NULL to place received
data in the socket’s receive buffer (NULL).

Reserved parameter (0).

A waitfor() statement calls the application’s
connection_established() function. If a connection has been estab-
lished with a remote host, the function returns 1 and program execution
continues with the statements that follow. If there is no connection, the
function returns 0 and program execution jumps to the costatement’s clos-
ing brace. This gives other code in the while loop a chance to execute.
When the code eventually loops back to the costatement, execution resumes
at the waitfor() statement, which again calls the
connection_established() function and continues in or exits the cos-
tatement as appropriate.

After a connection is established, a second waitfor() statement calls the
application’s check_for_received_data() function. The function
returns 1 if there is a byte waiting to be read from the remote computer. If a
byte is available or if the statement has been waiting for the number of sec-
onds in DelaySec(), program execution continues with the statements that
follow. Otherwise, program execution jumps to the costatement’s closing
brace and resumes at the waitfor() statement the next time through. The

Exchanging Messages Using UDP and TCP

 211

DelaySec() function ensures that the waitfor statement eventually times
out in case a remote host fails to send a data byte.

If a byte is available, a call to the application’s service_request() func-
tion reads the byte and returns a response. This completes the communica-
tion, so the sock_close() function closes the connection and the
costatement ends.

 costate {
 tcp_listen(&server_socket,LOCAL_PORT,0,0,NULL,0);
 printf("Waiting for connection...\n");

 waitfor (connection_established());
 printf("Connection established. \n");

 waitfor (check_for_received_data() ||
 DelaySec(20));

 data_available = check_for_received_data();
 if (data_available > 0) {
 service_request();
 }
 else {
 printf("Timeout: the remote host provided no
 data. \n");
 }
 sock_close(&server_socket);
 printf("The connection is closed. \n");
 } // end costate

If the call to sock_init() fails, the application ends without entering the
while(1) loop.

 // Place code to accomplish additional tasks here.
 } // end while(1)
 } // if (return_value == 0)

 else {
 printf("The network is not available" \n”);
 exit(0);
 }
} // end main()

Chapter 5

212

Establishing a Connection

The connection_established function called in the costatement checks
for a connection to a remote host. Dynamic C’s sock_established()
function returns 1 if a connection has been established to the specified
socket and 0 if there is no connection. This code is in a separate function to
enable calling it in a waitfor() statement.

It’s possible that a connection may be established, data received, and the
connection closed before the code has a chance to call
sock_established(). To enable reading any data received if this occurs,
the function also calls Dynamic C’s sock_bytesready() function, which
returns the number of bytes read or -1 if there are no bytes.

If sock_established returns 1 or if sock_bytesready() returns a value
other than -1, connection_established() returns 0, indicating that
either the connection is established or that the connection is now closed but
there is at least one byte ready to be read. Otherwise the function returns 1.

Dynamic C’s tcp_tick() function processes network packets and must be
called periodically.

int connection_established() {
 tcp_tick(NULL);
 if (!sock_established(&server_socket) &&
 sock_bytesready(&server_socket) == -1) {
 return 0;
 }
 else {
 return 1;
 }
} // end connection_established()

Checking for Received Data

The check_for_received_data() function called in the main() func-
tion’s costatement finds out if there is data available to be read from an exist-
ing connection. The sock_bytesready() function returns the number of
bytes waiting to be read or -1 if no bytes are available. The
check_for_received_data() function returns 1 if a byte is available and
0 if there are no bytes. A call to tcp_tick() processes network packets.

Exchanging Messages Using UDP and TCP

 213

int check_for_received_data() {
 tcp_tick(&server_socket);
 if (sock_bytesready(&server_socket) == -1) {
 return 0;
 }
 else {
 return 1;
 }
} // end check_for_received_data

Reading and Responding to Received Data

The service_request() function reads a received byte and returns a
response to the remote host. Dynamic C’s sock_fastread() function
reads bytes from a socket into a buffer and returns the number of bytes read
or -1 on error. The function requires a pointer to a socket to read from
(&server_socket), the byte array to place the data in (server_buffer),
and the maximum number of bytes to read (sizeof(server_buffer)).

void service_request() {
 bytes_read = sock_fastread(&server_socket,
 server_buffer, sizeof(server_buffer));

If a byte was received, the code increments it, resetting to 0 on receiving a
byte of 255.

 if (bytes_read > 0) {
 printf("Byte received = %d \n", server_buffer[0]);
 if (server_buffer[0] == 255) {
 server_buffer[0] = 0;
 }
 else {
 server_buffer[0]=server_buffer[0] + 1;
 }

Dynamic C’s sock_write() function writes the incremented byte to the
socket, which causes the byte to be sent on the network to the remote host.

 return_value = sock_write(&server_socket,
 server_buffer, 1);
 if (return_value != -1) {
 printf("Byte sent = %d \n", server_buffer[0]);
 }
 else {
 printf("Error writing to socket. \n");
 }

Chapter 5

214

 } // end if (bytes_read > 0)
 else {
 printf("Error reading from socket. \n");
 }
} // end service_request()

TINI Code

The TINI can also function as a TCP server that receives and responds to
requests to connect and exchange data. As in the UdpSend application in
this chapter, the application runs in an endless loop. A kill command in a
Telnet session ends the application.

Imports and Initial Declares

The application imports java.io classes to support input and output oper-
ations, and java.net classes to support networking functions.

import java.io.*;
import java.net.*;

The TcpServer class implements the Runnable interface so the code that
does the network communications can execute in its own thread. This leaves
the main thread free to do other things.

public class TcpServer implements Runnable {

 private ServerSocket server;
 private int readTimeout;
 private Thread serverThread;
 private volatile boolean runServer;

The main() Method

The class’s main() method sets localPort to the port number clients will
connect to and sets readTimeout to the number of milliseconds the server
will wait to receive data after a remote host connects. The timeout is
expressed in milliseconds. The TcpServer object myTcpServer uses the
localPort and readTimeout values.

 public static void main(String[] args)
 throws IOException {

 int localPort = 5551;
 int readTimeout = 5000;

Exchanging Messages Using UDP and TCP

 215

 TcpServer myTcpServer = new TcpServer
 (localPort, readTimeout);

A while loop executes while waiting for connection requests. In this exam-
ple, the thread spends its time sleeping.

 while (true){
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.print("InterruptedException: ");
 System.out.println(e.getMessage());
 }
 } // end while(true)
 } // end main()

Initializing the Server

The constructor for the TcpServer class creates a thread to handle connec-
tion requests. The constructor’s two parameters are the localPort and
readTimeout values set in main().

 public TcpServer(int localPort, int readTimeout)
 throws IOException {

A ServerSocket object (server) listens for connection requests on
localPort, and on receiving a request, creates a socket object.

 server = new ServerSocket(localPort);

 System.out.print("The server is listening on port ");
 System.out.println(localPort);

The readTimeout variable used in the run() method is assigned the value
of the readTimeout parameter passed to the constructor.

 this.readTimeout = readTimeout;

A separate thread (serverThread) handles connection requests. The
thread’s setDaemon() method is set to true so the server thread ends when
no user threads are running. Calling the start() method calls the thread’s
run() routine.

 serverThread = new Thread(this);
 serverThread.setDaemon(true);
 serverThread.start();

Chapter 5

216

 } // end TcpServer constructor

Waiting for Connection Requests

Calling serverThread’s start() method causes the thread’s run()
method to execute. The run() method accepts connections and calls a
method to handle each connection.

A while loop executes until the runServer variable is false, which occurs
on an exception or if the class’s stop() method sets runServer false.

 public void run() {
 runServer = true;

 while (runServer) {
 try {

On accepting a connection request, the server’s accept() method creates a
socket for exchanging data with the connected host. The class’s handleCon-
nection() method manages communications with the socket.

 Socket socket = server.accept();

 try {
 handleConnection(socket);
 } catch (IOException e) {
 System.out.print("An error occurred while
 working with a socket: ");
 System.out.println(e.getMessage());
 } finally {
 try {

When handleConnection() returns or if there is an exception, the routine
closes the socket to release any resources used by it. If there is an exception
when attempting to close the socket, no action needs to be taken. If an
exception occurs while attempting to accept a connection, runServer is set
to false to stop the thread.

 socket.close();
 } catch (IOException e) {
 }
 }
 } catch (IOException e) {

Exchanging Messages Using UDP and TCP

 217

 runServer = false;
 }
 }
 } // end run()

Stopping the Server

The stop() method provides a way to stop the server under program con-
trol by setting runServer false and closing the socket.

 public void stop() {
 runServer = false;

 try {
 server.close();
 } catch (IOException e) {
 }
 } // end stop()

Handling a Connection

The handleConnection() method handles a single connection with a
remote host.

 private void handleConnection(Socket socket)
 throws IOException {
 System.out.print("Connected to ");
 System.out.println(socket);

The socket timeout is set to the readTimeout value set in the main()
method.

 socket.setSoTimeout(readTimeout);

An InputStream object reads data from the remote host, and an Output-
Stream object writes to the remote host.

 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();

The InputStream object’s read() method attempts to read a byte from the
remote host.

If the byte is -1, the input stream is closed and no more communications
can take place. Otherwise, the code increments the byte and writes the
incremented value to the OutputStream object. To complete the commu-

Chapter 5

218

nication, a call to the OutputStream object’s flush() method causes the
data to transmit immediately, and the output stream is closed.

 try {
 int b = in.read();
 if (b != -1) {
 out.write(b + 1);
 System.out.print("Writing ");
 System.out.print(b + 1);
 System.out.print(" to remote host.");
 out.flush();
 out.close();
 }
 } catch (InterruptedIOException ex) {

An InterruptedIOException indicates that the read attempt has timed
out.

 System.out.print("The remote host sent no data
 within ");
 System.out.print(readTimeout / 1000);
 System.out.println(" seconds.");
 }
 } // end handleConnection()
} // end TcpServer

UDP and TCP from PC Applications
A PC application can communicate with any embedded system that uses
UDP or TCP, including the programs above. You can write the application
using any of a number of programming languages, including Visual Basic
.NET and Visual C#.

About Network Programming on a PC

Windows includes plenty of support that greatly simplifies network pro-
gramming and troubleshooting. Windows includes drivers that support
Ethernet communications and application programming interface (API)
functions that enable applications to send and receive information over a
network using TCP/IP and related protocols.

For example Visual Basic .NET applications that communicate with the
Rabbit and TINI programs in this chapter, see my Embedded Ethernet page
at www.Lvr.com.

Exchanging Messages Using UDP and TCP

 219

A custom application isn’t the only way for a PC application to communi-
cate over a network. Another option is to use a browser like Microsoft’s
Internet Explorer to request Web pages from computers in the network.
Chapter 6 and Chapter 7 have more about how to serve Web pages from an
embedded system.

To communicate over a network, a PC must have an Ethernet interface and
a network connection to the embedded system the PC wants to communi-
cate with, as described in Chapter 2.

If you access the Internet from your computer, you already have TCP/IP
support installed. If you need to install TCP/IP, in Windows’ Control Panel,
click Network and Connections and right-click a connection (Figure 5-1).

Figure 5-1: In Windows’ Control Panel, Network and Connections enables
installing TCP/IP support for a connection.

Chapter 5

220

If the General tab doesn’t show Internet Protocol (TCP/IP), click the
Install button to install it.

Using Visual Basic .NET

Network programming in Visual Basic .NET uses the System.Net.Sock-
ets namespace, which includes several classes for use in network communi-
cations.

For UDP communications, at first glance, the UdpClient class appears to
provide a convenient interface. UdpClient contains selected members of
the Socket class and adds support for multicasting.

But UdpClient is limited in a way that makes it impractical for much
beyond basic testing. UdpClient’s Receive method is synchronous, which
means it blocks the program thread that calls Receive until a datagram
arrives. If an application calls the Receive method and no datagram arrives,
the thread that called Receive can do nothing but wait. You can place the
Receive call in its own thread, leaving the main program thread free to per-
form other tasks while waiting, but there is no way to gracefully close a
blocked thread if the data never arrives.

An alternative to UdpClient is the Socket class. By declaring a socket with
ProtocolType set to Udp, you have access to all of the members of the
Socket class, including the ability to use the BeginReceive and EndRe-
ceive methods in asynchronous data transfers. This means that the applica-
tion doesn’t have to wait for data to arrive. Instead, the program can call
BeginReceive and continue to perform other operations. When data
arrives, a callback routine runs and calls EndReceive to retrieve the data.
And the program can close at any time.

For TCP communications, the TcpClient class is a little more flexible than
UdpClient. The SendTimeout and ReceiveTimeout properties enable
you to specify how long to wait for a response from a remote host before giv-
ing up. If you expect the remote host to be able to respond quickly most of
the time, TcpClient may be suitable. Or as with UDP, you can use the
Socket class for TCP communications.

Exchanging Messages Using UDP and TCP

 221

In Depth:
Inside UDP and TCP

This section explains how UDP and TCP help get data to its destination.
Knowing more about how the protocols work can help in selecting which
protocol to use and in using the protocol effectively. Also included is a
review of options for obtaining code to support UDP, TCP, and IP in
embedded systems.

The Ethernet standard specifies a way to transfer information between com-
puters in a local network. But Ethernet alone doesn’t provide some things
that many data transfers require. These include naming the port, or process,
that is sending the data, naming the port that will use the data at the desti-
nation, handshaking to inform the source whether the destination received
the data, flow control to help data get to its destination quickly and reliably,
and sequence numbering to ensure that the destination knows the correct
order for messages that arrive in multiple segments. The transmission con-
trol protocol (TCP) can provide all of these. The user datagram protocol
(UDP) is a simpler alternative for data transfers that only require specifying
of ports or error checking. Table 5-1 compares UDP and TCP.

Figure 5-2 shows the location of UDP and TCP in a network protocol stack.
UDP and TCP communicate with the IP layer and the application layer.
Some applications don’t require UDP or TCP, and may communicate
directly with the IP layer or the Ethernet driver.

About Sockets and Ports
Every UDP and TCP communication is between two endpoints, or sockets.
Each socket has a port number and an IP address.

In an Ethernet frame, the Source Address and Destination Address fields
identify the sending and receiving Ethernet interfaces. A UDP or TCP com-
munication specifies the destination more precisely by naming a port at the
destination. Each TCP communication also names a source port that identi-

Chapter 5

222

fies the provider of the data being sent. Each UDP communication has a
source port, but UDP datagrams aren’t required to include the source-port
number in the header.

A socket’s port isn’t a hardware port like the ports that a CPU accesses using
inp and out instructions. Instead, the port number identifies the process, or
task, that is providing the data being sent or using the data being received.

You can think of a socket as one end of a logical connection between com-
puters. Unlike a physical connection, where dedicated wires and electronic
components form a link, a logical connection exists only in software. Data

Figure 5-2: In the network protocol stack, the TCP and UDP layers
communicate with the IP layer and the application layer. Not all communications
require TCP or UDP.

Exchanging Messages Using UDP and TCP

 223

that travels between sockets that have a logical connection doesn’t have to
take the same physical path every time.

The Internet Assigned Numbers Authority (IANA) (www.iana.org) main-
tains a Port Numbers list that assigns port numbers to standard processes.

There are three groups of port numbers. Values from 1 to 1023 are called
well-known ports, or contact ports, and are for use by system processes or
programs executed by privileged users. Table 5-2 shows examples of a few
common processes and their well-known ports.

Assigning a well-known port to a process makes it easy for a computer to
know what port to use when it wants to communicate with a remote com-
puter. For example, a computer requesting a Web page normally sends the
request to port 80. The receiving computer assumes that messages arriving
at port 80 will use the hypertext transfer protocol (HTTP) for requesting
Web pages.

Ports from 1024 to 49151 are Registered ports. An entity can request a port
number from the IANA for a particular use, and the IANA maintains a list
of ports it has registered. Some of the Registered ports are assigned to com-
panies. For example, ports 5190 through 5193 are assigned to America
Online. Other assignments are to processes, such as Building Automation
and Control Networks (bacnet) on port 47808. Networks that don’t use the

Table 5-1: UDP and TCP are two popular protocols for exchanging data over
local networks and the Internet.
Protocol UDP TCP

Name of unit transmitted datagram segment

Source port specified to remote host? optional required

Must establish a connection before transferring data? no yes

Supports error checking? optional required

Supports flow control? no yes

Supports handshaking? no yes

Supports sequence numbering? no yes

Supports broadcasting and multicasting? yes no

Chapter 5

224

ports in this group for their registered purposes are free to use these ports for
any purpose.

Ports from 49152 through 65535 are dynamic and/or private ports. The
IANA doesn’t assign processes to these. A network may use these ports for
any purpose.

In a communication between two hosts, the values of the source and desti-
nation ports don’t have to be the same and usually aren’t. The source typi-
cally selects any available local port and requests to communicate with a
well-known port on the destination computer. On receiving the request, the
destination computer may send a reply that suggests switching the commu-
nication from the well-known port to a private port at the destination. This
keeps the well-known port available to receive other new communication
requests.

For communications that don’t use a well-known port, such as the examples
in this chapter, the computers must agree ahead of time on what ports to
transmit and receive on.

Table 5-2: Examples of standard protocols and their assigned port numbers.
Protocol Port Number

Domain Name Service 17

FTP data 20

FTP control 21

Telnet 23

SMTP 25

Network Time Protocol 53

Gopher 70

Finger 79

HTTP 80

POP2 109

POP3 110

Quote of the Day 123

Exchanging Messages Using UDP and TCP

 225

UDP: Just the Basics
UDP is a basic protocol that adds only port addressing and optional error
detecting to the message being sent. There is no protocol for handshaking to
acknowledge received data or exchange other flow-control information.
UDP is a connectionless protocol, which means that a computer can send a
message using UDP without first establishing that the remote computer is
on the network or that the specified destination port is available to commu-
nicate. For these reasons, UDP is also called an unreliable protocol, meaning
that using UDP alone, the sender doesn’t know when or if the destination
received a message.

The document that defines UDP is RFC0768: User Datagram Protocol. It’s
also approved standard STD0006.

A computer that wants to send a message using UDP places the message in a
UDP datagram, which consists of a UDP header followed by the data pay-
load containing the message. As Chapter 1 explained, the sending computer
places the UDP datagram in the data area of an IP datagram. In an Ethernet
network, the IP datagram travels in the data field of an Ethernet frame. On
receiving the Ethernet frame, the destination computer’s network stack
passes the data portion of the UDP datagram to the port, or process, speci-
fied in the datagram’s header.

In most respects, UDP is less capable than TCP, so UDP is simpler to imple-
ment and thus more suitable for certain applications. If needed, a communi-
cation can define its own handshaking protocol for use with UDP. For
example, after receiving a message, a receiving interface can send a reply
containing an acknowledge code or other requested information. If the
sender receives no reply in a reasonable amount of time, it can try again. But
if an application needs anything more than the most basic handshaking or
flow control, you should consider using TCP rather than re-inventing it for
use with UDP.

UDP has one capability not available to TCP, and that is the ability to send
a message to multiple destinations at once, including broadcasting to all IP
addresses in a local network and multicasting to a defined group of IP

Chapter 5

226

addresses. Broadcasting and multicasting aren’t practical with TCP because
the source would need to handshake with all of the destinations.

The UDP Header and Data

The UDP header contains four fields, followed by the data being transmit-
ted. Table 5-3 shows the fields.

Source Port Number. The source port number identifies the port, or pro-
cess, on the computer that is sending the message. The source port number
is optional. If the receiving process doesn’t need to know what process sent
the datagram, this field can be zero. The field is two bytes

Destination Port Number. The destination port number identifies the
port, or process, that should receive the message at the destination. The field
is two bytes.

UDP Datagram Length. The UDP datagram length is the length of the
entire datagram in bytes, including the header, with a maximum of 65535
bytes. The field is two bytes.

UDP Checksum. The UDP checksum is an optional error-checking value
calculated on the contents of UDP datagram and a pseudo header. The
pseudo header contains the source and destination IP addresses and the pro-
tocol value from the header of the IP datagram that will contain the UDP
datagram when it transmits on the network (Table 5-4). The pseudo header
doesn’t transmit on the network. Including the information in the pseudo
header in the checksum protects the destination from mistakenly accepting
datagrams that have been misrouted. The checksum value is calculated in
the same way as the IP header’s checksum, described in Chapter 4. The field
is two bytes.

A message that travels only within a local Ethernet network doesn’t need the
UDP checksum because the Ethernet frame’s checksum provides error
checking. For a message that travels through different, possibly unknown,
networks, the checksum enables the destination to detect corrupted data.

Data. A UDP datagram can be up to 65,535 bytes, and the header is eight
bytes, so a datagram can carry up to 65,527 bytes of data. In practice, the

Exchanging Messages Using UDP and TCP

 227

source computer usually limits datagrams to a shorter length. One reason to
use shorter datagrams is that a very large datagram might not fit in the desti-
nation’s receive buffer. Or the application receiving the data may expect a
message of a specific size.

Shorter datagrams may also be more efficient. When a large datagram travels
through networks with different capabilities, the Internet Protocol may frag-
ment the datagram, requiring the destination to reassemble the fragments.
All of the data will still probably get to its destination, but generally it’s more
efficient to divide the data at the source and reassemble it at the destination,
rather than relying on IP to do the work en route.

The IP standard requires hosts to accept datagrams of up to 576 bytes. An
IP header with no options is 20 bytes, and the UDP header is 8 bytes. So a
UDP datagram with up to 548 data bytes and no IP options should be able
to reach its destination without fragmenting.

Supporting UDP in Embedded Systems

Supporting UDP in an embedded system requires the ability to add a header
to data to transmit and remove the header from received data, plus support
for IP.

To send a datagram using UDP, a computer in an Ethernet network must do
the following:

• Place the destination port number and datagram length in the appropri-
ate locations in the UDP header. The source port number and checksum
in the header are optional. Computing the checksum requires knowing
the IP addresses of the source and destination.

Table 5-3: A UDP header has four fields.
Field Number of Bits Description

Source Port Number 16 The port, or process, that is sending the datagram.

Destination Port Number 16 The port, or process, the datagram is directed to.

UDP Datagram Length 16 The datagram length in bytes.

UDP Checksum 16 Checksum value or zero.

Chapter 5

228

• Append the data to send to the header.

• Place the UDP datagram in the data portion of an IP datagram. The IP
datagram requires source and destination IP addresses and a checksum
computed on the header.

• Pass the IP datagram to the Ethernet controller’s driver for sending on
the network.

To receive a datagram using UDP, a computer in an Ethernet network must
do the following:

• Receive an IP datagram from the Ethernet controller’s driver.

• Strip the IP header from the datagram. Calculate the IP checksum and
compare the result with the received value.

• If the checksums match, strip the header from the UDP datagram. If
using the UDP checksum, calculate its value and compare it to the
received checksum.

• Use the destination port number to decide where to pass the received
data.

As the examples at the beginning of the chapter showed, if you’re using a
module with UDP support, the details of creating the datagrams, extracting
data from a received datagram, and dealing with the checksums are handled
for you. The application code just needs to provide the IP addresses, port
numbers, and data to send and call a function to send the datagram, or wait
to receive data in a datagram addressed to a specific port.

Table 5-4: The checksum of a UDP datagram includes the values in a pseudo
header containing these five values.
Field Size (bytes) Source

Source Address 4 IP header

Destination Address 4 IP header

Zero 1 (none)

Protocol 1 IP header

UDP Length 2 Length in bytes of the UDP datagram including the
UDP header but excluding the pseudo header

E-mail for Embedded Systems

 339

E-mail’s primary use, of course, is to enable humans to send and receive
messages over a network. But many embedded systems can make good use
of e-mail as well. E-mail can be a convenient way for an embedded system to
exchange information with humans or even communicate with other
embedded systems with no human intervention at all.

For example, a security system can be programmed to send a message when
an alarm condition occurs. Or a data logger might send a message once a
day with the logger’s readings for the previous 24 hours. In the other direc-
tion, an embedded system might receive e-mail containing new configura-
tion settings or other commands, requests, or data.

E-mail has a couple of advantages over other methods of communication.
Recipients can retrieve and read their messages whenever they want. And if
the information isn’t time-critical, the sender might find it easier or more
efficient to place the information in an e-mail and send it off when conve-

Chapter 8

340

nient, rather than having to respond in real time to requests for the informa-
tion. Another advantage is that an account with e-mail access alone can be
less expensive than an account that supports hosting a Web server or per-
forming other TCP/IP communications.

A down side to e-mail is that recipients might not receive information as
quickly as needed if they don’t check their e-mail regularly or if an e-mail
server at either end gets backed up and delays delivery.

This chapter begins with examples that show how a Rabbit and TINI can
send and receive e-mail messages. The In Depth section has more about
obtaining and using e-mail accounts for embedded systems and the proto-
cols used to exchange e-mail on the Internet.

Quick Start:
Sending and Receiving Messages

The examples that follow demonstrate how a Rabbit and TINI can send
e-mail using the Simple Mail Transfer Protocol (SMTP) and receive e-mail
using the Post Office Protocol 3 (POP3).

Dynamic C includes support for e-mail protocols in Rabbit modules. A
TINI can send e-mail using Java’s URL class and a protocol handler that takes
care of many of the details involved in communicating with an SMTP
server. For receiving e-mail, a TINI can use TCP/IP to establish a connec-
tion with a mail server’s socket and exchange e-mail using the protocols sup-
ported by the server.

Sending e-mail requires the name of an SMTP server that will accept the
e-mail and deliver or forward it toward its recipient. As discussed later in
this chapter, the SMTP server may be at the ISP that provides the embedded
system’s Internet connection or at the host for the embedded system’s
domain name.

In a similar way, receiving e-mail requires the name of the POP3 server at
the ISP or domain host that stores e-mails sent to the embedded system’s

E-mail for Embedded Systems

 341

mailbox. To access the mailbox, the embedded system generally must pro-
vide the account’s user name and password.

The hosts of the SMTP and POP3 servers can provide the server names to
use in communicating with the servers.

If the program code contains a domain name rather than an IP address for
an SMTP or POP3 server, the embedded system must have a specified DNS
server to request the corresponding IP address from. See Chapter 5 for more
about using DNS servers with a Rabbit or TINI.

The example applications send e-mails that contain unchanging text mes-
sages and write the contents of received e-mails to the console (the STDIO
window in Dynamic C or a Telnet session for the TINI). In real-world
applications, the embedded system can place any kind of information in the
e-mails to send and can use the information in received e-mails in any way.

Sending an E-mail from a Rabbit
Dynamic C’s smtp.lib library contains functions that greatly simplify the
code required to program a Rabbit module to send e-mail. The firmware
defines strings for the sender’s e-mail address, the recipient’s e-mail address,
the Subject line, and the message body. The smtp_sendmail() function
then uses these values in initializing the data structures used in sending the
e-mail in the format expected by the SMTP server. The smtp_mailtick()
function handles communications with the mail server, and
smtp_status() returns a status code when the e-mail has been sent or an
error occurs.

The code that follows is an application that sends an e-mail.

Initial Defines and Declares

As explained in Chapter 5, the firmware selects a network configuration
from tcp_config.lib.

#define TCPCONFIG 1

SENDER is the rabbit’s e-mail address and SMTP_SERVER is the name of the
SMTP server that will accept the e-mail and forward it toward its recipient.

Chapter 8

342

You must change these values to values appropriate for your device’s e-mail
account and SMTP server.

#define SENDER "rabbit1@Lvr.com"
#define SMTP_SERVER "mail.example.com"

In initiating communications with an SMTP server, the client sends a
HELO command that identifies the client. By default, the Rabbit firmware
sends the Rabbit’s IP address as an identifier. Some mail servers require a
domain name rather than an IP address. For communicating with these
servers, SMTP_DOMAIN can set a domain name to send.

#define SMTP_DOMAIN "Lvr.com"

The SMTP_DEBUG macro causes all communications with the server to be
displayed in the Dynamic C’s STDIO window. This feature can be very
helpful in debugging.

#define SMTP_DEBUG

As in the previous examples, the #memmap directive causes all C functions
not declared as root to be stored in extended memory. The code requires the
dcrtcp.lib library to support TCP/IP and the smtp.lib library for SMTP com-
munications.

#memmap xmem
#use dcrtcp.lib
#use smtp.lib

Creating the Message

Variables hold the recipient’s e-mail address, the e-mail’s subject line, and
the message body. The create_message() function sets the contents of
these elements for the e-mail to be sent.

char recipient[64];
char subject[64];
char body[256];

void create_message() {
 strcpy(recipient, "jan@lvr.com");
 strcpy(subject, "Hello from Rabbit");
 strcpy(body, "Rabbit test message.");
}

E-mail for Embedded Systems

 343

Sending the Message

The main() routine calls the create_message function to compose the
message then calls sock_init() to initialize the TCP/IP stack. The
smtp_sendmail() function initializes internal data structures with the
strings in create_message(). A while loop calls smtp_mailtick()
repeatedly to perform communications with the SMTP server. When the
server returns a value other than SMTP_PENDING, the while loop ends and
the STDIO window displays the status message returned by
smtp_status().

void main()
{
 create_message();
 sock_init();

 smtp_sendmail(recipient, SENDER, subject, body);

 while(smtp_mailtick()==SMTP_PENDING)
 continue;

 switch (smtp_status())
 {
 case SMTP_SUCCESS:
 printf("The message has been sent.\n");
 break;
 case SMTP_TIME:
 printf("Timeout error. Message not sent.\n");
 break;
 case SMTP_UNEXPECTED:
 printf("Invalid response from mail server.
 Message not sent.\n");
 break;
 default:
 printf("Error. Message not sent.\n");
 }
} // end main()

Additional Options

The default timeout value for communications with the SMTP server is 20
seconds. The SMTP_TIMEOUT macro can specify a different number of sec-
onds:

#define SMTP_TIMEOUT 30

Chapter 8

344

To send a message body from a memory location instead of a string, use
Dynamic C’s smtp_sendmailxmem() function in place of
smtp_sendmail(). Instead of a string containing the message body, the
function requires the message body’s starting location in memory and the
message length.

Sending an E-mail from a TINI
One way to send an e-mail from a TINI is to write or obtain an SMTP cli-
ent program that establishes a connection with an SMTP host and sends
commands and data as needed to communicate with the host. Another
option is to use the java.net.URL class with a protocol implementer for
the URL mailto scheme. (See Chapter 4 for more about URL schemes.) The
protocol implementer automatically handles many of the details of SMTP
communications.

The TINI software supports mailto via com.dalsemi.protocol.* and
com.dalsemi.protocol.mailto.* classes. The source code that sup-
ports mailto is in the file ModulesSrc.jar, in the \src directory of the TINI dis-
tribution. The following SendEmail program uses mailto to send an e-mail.

Imports and Initial Declares

The class imports java.io classes for input and output functions and
java.net classes for networking functions. The com.dalsemi.proto-
col.mailto.* classes are required to support the URL class’s mailto proto-
col.

The TINI’s From address shouldn’t change, so it’s stored in the static string
MAILFROMADDRESS. You’ll need to change this value to match the address of
your TINI’s mailbox.

import java.io.*;
import java.net.*;
import com.dalsemi.protocol.mailto.*;

public class SendEmail {

 final String MAILFROMADDRESS = "tini1@Lvr.com";

E-mail for Embedded Systems

 345

Creating the Message

The main() method sets the values of three strings used in an e-mail: the
recipient’s e-mail address (mailToAddress), the Subject line (message-
Subject), and the message body (messageBody). These values are passed
to the SendEmail object mySendEmail.

 public static void main(String args[])
 {
 String mailToAddress = "jan@Lvr.com";
 String messageSubject = "Hello from TINI";
 String messageBody = "Test message.";

 SendEmail mySendEmail = new SendEmail(mailTo,
 subject, message);

 } // end main()

The constructor for SendEmail calls the class’s send() method to send an
e-mail using the three values specified in main().

 SendEmail(String mailToAddress, String messageSubject,
 String messageBody) {
 send(mailToAddress, messageSubject, messageBody);
 } // end SendEmail constructor

Sending the E-mail

The send() method does the work of sending the e-mail. The mailURL
object is a URL object that contains the sender’s and recipient’s e-mail
addresses in this format:

mailto:mailToAddress?from=mailFromAddress

where mailToAddress is the receiver’s e-mail address and mailFromAddress is
the TINI’s e-mail address.

 private void send(String mailToAddress,
 String messageSubject, String messageBody) {

 try {

 URL mailURL = new URL("mailto:" + mailToAddress +
 "?from=" + MAILFROMADDRESS);

Chapter 8

346

The mailConnection object represents a connection to the SMTP server
that will receive the e-mail being sent to the address in mailTo. The open-
Connection() method prepares to communicate with the SMTP server.

 Connection mailConnection =
 (Connection)mailURL.openConnection();
 mailURL.openConnection();

A Printstream object writes to the connection.

 PrintStream output = new
 PrintStream(mailConnection.getOutputStream());

 System.out.println("Sending the email...");

In sending an e-mail, the From and To headers are added automatically
using the strings in MAILFROMADDRESS and mailToAddress. The applica-
tion provides the Subject line, the required blank line (\r\n) between the
end of the headers and the beginning of the message body, and the message
body. The required period on a line by itself, which indicates the end of the
message, is added automatically on calling the Printstream object’s
close() method.

 output.print("Subject: ");
 output.print(messageSubject);
 output.print("\r\n\r\n");
 output.print(messageBody);
 output.print("\r\n");

 output.close();
 System.out.println("The message has been sent.");

A MalformedURLException error occurs on attempting to create a URL
object with incorrect URL syntax or an unsupported scheme. An IOExcep-
tion occurs on an error writing to the PrintStream object.

 } catch (MalformedURLException e) {
 System.err.print("MalformedURLException: ");
 System.err.println(e.getMessage());
 } catch (IOException e) {
 System.err.print("IOException: ");
 System.err.println(e.getMessage());
 }
 } // end send()

} // end SendEmail

E-mail for Embedded Systems

 347

Adding the MAILTO Dependency to the Build

Building the SendEmail application requires a few additional considerations
to enable using the mailto protocol handler. The build process requires
com.dalsemi.protocol and com.dalsemi.protocol.mailto

classes in modules.jar.

When compiling SendEmail.java to SendEmail.class, you must include the
location of modules.jar in the bootclasspath. Here is an example command
line (which you can place in a batch file) for compiling SendEmail.java to
Send.Email.class:

javac -bootclasspath ..\..\bin\tiniclasses.jar;
 ..\..\bin\modules.jar SendEmail.java

When converting SendEmail.class to SendEmail.tini, use the BuildDepen-
dency utility instead of TiniConvertor. Like TiniConverter, BuildDepen-
dency converts .class files to .tini files, but BuildDependency can also specify
dependencies. Here is an example command line for converting SendE-
mail.class to Send.Email.tini:

java -classpath ..\..\bin\tini.jar;%classpath%
BuildDependency -f SendEmail.class -o SendEmail.tini
-d ..\..\bin\tini.db -add MAILTO -p ..\..\bin\modules.jar

The -add option adds the MAILTO dependency to the project, and the -p
option names the location of modules.jar.

BuildDependency is in the file tini.jar. To view the available options, run
BuildDependency with no parameters.

Specifying the SMTP Host

To send an e-mail, you need to name an SMTP host that will receive and
deliver or forward the e-mail being sent. The SendEmail application above
doesn’t contain this information. There are two ways to provide it. You can
set the mail host in the ipconfig utility, using the -h option. For example:

ipconfig -h mail.example.com

Or you can provide the name in the command line that runs the program.
For example:

java -Dmail.host=mail.example.com SendEmail.tini &

Chapter 8

348

where mail.example.com is the name of the SMTP server.

A mail host specified in the command line overrides a mail host set in ipcon-
fig.

To prevent having to type a long command line each time you run the pro-
gram, create a text file that contains the command-line text, copy the file to
the TINI, and run the command line by typing:

source filename

where filename is the name of the text file.

Receiving E-mail on a Rabbit
For retrieving e-mail from a server, Dynamic C includes the pop3.lib library.
As with sending e-mail, the support library greatly simplifies the application
code required to receive an e-mail. The following program demonstrates
how a Rabbit can retrieve an e-mail. The program displays the messages in
the STDIO window.

Initial Defines and Declares

As explained in Chapter 5, a TCPCONFIG macro selects a network configura-
tion from tcp_config.lib. POP_HOST is the URL or IP address in dotted-quad
format of the POP3 mail host for the rabbit’s mailbox. POP_USER and
POP_PASS are the user name and password for the rabbit’s e-mail account.
You must change these values to values appropriate for your system’s e-mail
account.

#define TCPCONFIG 1

#define POP_HOST "mail.example.com"
#define POP_USER "rabbit1"
#define POP_PASS "embedded"

The POP_PARSE_EXTRA macro is optional, but convenient. It performs
additional processing of received messages, storing the contents of the To,
From, and Subject fields and the message body in separate strings.

#define POP_PARSE_EXTRA

E-mail for Embedded Systems

 349

As in the other Rabbit applications, the #memmap directive causes all C
functions not declared as root to be stored in extended memory. The
dcrtcp.lib library supports TCP/IP and the pop3.lib library supports POP3
communications.

#memmap xmem
#use "dcrtcp.lib"
#use "pop3.lib"

int current_message;

Processing and Displaying Messages

The store_message() function is a callback function that receives and
processes downloaded messages. The function has several parameters with
information about a received message. The message_number value is the
number of the message in the series of messages being retrieved. The to,
from, and subject strings contain the contents of the corresponding fields
in an e-mail’s header. The body_line string contains a line of text in the
message body, and body_length is the length of body_line.

The function is called when headers or a line of text in a message body have
been received.

int store_message(int message_number, char *to,
 char *from, char *subject, char *body_line,
 int body_length)
{

Statements in a program’s #GLOBAL_INIT section are called only once, on
program startup. In this example, the #GLOBAL_INIT section initializes the
current_message variable.

#GLOBAL_INIT
 {
 current_message = -1;
 }

If the message number of a retrieved message (message_number) is differ-
ent than the stored value in current_message, the function sets
current_message equal to message_number and displays the message’s
headers in the STDIO window.

Chapter 8

350

If message_number is the same as current_message, the headers have
already been displayed, so there’s no need to repeat them.

 if(current_message != message_number) {
 current_message = message_number;
 printf("MESSAGE <%d>\n", current_message);
 printf("FROM: %s\n", from);
 printf("TO: %s\n", to);
 printf("SUBJECT: %s\n", subject);
 }

The function writes a line of the message body to the STDIO window and
returns.

 printf("%s\n", body_line);
 return 0;
}

Retrieving Messages

The program’s main() function calls sock_init() to initialize the TCP/IP
stack and then calls pop3_init() to specify the callback function that will
process the contents of received e-mails.

void main()
{
 static long mail_host_ip;
 static int response;

 sock_init();
 pop3_init(store_message);

A call to resolve(POP_HOST) returns a long value containing the IP address
of the specified mail host.

 printf("Resolving the mail host's name...\n");
 mail_host_ip = resolve(POP_HOST);

The pop3_getmail() function initiates retrieving e-mail for the account
specified by POP_USER and POP_PASS from the server specified in
mail_host_ip. The function calls pop3_tick() repeatedly until it returns
a response other than POP_PENDING to indicate that the mail retrieval is
complete or has returned an error code.

 pop3_getmail(POP_USER, POP_PASS, mail_host_ip);
 printf("Receiving e-mail...\n\n");

E-mail for Embedded Systems

 351

 while((response = pop3_tick()) == POP_PENDING)
 continue;

A switch block displays a message that describes the result returned by
pop3_tick(), and the program ends.

 switch(response)
 {
 case POP_SUCCESS:
 printf("\nThe messages have been retrieved.\n");
 break;
 case POP_TIME:
 printf("Timout error.\n");
 break;
 case POP_ERROR:
 printf("General error.\n");
 break;
 default:
 printf("Undefined error.\n");
 }
} // end send_email

Additional Options

Two additional macros, POP_DEBUG and POP_NODELETE, can be useful in
some situations.

For debugging, calling POP_DEBUG causes all communications with the
POP3 server to display in Dynamic C’s STDIO window.

#define POP_DEBUG

After downloading an e-mail message, the Rabbit normally sends a POP3
DELE command to request the server to delete the message on the server.
After calling POP_NODELETE, the Rabbit no longer sends the DELE com-
mand, and most servers will retain the messages after the Rabbit has down-
loaded them.

#define POP_NODELETE

If the application doesn’t require the contents of the From, To, and Subject
in separate strings, don’t define POP_PARSE_EXTRA and provide only these
three parameters to the callback function: the message number, a pointer to
a line of text, and the length of the text.

Chapter 8

352

Receiving E-mail on a TINI
A TINI can also retrieve e-mail from a POP3 server. However, the TINI has
no built-in support for POP3 communications. One option is to obtain a
module with POP3 support. Or you can provide the support by writing an
application that sends and responds to POP3 commands. The following
application connects to a mail server, downloads any messages in the mail-
box, and writes the status information and the messages to System.out for
viewing in a Telnet session. The In Depth section of this chapter has more
details about the POP3 commands the application sends.

Imports and Initial Declares

The program imports java.net classes for networking functions and
java.io classes to support the input and output functions. The
java.util package contains the StringTokenizer class used in reading
received responses from the mail server.

The default port for POP3 servers is 110.

You must change the USERNAME, PASSWORD, and MAILHOST strings to match
the user name, password, and the POP3 mail host for the TINI’s mailbox.
The mail host can be a domain name such as mail.example.com or an IP
address in dotted-quad format.

import java.io.*;
import java.net.*;
import java.util.*;

public class ReceiveEmail {

 public static final int POP3PORT = 110;

 private final String USERNAME = "tini1";
 private final String PASSWORD = "ethernet";
 private final String MAILHOST = "mail.example.com";

 private BufferedReader input;
 private PrintWriter output;
 private Socket pop3Socket;

 private String mailHost;
 private String userName;

E-mail for Embedded Systems

 353

 private String password;

The Constructor

The class’s constructor uses the values passed to it to set corresponding vari-
ables.

 public ReceiveEmail(String mailHost, String userName,
 String password) {
 this.mailHost = mailHost;
 this.userName = userName;
 this.password = password;
 } // end ReceiveEmail constructor

Requesting Messages

The main() method sets the deleteOnServer variable and calls the
retrieveEmails() method, which carries out the class’s purpose. Set
deleteOnServer true to request the mail server to delete messages after
downloading, or false to request the server to retain the messages.

 public static void main(String[] args) {

 boolean deleteOnServer = false;
 ReceiveEmail myReceiveEmail = new ReceiveEmail
 (MAILHOST, USERNAME, PASSWORD);
 myReceiveEmail.retrieveEmails(deleteOnServer);

 } // end main()

The retrieveEmails() method calls routines to log on to the mail host,
get the number of messages waiting, and read and display the messages.

The Socket object pop3Socket connects to the specified mail server’s
POP3 port. The Socket class’s setSoTimeout() method enables setting a
timeout in milliseconds for waiting for data from the POP3 host. A timeout
causes a java.io.InterruptedIOException.

 private void retrieveEmails(boolean deleteOnServer) {

 int socketTimeout = 10000;
 String response;
 try {
 System.out.print("Connecting to ");
 System.out.println(MAILHOST);
 pop3Socket = new Socket(MAILHOST, POP3PORT);

Chapter 8

354

 pop3Socket.setSoTimeout(socketTimeout);

Reading Messages

A BufferedReader object reads input from the mail host, and a Print-
Writer object writes to the mail host. PrintWriter’s autoFlush property
is set to true to cause each println to automatically flush the output
buffer, sending the text to the server.

On establishing a connection, the mail server returns +OK.

 input = new BufferedReader(new InputStreamReader
 (pop3Socket.getInputStream()));
 output = new PrintWriter
 (pop3Socket.getOutputStream(), true);

 response = input.readLine();
 if (response.startsWith("+OK")) {
 System.out.println("Connected to the mail host.");

If the connection was established, the logOntoMailHost() method
attempts to log on. On success, the getNumberOfMessages() method
returns the number of messages in the mailbox. If one or more messages are
available, the getMessages() method retrieves them. The closeConnec-
tionWithServer() method closes the connection with the mail host and is
in a finally block to ensure that it executes before the method ends.

 if (logOntoMailHost()) {

 int numberOfMessages = getNumberOfMessages();
 if (numberOfMessages > 0) {
 getMessages(numberOfMessages, deleteOnServer);
 } else {
 System.out.println("No messages in mailbox.");
 }

 } else {
 System.out.print("Error in connecting to the
 mail host: ");
 System.out.println(response);
 }

 } // end if (response.startsWith("+OK"))

E-mail for Embedded Systems

 355

 } catch(IOException e) {
 System.err.print("IO exception: ");
 System.err.println(e.getMessage());
 } finally {
 closeConnectionWithServer();
 }
 } // end retrieveEmails

Logging onto the Mail Host

The logOntoMailHost() method uses the provided user name and pass-
word to attempt to log on to the mail host and gain access to the user’s mail-
box. The POP3 protocol defines USER and PASS commands for providing
these values. When a command succeeds, the mail host returns +OK. The
method returns true if the logon was successful and false if it failed.

 private boolean logOntoMailHost() throws IOException {

 String response;

 output.println("USER " + USERNAME);
 response = input.readLine();

 if (!(response.startsWith("+OK"))) {
 System.out.print("Password error: ");
 System.out.println(response);
 return false;
 }

 output.println("PASS " + PASSWORD);
 response = input.readLine();

 if (!(response.startsWith("+OK"))) {
 System.out.print("User name error: ");
 System.out.println(response);
 return false;
 }

 System.out.println("Logged on to the mail
 server.");
 return true;
 } // end logOntoMailHost

Chapter 8

356

Getting the Number of Messages

The getNumberOfMessages() method sends a POP3 STAT command to
retrieve the number of messages in the mailbox and the number of bytes in
the messages.

The response to the STAT command begins with +OK, followed by the num-
ber of messages and the total number of bytes in the messages. The String-
Tokenizer object st extracts tokens, consisting of the text up to a delimiter
such as a space or new-line character. The hasMoreTokens() method indi-
cates whether a token is available for reading. If the first token equals +OK,
the tokenizer extracts the tokens that follow. The method returns the num-
ber of messages or -1 on an error.

 private int getNumberOfMessages() throws IOException {
 int numberOfMessages = 0;
 int numberOfBytes = 0;

 String response;
 output.println("STAT");
 response = input.readLine();
 System.out.println("STAT response = " + response);

 StringTokenizer st = new StringTokenizer(response);
 if (st.hasMoreTokens()) {
 if (!(st.nextToken().equals("+OK"))) {
 return -1;
 }
 }

 if (st.hasMoreTokens()) {
 numberOfMessages =
 Integer.parseInt(st.nextToken());

 if (st.hasMoreTokens()) {
 numberOfBytes =
 Integer.parseInt(st.nextToken());
 }
 }

 System.out.print("The mailbox has ");
 System.out.print(numberOfMessages);
 System.out.print(" messages in ");
 System.out.print(numberOfBytes);
 System.out.println(" bytes.");

E-mail for Embedded Systems

 357

 return numberOfMessages;
 } // end getNumberOfMessages

Retrieving and Displaying Messages

The getMessages() method retrieves the messages, displays them, and if
deleteOnServer is true, requests the mail host to delete the retrieved
messages when the connection closes.

 private void getMessages(int numberOfMessages,
 boolean deleteOnServer) throws IOException {
 String response;

 System.out.println ("Retrieving e-mail...");

A for loop steps through each message up to numberOfMessages, retriev-
ing each in turn.

 for(int messageNumber = 1; messageNumber <=
 numberOfMessages; messageNumber++) {

 System.out.print("Retrieving message ");
 System.out.print(messageNumber);
 System.out.print(" of ");
 System.out.print(numberOfMessages);

The POP3 RETR command requests a specific message from the mail host. If
the mail host’s response begins with +OK, the BufferedInput object reads
lines from the mail host until detecting a period on a line by itself, which
indicates the end of the message.

A message body that contains a line with only a period will have an addi-
tional period added to the beginning of the line. The startsWith()
method checks to see if the response string begins with a period. If it does,
the substring() method removes the first period.

 The received lines are written to the standard output stream and display in
the window of a Telnet session.

 output.print("RETR ");
 output.println(messageNumber);

 response = input.readLine();

Chapter 8

358

 if (!(response.startsWith("+OK"))) {
 System.out.print("Error reading response: ");
 System.out.println(response);
 return;
 }

 response = input.readLine();
 while(!response.equals(".")) {
 if (response.startsWith(".")) {
 response = response.substring(1);
 }
 System.out.println(response);
 response = input.readLine();
 }

If deleteOnServer is true, a POP3 DELE command followed by the mes-
sage number requests the mail host to delete the just-retrieved message on
the server.

 if(deleteOnServer) {
 output.print("DELE ");
 output.println(messageNumber);

 response = input.readLine();
 if (!(response.startsWith("+OK"))) {
 System.out.print("Error deleting messages: ");
 System.out.println(response);
 return;
 }
 }
 } // end for loop

 return;
 } // end getMessages()

Closing the Connection

The closeConnectionWithServer() method closes the connection with
the mail server. A POP3 QUIT command informs that server that communi-
cations are complete, and the socket’s close() method closes the connec-
tion.

 private void closeConnectionWithServer() {
 if(pop3Socket != null) {
 try {
 output.println("QUIT");

E-mail for Embedded Systems

 359

 pop3Socket.close();
 System.out.println("The connection with the mail
 server is closed.");

 } catch(IOException e) {
 System.err.print("IO exception: ");
 System.err.println(e.getMessage());
 }
 }
 } // end closeConnectionWithServer()

} // end ReceiveEmail

In Depth:
E-mail Protocols

The examples above showed how embedded systems can use SMTP and
POP3 to send and receive e-mail. This section has more about the protocols
and how to use them in embedded systems.

How E-mail Works
To send and receive e-mails on the Internet, an embedded system (or any
computer) must have the following:

• A connection to the Internet.

• An e-mail account with an address in the form user_name@domain. In
the e-mail address rabbit1@Lvr.com, Lvr.com is the domain that hosts the
e-mail account and rabbit1 is the user name that identifies the owner of
the account in the domain. The user also selects a password required to
gain access to the account’s mailbox.

• Access to incoming and outgoing mail servers. The incoming mail server
accepts and stores e-mail addressed to the account and enables the user to
retrieve received messages. The outgoing mail server accepts and delivers
or forwards any mail the user sends.

• Support for TCP/IP and the protocols used by the mail servers in send-
ing and retrieving e-mail. Two widely supported protocols are the Simple
Mail Transfer Protocol (SMTP) for sending e-mail to a server that will

Chapter 8

360

forward the e-mail toward its recipient and the Post Office Protocol Ver-
sion 3 (POP3) for retrieving received e-mail from a mailbox on a server.

E-mail Accounts for Embedded Systems

An e-mail account used by an embedded system is no different from an
e-mail account that anyone might use. However, in obtaining e-mail
accounts, there are considerations that are specific to embedded systems.

Embedded systems tend to have limited processing power and fewer
resources compared to larger computers. This means that e-mail communi-
cations should use protocols that aren’t overly complex, to avoid overwhelm-
ing system resources. And second, embedded systems are likely to use their
e-mail without human intervention, so they need to use protocols that
enable composing, sending, retrieving, and reading messages entirely under
firmware control. In other words, a Web-based e-mail account designed for
users who will log onto a Web page and click through various screens to
view and send messages isn’t the best choice for an embedded system. An
account that enables the embedded system to communicate using POP3
and SMTP commands alone is a better choice for most embedded applica-
tions.

If your embedded system will receive e-mails, you want to take special care
to ensure that the e-mail address remains private. Don’t give the account an
easily guessed user name such as info or webmaster. And don’t post the
address on a Web page, because spammers will harvest the address and inun-
date the account with e-mails that the embedded system will have to plow
through to find any valid correspondence.

Domain Hosts and ISPs

In many cases, the user or manager responsible for an account contracts
with an ISP to provide everything required for Internet access, including an
Internet connection, the option to set up one or more e-mail addresses, and
the ability to send and receive e-mail using the ISP’s mail servers. With this
type of account, the ISP provides the domain name in the e-mail address
and the user selects a user name that is unique to the domain.

E-mail for Embedded Systems

 361

But a user (which can be an embedded system) can also have different
sources for Internet access and an e-mail account. Businesses and other enti-
ties that own a domain name often contract with a domain-hosting com-
pany for e-mail services, including the ability to create multiple e-mail
addresses for the domain. Embedded systems in the domain Lvr.com might
have the e-mail addresses rabbit1@Lvr.com, rabbit2@Lvr.com, and so on.
The domain host provides a mail server that accepts and stores e-mail sent to
the domain’s e-mail addresses and enables the owners of the e-mail addresses
to retrieve the messages on request.

ISPs generally have local connections for their customers, but a domain host
doesn’t have to be located physically near the computers that use the
domain’s e-mail accounts. To retrieve a domain’s e-mail, a user may use a
local ISP to gain access to the Internet and then communicate over the
Internet with the domain host’s mail server.

If your domain host and ISP are different entities, you need to decide which
provider’s mail host to use for sending e-mail. Sometimes you have a choice.
In other cases, only one mail server, either at the ISP or at the domain host,
will work.

The first issue in deciding what mail host to use is that the computer send-
ing the e-mail and the mail host receiving it must support the same proto-
col. Embedded systems are likely to use SMTP, while some ISPs support
only Web-based e-mail or other proprietary protocols.

If the sending computer’s ISP doesn’t have an available SMTP server to
communicate with, the embedded system might be able to use a mail server
at the domain host instead.

However, some domain hosts have implemented security measures that
senders of e-mail need to be aware of. The security is needed because SMTP
doesn’t support authentication of users using passwords. A local ISP can
require computers to identify themselves on connecting by providing a user
name and password or a hardware identifier such as the Ethernet address of
a network card or modem. The ISP can use this information to determine
whether a connected computer is authorized to use the ISP’s mail server.

Chapter 8

362

An SMTP mail server at a domain host accessed via the Internet doesn’t have
information about the users who are accessing the server. Allowing anyone
to use an SMTP server leaves the server open to abuse. So some hosts have
implemented a type of authorization called POP-before-SMTP. This
method requires a user to obtain temporary authorization to send e-mail by
first checking the account for incoming e-mail. After checking for e-mail,
the user is authorized to use the provider’s server to send e-mail for a limited
time, such as 15 minutes. After the authorization expires, the user needs to
check for incoming e-mail again to regain authorization to send e-mail. If
your domain host uses POP-before-SMTP authorization, your embedded
system will need to comply with this protocol in order to send e-mail.

Another problem with accessing external mail servers is that some ISPs
block all traffic to port 25, which is SMTP’s default port, to prevent users
from sending e-mail via external SMTP servers. If your ISP follows this
practice and you want to use your domain host’s SMTP server, check with
the domain host to see if you can access their server on another port.

When you sign up for an e-mail account that uses POP3 and SMTP, the
host provides the names of its incoming and outgoing mail servers. For
example, the POP3 server for incoming mail might be mail.example.com
and the SMTP server might be smtp.example.com. You select a user name
and password, and you or the provider specifies the domain name in the
e-mail address. On a PC, you can typically view the server names in your
e-mail program, under Accounts, Options, or a similar menu item.

In the same way, an embedded system uses an account’s user name, domain
name, password, and servers in sending and receiving e-mail. The system’s
firmware can compose messages to send and parse received messages to
extract the desired information.

Using the Simple Mail Transfer Protocol
The Simple Mail Transfer Protocol (SMTP) defines a reliable and efficient
way of transferring e-mail to a server. Its command-and-reply protocol is
basic enough to be feasible for small systems to support.

E-mail for Embedded Systems

 363

To send an e-mail, an SMTP client sends a series of commands to establish
communications with an SMTP server and then sends the e-mail message
for the server to deliver to its recipient or forward to another server for deliv-
ery. On receiving a command from a client, the server returns a reply code
and may return a reply message or additional requested information. SMTP
communications typically use TCP, but TCP isn’t required.

The document that defines SMTP is RFC 2821: Simple Mail Transfer Proto-
col.

A Typical Transaction

Below is a typical session where a client establishes a connection, sends an
e-mail, and closes the connection.

1. The client and server establish a TCP connection with the server’s SMTP
port.

Server: 220

2. The client identifies itself to the server.

Client: HELO Lvr.com
Server: 250

3. The client provides the e-mail address of the sender.

Client: MAIL FROM <rabbit1@Lvr.com>
Server: 250

4. The client provides the e-mail address of the recipient.

Client: RCPT TO: <jan@example.com>
Server: 250

5. The client sends the e-mail’s contents, including headers and ending with
a period on a line by itself.

Client: DATA
Server: 354
Client: From: rabbit1@Lvr.com
Client: To: jan@example.com
Client: Subject: Hello from Rabbit
Client: (blank line between e-mail header and message body)

Chapter 8

364

Client: Rabbit test message.
Client: .
Server: 250

6. The client notifies the server that it’s ready to close the session.

Client: QUIT
Server: 221

7. The client and server close the TCP connection.

SMTP Commands and Reply Codes

SMTP supports eleven commands for establishing communications, send-
ing e-mail, requesting information about the server, and closing communi-
cations. Some commands have required or optional parameters. For
example, with a HELO command, the client provides its domain name or
IP address. After receiving a command, the server returns a 3-digit reply
code. Many servers also include a text message after the reply code. For
example, on receiving a QUIT command, a server at example.com might
reply with the following reply code and text message:

221 example.com closing transmission channel

Some commands, such as HELP, request information, which the server pro-
vides following the reply code.

The SMTP standard says that the commands aren’t case sensitive, but in vio-
lation of the standard, some mail servers require commands to be upper
case, so using upper case is safest.

Each command and reply ends in the pair of ANSI characters 0Dh 0Ah,
which is a carriage return/line feed pair, often abbreviated as CRLF. In
print functions in program code, this pair is often expressed as \r\n.

The Commands

The following are the eleven SMTP commands, with an explanation and
example for each:

DATA

E-mail for Embedded Systems

 365

Purpose: Announces that all of the data that follows, up to the end-of-mail
indicator, is the e-mail message.
Parameters: none
Reply code on success: 354, then 250 after receiving the end-of-message
indicator (a period on a line by itself).
Example:
 Client: DATA
 Server: 354
 Client: Hello,
 Client: This is a test message.
 Client: .
 Server: 250 OK

EHLO

Purpose: Opens communications, identifies the client, and requests infor-
mation about the server. In a multi-line reply, all but the last line have a
hyphen after the reply code. Some older servers support only HELO, not
EHLO. Clients may use HELO, though EHLO is recommended.
Parameters: the client’s domain name or IP address in dotted-quad format
Reply code on success: 250
Example:
 Client: EHLO Lvr.com
 Server: 250-example.com greets Lvr.com
 Server: 250-8BITMIME
 Server: 250-SIZE
 Server: 250-DSN
 Server: 250 HELP

EXPN

Purpose: requests the server to verify that the parameter identifies a mail-
ing list and returns the e-mail addresses of the list’s members. In a
multi-line reply, all but the last line have a hyphen after the reply code.
Servers aren’t required to support this command.
Parameter: <the mailing list to expand>
Reply code on success: 250 or 252
Example:
 Client: EXPN example-list

Chapter 8

366

 Server: 250-<jsmith@example1.com>
 Server: 250 <rjones@example2.com>

HELO

Purpose: Opens communications and identifies the client.
Parameter: the client’s domain name or IP address in dotted-quad format
Reply code on success: 250
Example:
 Client: HELO 192.0.2.1
 Server: 250 OK

HELP

Purpose: Requests additional information. Servers aren’t required to sup-
port this command.
Parameter: [string that names a HELP topic]
Reply code on success: 211 or 214
Example:
 Client: HELP
 Server: 211 help information

MAIL

Purpose: Initiates a transaction that sends e-mail to the server.
Parameter: FROM: <sender’s e-mail address>
Reply code on success: 250
Example:
 Client: MAIL FROM: <tini1@Lvr.com>
 Server: 250 OK

NOOP

Purpose: No operation. Verifies that the server is receiving commands.
Parameter: none
Reply code on success: 250
Example:
 Client: NOOP
 Server: 250 OK

QUIT

Purpose: Requests the server to close the connection.

E-mail for Embedded Systems

 367

Parameter: none
Reply code on success: 221
Example:
 Client: QUIT
 Server: 221 example.com closing transmission channel
 Client and Server then close the connection.

RST

Purpose: Requests the server to cancel the current transaction and reset all
buffers and state tables relating to the transaction. If the server hasn’t yet
acknowledged the end-of-data indicator for a message, the server discards
all information relating to the message.
Parameter: none
Reply: 250
Example:
 Client: RST
 Server: 250 OK

RCPT

Purpose: Identifies the e-mail’s recipient.
Parameters: TO: <sender’s e-mail address>
Reply code on success: 250 or 251
Example:
 Client: RCPT TO: <rabbit1@Lvr.com>
 Server: 250 OK

VRFY

Purpose: Requests the server to verify that the parameter identifies the user
or mailbox.
Parameter: the user’s e-mail address
Reply: 250 <user’s e-mail address>
Example:
 Client: VRFY tini1
 Server: 250 <tini1@Lvr.com>

Chapter 8

368

The Reply Codes

Table 8-1 lists the reply codes an SMTP server can return. If the reply code
begins with 2, the command was successful. If the reply code begins with 3,
the command was successful and the server is waiting for additional data. If
the reply code begins with 5, the server didn’t accept the command or carry
out the requested action and the client needs to take action to correct the
command before retrying.

Requirements for an SMTP Client

If your embedded system uses SMTP client code such as Dynamic C’s
smtp.lib or a mailto protocol handler in Java, you generally don’t have to
worry about the details of programming the SMTP transactions. If you’re
programming at a lower level, the client’s program code must meet the
requirements of the SMTP standard. In addition, every e-mail message must
meet certain requirements.

The Client

Every SMTP client must be capable of the following:

1. The client must send the appropriate commands for establishing commu-
nications, sending e-mail, and closing communications. The minimum
commands to send a message are HELO or EHLO, followed by MAIL,
RCPT, DATA, and QUIT. The commands must be sent in this order.

2. The client must read received reply codes and take appropriate action,
which may include retrying the command or closing the session.

3. The client must implement a timeout for receiving a reply from a com-
mand. The SMTP standard recommends timeout values ranging from 2 to
10 minutes for different operations. For example, the minimum recom-
mended timeout for receiving a reply after sending an end-of-message indi-
cator is 10 minutes, to allow the server time to process the message. Clients
can specify other reasonable timeout values, however. If a server fails to
respond and a timeout occurs, about all the client can do is close the con-
nection and retry.

E-mail for Embedded Systems

 369

4. The client must be sure that the message doesn’t include a line with a
period on a line by itself, which is the end-of-message indicator. If the mes-
sage contains a line that begins with a period, the sender must add another
period to the beginning of the line. On receiving a line of message text, an
e-mail client checks to see if the line begins with a period. If it does, and if
the line contains one or more additional characters, the receiver strips the
period at the beginning of the line, returning the message line to its original
contents.

Table 8-1: An SMTP server returns one of these reply codes after receiving a
command.
Reply Code Description

211 System status or reply to HELP command.

214 Help message.

220 domain Service ready.

221 domain Service closing transmission channel. (Reply to QUIT command.)

250 Requested mail action okay and completed.

251 User is not local. Will forward to forward path.

252 Cannot verify user, but will accept message and attempt delivery.

354 Start the mail input.

421 domain Service not available, closing transmission channel.

450 Requested mail action not taken: mailbox not available (busy).

451 Requested action aborted: local error in processing.

452 Requested action not taken: insufficient system storage.

500 Syntax error, command not recognized.

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command parameter not implemented.

550 Requested action not taken: mailbox not available.

551 User not local; please try forward path.

552 Requested mail action aborted: exceeded storage allocation.

553 Requested action not taken: mailbox name not allowed (incorrect syntax).

554 Transaction failed.

Chapter 8

370

For many embedded systems, received messages have a standard, applica-
tion-specific format, and the format can be defined so that a message body
never contains a period on a line by itself. In this case, the client doesn’t have
to worry about checking for message lines that begin with periods.

Messages

In addition to the requirements for the server, RFC standards specify
requirements for e-mail messages.

The SMTP standard specifies maximum lengths that all SMTP servers must
support. A user name may be up to 64 characters. A domain name may be
up to 255 characters. A line in a message may be up to 1000 characters,
including the two end-of-line characters. And a message may be up to 64
kilobytes. Servers must support at least these “minimum maximums,” and
can support larger maximums.

The document RFC 2822: Internet Message Format specifies the format for
text messages sent as e-mail. A message consists of the following elements in
order:

headers
blank line
message body

Each header field has the following format:

field_name:field_body\r\n

where field_name is the field’s name (such as From), field_body is the field’s
contents (such as rabbit1@Lvr.com), and \r\n signifies a CRLF sequence.

The two header fields required by the specification are From and Date.
From identifies the sender. Date is the date that the sender put the message
into its final form. Other headers such as To and Subject are optional.
Dynamic C’s SMTP client automatically inserts From, To, and Subject
headers using the parameters provided to the smtp_sendmail() and
smtp_sendmailxmem() functions.

Not every embedded system that wants to send e-mail includes a real-time
clock for obtaining Date information. A message without a Date field will

E-mail for Embedded Systems

 371

reach its recipient as long as the recipient’s software doesn’t care that the field
is missing.

The recommended format for the Date field is:

Date: <day> <month> <year> <time of day> <time zone>

or

Date: <day of week>, <day> <month> <year> <time of day> <time zone>

The month and optional day of the week are given as 3-letter abbreviations.
The time is in hours and minutes since midnight. The year must use four
digits. The time zone should be local.

For example,

Date: 11 Oct 2003 14:52 CST

or

Date: Mon, 5 Jun 2003 12:01 EST

For information on standard ways to send non-text information such as
images or audio, see the MIME specifications in RFC 2045, 2046, and
2049.

Performance Issues

If your device has time-critical tasks to perform at the same time as it’s send-
ing e-mail, it’s best to place the code that communicates with the SMTP
server in its own thread or task, so the CPU can do other things while wait-
ing for the server to respond.

Sending E-mail with a URL
Another option for sending e-mail is to use a URL with the mailto scheme.
Chapter 4 introduced URLs and schemes such as http, ftp, and mailto. The
scheme identifies the protocol that a browser or other software will use in
sending the request specified in the URL.

When you click a typical mailto link on a Web page, the browser creates a
new e-mail message in the PC’s default e-mail program and fills in the To:

Chapter 8

372

header with the mailto address. A user can then compose and send a mes-
sage to that address.

As the TINI example in this chapter showed, embedded systems can use the
mailto protocol to send e-mail messages created in firmware. In Java, the
URL class represents a URL, and a protocol implementer for the mailto
scheme handles the details of communicating with an SMTP server. A basic
URL that uses the mailto scheme has the following form:

mailto:tini1@Lvr.com

RFC 2368: The mailto URL scheme extends the mailto URL scheme defined
in RFC1738. Under RFC2368, a mailto URL can also contain one or more
headers and even the message body. For example, to include a From:
address, use this format:

mailto:jan@Lvr.com?from=tini1@example.com

A question mark separates the recipient’s e-mail address and the From
header.

Use & to concatenate additional headers and the message body. For example:

mailto:jan@Lvr.com?from=tini1@example.com&
 subject=greeting&body=hello%20from%20TINI!

Characters that are reserved in HTML and in this URL scheme must be
encoded. Encode a space (as in the message body above) as %20. Encode a
question mark (?) as %3, an ampersand (&) as &, a percent sign (%) as
%25, and a line break in the message body as %0D%0A.

Using the Post Office Protocol
SMTP enables a computer to send e-mail. A complementary protocol is the
Post Office Protocol Version 3 (POP3), which enables a computer to down-
load e-mail from a server.

The standard that defines POP3 is RFC 1939: Post Office Protocol - Version
3, the third edition of the protocol first described in RFC 918.

As with SMTP, in a POP3 communication, a client sends a series of com-
mands to a server and the server returns a response to each command. POP3

E-mail for Embedded Systems

 373

communications travel in TCP segments. The default port for POP3 com-
munications is 110.

The POP3 standard defines twelve commands. Some commands have
required or optional parameters that follow the command.

Every POP3 response begins with a status indicator: +OK on success and
-ERR to respond to a command that is not recognized, not implemented, or
has incorrect syntax. For some commands, requested information may fol-
low the status indicator, and a server may provide additional text to explain
the status. The status indicators are always upper case.

The POP3 standard defines three states in a session. After a TCP connection
has been established and the server has sent a greeting, the session is in the
Authorization state. After the client identifies itself and the server has
acquired resources associated with the client’s mailbox, the session is in the
Transaction state. In this state, the client has exclusive access to the mailbox
and the client can request services from the server. After the client has sent a
QUIT command, the session is in the Update state. The server releases
resources associated with the client, deletes messages marked for deleting,
and returns a response. The client and server then close the TCP connec-
tion.

A newer and more flexible alternative to POP3 is the Interactive Mail Access
Protocol (IMAP) defined in RFC 1730. IMAP enables a user to select mes-
sages to download, move files among multiple mailboxes on the server, and
share a mailbox with other clients. IMAP also has more efficient handling of
MIME attachments. For the needs of a typical embedded system, however,
POP3’s capabilities are sufficient and easier to implement.

A Typical POP3 Transaction

Below is a typical session where a client establishes a connection, retrieves an
e-mail, and closes the connection.

1. The client and server establish a TCP connection with the server’s SMTP
port.

Server: +OK

Chapter 8

374

2. The client sends a user name.

Client: USER tini1
Server: +OK

3. The client sends a password.

Client: PASS ethernet
Server: +OK

4. The client requests a listing of the number of messages in the mailbox and
the total number of bytes in the messages.

Client: STAT
Server: +OK 1 856

5. The client requests to retrieve message 1.

Client: RETR 1
Server: +OK
Server: the message contents
Server: .

6. The client notifies the server that it’s ready to close the session.

Client: QUIT
Server: +OK

7. The client and server close the TCP connection.

POP3 Commands

The following are POP3’s twelve commands. The commands are case-insen-
sitive. All servers must support seven of the commands and the rest are
optional, as noted.

APOP

Purpose: requests user authentication using a method that doesn’t require
transmitting an unencrypted password. To obtain the required
MD5-digest-string parameter, the client applies the MD5 algorithm
described in RFC 1321 to the timestamp in the server’s greeting and a
secret string shared by the client and server. For a specific mailbox, a server
generally supports either PASS or APOP.
Servers required to support: no

E-mail for Embedded Systems

 375

Parameters: user_name <MD5_digest_string>
Reply on success: +OK
Example:
 Client: APOP jan <16-byte string in hexadecimal format>
 Server: +OK

DELE

Purpose: requests to mark a message for deleting. Normally, users will want
to delete retrieved messages to prevent filling the mailbox and retrieving
the same messages over and over. A server may also delete retrieved mes-
sages automatically, even if the client doesn’t send a DELE command, or a
server may delete messages that have been retrieved but not deleted after a
specified time limit.
Servers required to support: yes
Parameters: message_number
Reply on success: +OK
Example:
 Client: DELE 4
 Server: +OK message 4 deleted

LIST

Purpose: requests a scan listing containing the number of bytes in the
requested message or all messages if no message number is specified.
Servers required to support: yes
Parameters: [message_number]
Reply on success: +OK number_of_message number_of_bytes
If there are multiple messages, the server returns a multi-line reply.
Example:
 Client: LIST 2
 Server: +OK 2 130

NOOP

Purpose: no operation. Indicates that the connection to the server is valid.
Servers required to support: yes
Parameters: none
Reply on success: +OK
Example:
 Client: NOOP

Chapter 8

376

 Server: +OK

PASS

Purpose: Provides a password for authentication. For a specific mailbox, a
server generally supports either PASS or APOP.
Servers required to support: yes
Parameters: password
Reply on success: +OK
Example:
 Client: PASS embedded
 Server: +OK

QUIT

Purpose: requests the server to delete all messages marked for deleting and
close the connection.
Servers required to support: yes
Parameters: none
Reply on success: +OK
Example:
 Client: QUIT
 Server: +OK

RSET

Purpose: unmark any messages marked for deleting
Servers required to support: yes
Parameters: none
Reply on success: +OK
Example:
 Client: RESET
 Server: +OK

RETR

Purpose: requests a message.
Servers required to support: yes
Parameters: message_number
Reply on success: +OK number_of_bytes followed by the message and end-
ing in a period on a line by itself
Example:

E-mail for Embedded Systems

 377

 Client: RETR 5
 Server: +OK 212 octets
 message contents
 .

STAT

Purpose: requests a drop listing containing the number of messages in the
mailbox and the total number of bytes in the messages.
Servers required to support: yes
Parameters: none
Reply on success: +OK number_of_messages number_of_bytes
Example:
 Client: STAT
 Server: +OK 2 508

TOP

Purpose: requests a message’s headers plus the specified number of the
message’s top lines.
Servers required to support: no
Parameters: message_number number_of_lines_to_receive
Reply on success: +OK
Example:
 Client: TOP 2 3
 Server: +OK
 Server: From: tini2@Lvr.com
 Server: To: controlcenter@Lvr.com
 Server: Subject: Status Report
 Server: Date: 28 Jul 2003 10:21 CST
 Server: Subject: HighTemp=101
 Server: Subject: LowTemp=13
 Server: Subject: MedianTemp=56
 Server: .

UIDL

Purpose: requests a unique-id listing for one or all messages. The unique id
is a string specified by the server and consisting of one to 70 characters in
the range 21h to 7Eh. The value identifies a message in the user’s mailbox
and persists across sessions.

Chapter 8

378

Servers required to support: no
Parameters: [message_number]
Reply on success: +OK message_number unique_id
If there is no message number, the server returns a multi-line reply with
information about each message in turn.
Example:
 Client: UIDL 3
 Server: +OK 3 unique-id for message 3

USER

Purpose: provides a user name for authentication.
Servers required to support: no
Parameters: user_name
Reply on success: +OK
Example:
 Client: USER tini1
 Server: +OK

Requirements for a Client

Every POP3 client must be capable of the following:

1. The client must send the appropriate commands for establishing commu-
nications, retrieving e-mail, and closing communications. The minimum
commands to check for mail and retrieve messages from a mailbox protected
with a user name and password are USER, PASS, STAT, RETR, and QUIT.
The commands must be sent in this order.

2. The client must read received replies and take appropriate action on
receiving an -ERR reply.

3. The POP3 standard doesn’t talk about timeouts, but a client application
will probably want to time out and close the connection if the server fails to
respond to a command within a reasonable time.

4. A line of message text that begins with a period transmits with an extra
period at the beginning to prevent the line from appearing as an
end-of-message indicator. In receiving a line that begins with a period, the
client should check to see if the line contains one or more additional charac-

E-mail for Embedded Systems

 379

ters. If it does, the client should strip the first period from the line and con-
sider the line part of the message, not the end-of-message indicator.

Some embedded application can define a standard, application-specific for-
mat that doesn’t allow a period on a line by itself in received messages. In
this case, the client doesn’t have to worry about checking for message lines
that begin with periods.

Messages

As explained earlier in this chapter, RFC standards specify requirements for
e-mail messages. The receiver of an e-mail can use the standard header fields
to filter messages by sender or subject.

Performance Issues

If your device has time-critical tasks to perform at the same time it’s receiv-
ing e-mail, it’s best to place the code that communicates with the POP3
server in its own thread or task so the CPU can do other things while wait-
ing for the server to respond.

Chapter 8

380

Using the File Transfer Protocol

 381

The previous chapters have shown several ways that an embedded system
can send and receive information on networks. The options have included
applications that send messages using UDP and TCP, Web pages with
dynamic content, and e-mail. Another possibility that some systems can
find useful is the File Transfer Protocol (FTP), which defines a way for com-
puters to send and receive information stored in files.

This chapter includes examples that show how the Rabbit and TINI can
function as FTP servers and FTP clients, followed by details about FTP and
its capabilities.

Using the File Transfer Protocol

 381

The previous chapters have shown several ways that an embedded system
can send and receive information on networks. The options have included
applications that send messages using UDP and TCP, Web pages with
dynamic content, and e-mail. Another possibility that some systems can
find useful is the File Transfer Protocol (FTP), which defines a way for com-
puters to send and receive information stored in files.

This chapter includes examples that show how the Rabbit and TINI can
function as FTP servers and FTP clients, followed by details about FTP and
its capabilities.

Chapter 9

382

Quick Start:
FTP Clients and Servers

The Rabbit and TINI modules each include FTP support that helps in
using a module as an FTP client or server. For the Rabbit, Dynamic C’s
ftp.lib and ftp_server.lib libraries provide functions for transferring informa-
tion in files. For the TINI, support is available in the URL and URLConnec-
tion classes and in the TINI’s FTPClient and FTPserver classes.

A Rabbit or TINI client application can communicate with just about any
FTP server, in a local network or on the Internet. And you can use just
about any standard FTP client application or a command-line interface to
access files hosted by a Rabbit or TINI FTP server.

The example applications send text files and write the contents of received
files to the console (the STDIO window in Dynamic C or a Telnet session
for the TINI). In real-world applications, the embedded system can place
any kind of information in the files to send and can use the information in
received files in any way.

Rabbit FTP Client
The following examples show how a Rabbit can exchange files with an FTP
server. A Dynamic C application can use one of two sources for files to send
and receive. Many basic applications can store the files in buffers in root
memory. For transferring large amounts of data, for generating a file’s con-
tents on request, or for processing received data on receipt, a data-handler
callback function can receive requested files or generate files to send.

Retrieving a File

This example shows how a Rabbit module can retrieve a file, store its con-
tents in a buffer, and write the contents of the file to Dynamic C’s STDIO
window.

Using the File Transfer Protocol

 383

Initial Defines and Declares

As explained in Chapter 5, a TCPCONFIG macro selects a network configura-
tion.

#define TCPCONFIG 1

Various parameters enable communicating with a specific FTP server. You
must change REMOTE_HOST, REMOTE_USERNAME, REMOTE_PASSWORD,
REMOTE_FILE, and REMOTE_DIR to values appropriate for the FTP server
your Rabbit will communicate with.

REMOTE_HOST is the domain name or IP address of the remote FTP server.
REMOTE_PORT is the port on the FTP server to connect to. Set this value to
zero to connect to the default port for the FTP control connection (21).
REMOTE_USERNAME and REMOTE_PASSWORD are the user name and password
that enable access to a user area on the FTP server.

#define REMOTE_HOST "ftp.example.com"
#define REMOTE_PORT 0
#define REMOTE_USERNAME "embedded"
#define REMOTE_PASSWORD "ethernet"

Additional values specify the directory to change to on connecting to the
FTP server (REMOTE_DIR) and the name of the file the Rabbit will retrieve
(REMOTE_FILE). Set REMOTE_DIR to "/" to specify the server’s root direc-
tory.

#define REMOTE_DIR "/usr/embedded/"
#define REMOTE_FILE "testfile.txt

If USE_PASSIVE is defined, PASSIVE_FLAG is set to FTP_MODE_PASSIVE,
which causes the Rabbit to request to use FTP’s passive mode in opening the
data channel for file transfers. Passive mode can be useful when communi-
cating through a firewall. The In Depth section of this chapter has more on
passive mode.

#define USE_PASSIVE

#ifdef USE_PASSIVE
 #define PASSIVE_FLAG FTP_MODE_PASSIVE
#else
 #define PASSIVE_FLAG 0
#endif

Chapter 9

384

The #memmap xmem directive causes all C functions not declared as root to
be stored in extended memory. The dcrtcp.lib library supports TCP/IP, and
ftp_client.lib supports FTP client communications.

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_client.lib"

The file_buffer array holds the retrieved file and should be large enough
to hold any file being requested.

char file_buffer[2048];

The main() Routine

The main() routine begins by calling sock_init() to initialize the
TCP/IP stack. The retrieve_file() function then requests a file from
the remote FTP server. If retrieve_file() fails, it returns 1 and the pro-
gram ends with an error code of 1. On success, the main() routine returns
zero.

int main()
{
 int return_value;
 return_value = sock_init();
 if (return_value == 0) {
 printf("Network support is initialized.\n");
 }
 else {
 printf("The network is not available.\n");
 exit(2);
 }

 if (retrieve_file()) {
 exit(1);
 }
 return 0;
} // end main()

Requesting a File

The retrieve_file() function requests the file and returns zero on suc-
cess.

int retrieve_file()
{

Using the File Transfer Protocol

 385

 longword file_size;
 int byte_in_file;
 int return_value;

 printf("Preparing to download %s...\n", REMOTE_FILE);

The ftp_client_setup() function initiates the request for the file. Nine
parameters provide the information required to request the transfer. The
REMOTE_HOST, REMOTE_USERNAME, REMOTE_PASSWORD, REMOTE_FILE,
REMOTE_DIR, and file_buffer parameters are defined above.

The FTP_MODE_DOWNLOAD constant specifies that the Rabbit wants to
retrieve (rather than send) a file. A logical OR of this value with
PASSIVE_FLAG causes the Rabbit to request to use passive mode if
USE_PASSIVE was defined earlier. The sizeof(file_buffer) parameter
is the length of the buffer that will contain the retrieved file.

 return_value = ftp_client_setup(
 resolve(REMOTE_HOST),
 REMOTE_PORT,
 REMOTE_USERNAME,
 REMOTE_PASSWORD,
 FTP_MODE_DOWNLOAD|PASSIVE_FLAG,
 REMOTE_FILE,
 REMOTE_DIR,
 file_buffer,
 sizeof(file_buffer));

The function returns zero on success. The function fails if the host address is
zero, if sizeof(file_buffer) is negative, or if there are no available
socket buffers to open an internal control socket to the FTP server. If the
function fails, the program ends with an exit code of 1.

 if (return_value != 0) {
 printf("FTP setup failed.\n");
 exit(1);
 }

The ftp_client_tick() function manages communications with the
FTP server. The function returns zero while pending, 1 on success, and a
value from 2 to 6 to indicate an error. The program loops until the function
returns a non-zero value.

 printf("Looping on ftp_client_tick()...\n");
 while(0 == (return_value = ftp_client_tick()));

Chapter 9

386

On success, a call to the ftp_client_xfer() function returns the size of
the file retrieved. Dynamic C’s STDIO window displays the file size and the
contents of the file.

On failure, a printf() statement displays an error message. A call to
ftp_last_code() returns the most recent message code returned by the
FTP server.

 if(1 == return_value) {
 file_size = ftp_client_xfer();
 printf("The file has been received.
 File size: %d bytes.\n", file_size);

 printf("Contents of file:\n");
 for (byte_in_file = 0; byte_in_file <=
 (file_size - 1); byte_in_file++)
 printf("%c",file_buffer[byte_in_file]);
 printf("\n");
 return 0;
 } else {
 printf("FTP download failed: status = %d, last code =
 %d\n", return_value, ftp_last_code());
 return 1;
 }
} // end retrieve_file

Sending a File

In a similar way, a Rabbit can use the ftp.lib library to send a file to an FTP
server.

Initial Defines and Declares

Much of the program code is similar to the previous example, including
these initial statements that provide system-specific and application-specific
information for the transfer and name the libraries the program uses. You
must change REMOTE_HOST, REMOTE_USERNAME, REMOTE_PASSWORD and
REMOTE_DIR to values appropriate for the FTP server your Rabbit will com-
municate with.

#define TCPCONFIG 1
#define REMOTE_HOST "ftp.example.com"
#define REMOTE_PORT 0
#define REMOTE_USERNAME "embedded"

Using the File Transfer Protocol

 387

#define REMOTE_PASSWORD "ethernet"
#define REMOTE_DIR "/usr/embedded/"
#define REMOTE_FILE "testfile.txt"
#define USE_PASSIVE

#ifdef USE_PASSIVE
 #define PASSIVE_FLAG FTP_MODE_PASSIVE
#else
 #define PASSIVE_FLAG 0
#endif

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_client.lib"

The file_buffer array holds the data that the Rabbit will transfer in a file.
This example uses a small 10-byte buffer.

char file_buffer[10];

The main() Function

The main() function calls create_file() to place data in the array that
will be sent as a file to the FTP server. A call to sock_init() initializes the
TCP/IP stack. If the initialization fails, the program ends with an error code
of 2. The send_file() function sends the file. If the attempt to send the
file fails, the program ends with an error code of 1. On success, the program
returns zero.

int main()
{
 int return_value;
 create_file();

 return_value = sock_init();
 if (return_value == 0) {
 printf("Network support is initialized.\n");
 }
 else {
 printf("The network is not available.\n");
 exit(2);
 }
 if (send_file())
 exit(1);
 return 0;
} // end main()

Chapter 9

388

Creating the File

For this example, the data in the file is the string "test data", terminat-
ing in a null character (\0). Of course, a file can contain any text or binary
data.

create_file(void) {
 file_buffer[0]='t';
 file_buffer[1]='e';
 file_buffer[2]='s';
 file_buffer[3]='t';
 file_buffer[4]=' ';
 file_buffer[5]='d';
 file_buffer[6]='a';
 file_buffer[7]='t';
 file_buffer[8]='a';
 file_buffer[9]='\0';
} // end create_file

Sending the File

As in the retrieve_file() function in the previous example, the
send_file() function calls ftp_client_setup(), followed by
ftp_client_tick().

int send_file(void)
{
 int return_value;
 printf("Calling ftp_client_setup() to upload %s...\n",
 REMOTE_FILE);

The parameters for ftp_client_setup() are the same as in the previous
example except for the last value, which contains the size of the file being
transmitted rather than the size of the buffer for a received file.

 return_value = ftp_client_setup(resolve(
 REMOTE_HOST),
 REMOTE_PORT,
 REMOTE_USERNAME,
 REMOTE_PASSWORD,
 FTP_MODE_UPLOAD|PASSIVE_FLAG,
 REMOTE_FILE,
 REMOTE_DIR,
 file_buffer,
 sizeof(file_buffer));

Using the File Transfer Protocol

 389

 if (return_value != 0) {
 printf("FTP setup failed.\n");
 exit(2);
 }

The ftp_client_tick() function returns 0 while the transfer is in
progress. When the function returns 1, the transfer has completed success-
fully. If the function returns a value greater than 1, the transfer has failed. A
message in Dynamic C’s STDIO windows displays the result.

 printf("Looping on ftp_client_tick()...\n");
 while(0 == (return_value = ftp_client_tick()));

 if(1 == return_value) {
 printf("FTP upload completed successfully. %d
 bytes.\n", ftp_client_filesize());
 return 0;
 } else {
 printf("FTP upload failed: status = %d, last code =
 %d\n", return_value, ftp_last_code());
 return 1;
 }
} // end send_file()

TINI FTP Client
To request files from an FTP server, a TINI can use Java’s URL and URLCon-
nection classes with the ftp URL scheme. Applications that need to transfer
files in both directions can use the TINI’s FTPClient class.

Requesting a File in a URL

Java’s URL and URLConnection classes provide support for requesting
resources from remote hosts in URLs. Chapter 8 showed how a Java pro-
gram can use a URL with a mailto protocol handler to send an e-mail. In a
similar way, you can use a URL with an ftp protocol handler to request a file
from an FTP server. The FTP capabilities are one-way only. A client can
request files but can’t send them.

The FtpUrlReceiver class below shows how a TINI can use the URL and
URLConnection classes to request a file. The source code to support
requesting files in URLs is in com.dalsemi.protocol.ftp.Connec-

Chapter 9

390

tion.java in the file ModulesSrc.jar in the \src directory of the TINI distri-
bution.

Imports and Initial Declares

The FtpUrlReceiver class imports java.io classes to support input and
output functions and java.net classes to support networking functions.

import java.io.*;
import java.net.*;

A series of constant strings provide default values to use in connecting to the
remote host and requesting a file. USERNAME and PASSWORD are the user
name and password required to log onto the server. REMOTEHOST is the IP
address or domain name of the FTP server. FILENAME is the requested file.
You must change these values to match the parameters appropriate for your
FTP server and requested file.

public class FtpUrlReceiver {

 public static final String USERNAME = "embedded";
 public static final String PASSWORD = "ethernet";
 public static final String REMOTEHOST = "192.168.111.5";
 public static final String FILENAME = "testfile.txt";

The FtpUrlReceiver class’s constructor requires values for a remote host,
user name, and password. The port variable can specify a port to use for the
FTP control connection. If this value is -1, the connection uses the default
port of 21. The type variable can specify a transfer type of ASCII (a) or
binary (i).

 private String remoteHost;
 private String userName;
 private String password;
 private int port = -1;
 private String type = "a";

The Constructor

The class’s constructor uses the passed values to set the corresponding vari-
ables.

 public FtpUrlReceiver(String remoteHost,
 String userName, String password) {
 this.remoteHost = remoteHost;

Using the File Transfer Protocol

 391

 this.userName = userName;
 this.password = password;
 } // end FtpUrlReceiver constructor

Reading a File

The class’s main() method creates the FtpUrlReceiver object ftp. A call
to the class’s getFile() method returns the InputStream object
inStream, which contains the received file. A BufferedReader object,
in, reads the file from the InputStream object. On reading a received line
of text, a System.out.println() statement writes the line to the default
output stream. A received null indicates the end of the input stream. The
close() method closes the BufferedReader object when the file has
been read.

 public static void main(String[] args) {
 try {
 FtpUrlReceiver ftp = new
 FtpUrlReceiver(REMOTEHOST, USERNAME,
 PASSWORD);

 InputStream inStream = ftp.getFile(FILENAME);

 BufferedReader in = new BufferedReader(new
 InputStreamReader(inStream));
 String line;
 System.out.println("Reading " + FILENAME + ":");
 while ((line = in.readLine()) != null) {
 System.out.println(line);
 }
 System.out.println();

 in.close();

 } catch (IOException e){
 System.err.print("IO exception: ");
 System.err.println(e.getMessage());
 }
 } // end main()

Setting the Port and Transfer Type

The setPort() method can set the port to a value other than the default
FTP control port of 21. Zero indicates the default port.

Chapter 9

392

 public void setPort(int port) {
 this.port = port;
 } // send setPort()

The setType() method can set the transfer type. Use "a" to indicate
ASCII and "i" to indicate binary.

 public void setType(String type) {
 this.type = type;
 } // end setType()

Requesting a File

The getFile() method creates and sends a URL to request a file from the
FTP server. The URL object url contains the request for the file and uses the
values defined earlier. If the port variable is greater than zero, the URL spec-
ifies a port. If using the default port, the URL doesn’t need to specify a port
value. The In Depth section of this chapter has more about the syntax of the
URL.

 public InputStream getFile(String fileName)
 throws IOException {
 URL url = new URL("ftp://"
 + userName
 + ":" + password
 + "@" + remoteHost
 + ((port >= 0) ? (":" + port) : "")
 + "/" + fileName
 + ";type=" + type);

The URLConnection object conn reads from the FTP server referenced in
the URL object. The URL object’s openConnection() method creates the
URLConnection object, which represents a connection to the named FTP
server.

The getInputStream() method returns an input stream that reads from
the connection to the server.

 URLConnection conn = url.openConnection();
 return conn.getInputStream();

 } // end getFile()
} // end FtpUrlReceiver

Using the File Transfer Protocol

 393

Building the Application

As with the TINI e-mail applications in Chapter 8, building the FtpUrlRe-
ceiver application requires a few additional considerations to enable using
the ftp protocol handler. The build process uses the com.dalsemi.proto-
col.* and com.dalsemi.protocol.ftp.* classes in modules.jar.

When compiling FtpUrlReceiver.java to FtpUrlReceiver.class, you must
include the location of modules.jar in the bootclasspath. Here is an example
command line (which you can place in a batch file):

javac -bootclasspath ..\..\bin\tiniclasses.jar;
 ..\..\bin\modules.jar FtpUrlReceiver.java

When converting FtpUrlReceiver.class to FtpUrlReceiver.tini, use the Build-
Dependency utility in place of TiniConvertor. Here is an example com-
mand line:

java -classpath ..\..\bin\tini.jar;%classpath%
 BuildDependency -f FtpUrlReceiver.class
 -o FtpUrlReceiver.tini -d ..\..\bin\tini.db
 -add FTP -p ..\..\bin\modules.jar

The -add option adds the FTP dependency to the project, and the -p
option names the location of modules.jar.

Requesting a File with FTPClient

If you need more abilities than the URL and URLConnection classes provide,
the TINI’s FTPClient class is an option. The source code for FTPClient is
in com.dalsemi.protocol.ftp.FTPClient.java in the file Modu-
lesSrc.jar in the \src directory of the TINI distribution. The class supports
file transfers in both directions. The TINI’s slush shell uses this class to
implement an FTP client controlled via the command line.

The following example uses the FTPClient class to request a file from an
FTP server.

Imports and Initial Declares

The FTPClientReceiver class imports java.io classes to support input
and output functions. The com.dalsemi.protocol.ftp.FTPClient
class supports communications with FTP servers.

Chapter 9

394

A series of constant strings provide default values to use in connecting to the
remote host and requesting a file. USERNAME and PASSWORD are the user
name and password required to log on to the server. REMOTEHOST is the IP
address or domain name of the FTP server. FILENAME is the requested file.
You must change these values to match the parameters appropriate for your
FTP server and requested file.

import com.dalsemi.protocol.ftp.FTPClient;
import java.io.*

public class FtpClientReceiver {
 public static final String USERNAME = "embedded";
 public static final String PASSWORD = "ethernet";
 public static final String REMOTEHOST =
 "192.168.111.5";
 public static final String FILENAME = "testfile.txt";

The FtpClientReceiver class’s constructor requires values for a remote
host, user name, and password. The port variable can specify a port to use
for the FTP control connection. If this value is zero, the connection uses the
default port of 21. The type variable can specify a transfer type of ASCII
(a) or binary (i).

 private String remoteHost;
 private String userName;
 private String password;
 private int port = 0;
 private String type = "a";

The main() Method

The main() method creates the FtpClientReceiver object ftp using the
parameters provided and calls the doGetFile() method to retrieve the file.

 public static void main(String[] args)
 throws IOException {

 FtpClientReceiver ftp = new
 FtpClientReceiver(REMOTEHOST, USERNAME,
 PASSWORD);
 ftp.doGetFile(FILENAME);
 } // end main()

Using the File Transfer Protocol

 395

The Constructor

The constructor uses the passed values to set the corresponding variables.

 public FtpClientReceiver(String remoteHost,
 String userName, String password) {
 this.remoteHost = remoteHost;
 this.userName = userName;
 this.password = password;
 } // end FtpClientReceiver constructor

Setting the Port and Transfer Type

The setPort() method can set the port to a value other than the default
FTP control port of 21. A negative value indicates the default port.

 public void setPort(int port) {
 this.port = port;
 } // end setPort()

The setType() method can set the transfer type. Use "a" to indicate
ASCII and "i" to indicate binary.

 public void setType(String type) {
 this.type = type;
 } // end setType()

Requesting a File

The doGetFile() method uses FTPClient’s methods to log onto the
server, read responses, and request a file. For each command sent, a Sys-
tem.out.println() statement writes the returned response to the stan-
dard output stream.

The FTPClient object client specifies a non-default port if needed.

 public void doGetFile(String filename)
 throws IOException {

 FTPClient client;
 if (port >= 0) {
 client = new FTPClient(remoteHost);
 } else {
 client = new FTPClient(remoteHost, port);
 }

Chapter 9

396

The userName() and password() methods send the user name and pass-
word to log onto the server.

 try {
 client.userName(userName);
 System.out.println
 (client.getResponseString());

 client.password(password);
 System.out.println
 (client.getResponseString());

The ascii() and binary() methods can specify whether to use ASCII or
binary mode for the transfer. FTPClient also supports the methods dir()
and list(). Both of these request a directory listing from the server.

 if ("a".equalsIgnoreCase(type)) {
 client.ascii();
 } else if ("i".equalsIgnoreCase(type)) {
 client.binary();
 }
 System.out.println
 (client.getResponseString())

An FTP file transfer uses two TCP connections, or channels: a control chan-
nel for commands and a data channel for the file being transferred. FTPCli-
ent’s passiveConnection() method sends a PASV command to request
to use FTP’s passive mode. In passive mode, the client, rather than the
server, opens the data channel. FTPClient also supports the dataConnec-
tion() method, which uses the EPSV command to request to use extended
passive mode. If the server responds that it doesn’t support extended passive
mode, the dataconnection() method sends a PORT command that spec-
ifies a port number the server should use for the data channel. The In Depth
section of this chapter has more on the passive modes and PORT command.

 client.passiveConnection();
 System.out.println
 (client.getResponseString());

The retr() method sends an FTP RETR command that requests the spec-
ified file. A BufferedReader object reads the file, and Sys-

tem.out.println() statements write the file’s contents to the standard
output stream. A received null indicates the end of the input stream. The

Using the File Transfer Protocol

 397

close() method closes the BufferedReader object when the file has
been read.

After sending the file, the server closes the data channel. A call to FTPCli-
ent’s close() method sends an FTP QUIT command to request the server
to close the control channel, which ends the session. The call to close() is
in a finally block to ensure that the method is called before the doGet-
File() method ends.

 client.retr(filename);
 System.out.println
 (client.getResponseString());

 BufferedReader in = new BufferedReader(
 new InputStreamReader
 (client.getDataStream()));

 String line;
 System.out.println("File contents:");
 while ((line = in.readLine()) != null) {
 System.out.println(line);
 }
 System.out.println();

 in.close();
 } finally {
 client.close();
 }
 } // end doGetFile()
} // end FtpClientReceiver

Building the Application

The FTPClientReceiver application uses the com.dalsemi.proto-

col.ftp.FTPClient class in modules.jar. So as in the previous example,
when compiling FtpClientReceiver.java to FtpClientReceiver.class, you must
include the location of modules.jar in the bootclasspath. Here is an example
command line:

javac -bootclasspath ..\..\bin\tiniclasses.jar;
 ..\..\bin\modules.jar FtpClientReceiver.java

Use the BuildDependency utility to convert FtpClientReceiver.class to Ftp-
ClientReceiver.tini. Here is an example command line:

Chapter 9

398

java -classpath ..\..\bin\tini.jar;%classpath%
 BuildDependency -f FtpClientReceiver.class
 -o FtpClientReceiver.tini -d ..\..\bin\tini.db
 -add FTP -p ..\..\bin\modules.jar

The -add option adds the FTP dependency to the project, and the -p
option names the location of modules.jar.

Sending a File with FTPClient

In a similar way, a TINI can also use the FTPClient class to send a file to an
FTP server. The FTPClientSender class imports java.io.* classes to sup-
port input and output functions. The com.dalsemi.protocol.ftp.FTP-
Client class supports communications with FTP servers.

Constant strings provide default values for the user name, password, and
server’s IP address. The FILENAME constant is the file to request from the
server. You must change these values to match the parameters appropriate
for your FTP server and requested file.

import com.dalsemi.protocol.ftp.FTPClient;
import java.io.*;

public class FtpClientSender {
 public static final String USERNAME = "embedded";
 public static final String PASSWORD = "ethernet";
 public static final String REMOTEHOST =
 "192.168.111.5";
 public static final String FILENAME = "testfile2.txt";

The FtpSender class’s constructor requires values for a remote host, user
name, password, and port, which is zero to specify the default port of 21.
The type variable can specify a transfer type of ASCII (a) or binary (i).

 private String remoteHost;
 private String userName;
 private String password;
 private int port = 0;
 private String type = "a";

The main() Method

The main() method creates the FtpClientSender object ftp using the
parameters provided and calls the doSendFile() method to send the file.

Using the File Transfer Protocol

 399

 public static void main(String[] args)
 throws IOException {

 FtpClientSender ftp = new FtpClientSender
 (REMOTEHOST, USERNAME, PASSWORD);
 ftp.doSendFile(FILENAME);
 } // end main()

The Constructor

The constructor for FtpClientSender uses the passed values to set the cor-
responding variables.

 public FtpClientSender(String remoteHost,
 String userName, String password) {
 this.remoteHost = remoteHost;
 this.userName = userName;
 this.password = password;
 } // end FtpClientSender constructor

Setting the Port and Transfer Type

The setPort() method can set the port to a value other than the default
FTP control port of 21. Zero indicates the default port.

 public void setPort(int port) {
 this.port = port;
 } // end setPort()

The setType() method can set the transfer type. Use a to indicate ASCII
and i to indicate binary.

 public void setType(String type) {
 this.type = type;
 } // end setType()

Sending a File

The doSendFile() method uses FTPClient’s methods to log onto the
server, read responses, and send a file. For each command sent, the console
displays the returned response.

The method creates the FTPClient object client, specifying a non-default
port if needed.

Chapter 9

400

 public void doSendFile(String filename)
 throws IOException {

 FTPClient client;
 if (port >= 0) {
 client = new FTPClient(remoteHost);
 } else {
 client = new FTPClient(remoteHost, port);
 }

 try {

The userName() and password() methods send the user name and pass-
word to log onto the server.

 client.userName(userName);
 System.out.println
 (client.getResponseString());

 client.password(password);
 System.out.println
 (client.getResponseString());

The ascii() and binary() methods can specify whether to use ASCII or
binary mode for the transfer. The passiveConnection() method requests
to use passive mode for the transfer.

 if ("a".equalsIgnoreCase(type)) {
 client.ascii();
 } else if ("i".equalsIgnoreCase(type)) {
 client.binary();
 }
 System.out.println
 (client.getResponseString())

 client.passiveConnection();
 System.out.println
 (client.getResponseString());

For sending the file, the client can choose between two FTP commands.
APPE requests the server to append the data being transferred to an existing
file of the same name. STOR requests the server to replace any data in an
existing file of the same name with the new data. With both commands, if
the file doesn’t exist, the server creates the file. The issuecommand()
method can send either of these commands (or other FTP commands).

Using the File Transfer Protocol

 401

 client.issueCommand
 ("APPE " + FILENAME + "\r\n");
 //client.issueCommand
 ("STOR " + FILENAME + "\r\n");
 System.out.println
 (client.getResponseString());

An Outputstream object writes data to the file. A call to the class’s write-
File() method writes the data to the OutputStream object. After writing
the file, the output stream is flushed to send the data immediately, then
closed.

After sending the file, FTPClient closes the data channel. A call to FTPCli-
ent’s close() method sends an FTP QUIT command to request the server
to close the control channel, which ends the session. The call to close() is
in a finally block to ensure that the method is called before the doSend-
File() method ends.

 OutputStream output =
 client.getOutputStream();
 writeString(output, "test data\r\n");
 output.flush();
 output.close();
 System.out.println
 ("The file has been transferred.");

 } finally {

 client.close();

 }
 } // end doSendFile()

Writing a String to the Output Stream

The writeFile() method writes the contents of a string to an Output-
Stream object. The stringToWrite variable is the contents of the file to
write to the server. The String class’s getBytes() method converts the
string to a byte array for passing to the OutputStream object.

 private void writeString(OutputStream output, String
stringToWrite) {
 try {
 output.write(stringToWrite.getBytes());
 } catch (IOException e){

Chapter 9

402

 System.err.println("IO exception: " +
e.getMessage());
 }
 } // end writeString()
} // end FtpClientSender

Building the Application

The FTPClientSender application uses the com.dalsemi.proto-

col.ftp.FTPClient class in modules.jar. So as in the previous example,
when compiling FtpClientSender.java to FtpClientSender.class, include the
location of modules.jar in the bootclasspath. Here is an example command
line:

javac -bootclasspath ..\..\bin\tiniclasses.jar;
 ..\..\bin\modules.jar FtpClientSender.java

Use the BuildDependency utility to convert FtpClientSender.class to FtpCli-
entSender.tini. Here is an example command line:

java -classpath ..\..\bin\tini.jar;%classpath%
 BuildDependency -f FtpClientSender.class
 -o FtpClientSender.tini -d ..\..\bin\tini.db
 -add FTP -p ..\..\bin\modules.jar

The -add option adds the FTP dependency to the project, and the -p
option names the location of modules.jar.

Rabbit FTP Server
Dynamic C’s ftp_server.lib library provides support for an FTP server that
can enable clients to request to exchange files with a Rabbit module. The
files can be stored in root memory, in the extended memory area, or in Flash
memory or battery-backed RAM.

The example below shows how the Rabbit can create and serve files and
enable clients to send files to the server. You can communicate with the
server using any standard FTP client application or a command-line inter-
face.

Using the File Transfer Protocol

 403

Initial Defines and Declares

As explained in Chapter 5, the firmware selects a network configuration
from tcp_config.lib.

#define TCPCONFIG 1

A series of define statements configures the file system and FTP server.

The FTP server uses Dynamic C’s filesystem mk II, also called FS2, for stor-
ing information in named files in Flash memory or battery-backed RAM.
Defining FORMAT resets the list of files in the user block area of Flash or bat-
tery-backed memory. This statement needs to execute only the first time the
program runs, to put the file system in a known state.

#define FORMAT

The FTP_USE_FS2_HANDLERS macro enables FS2 support in the default
functions for the file handler and enables clients to write files to the file sys-
tem.

#define FTP_USE_FS2_HANDLERS

The FS_MAX_FILES macro specifies the maximum number of files sup-
ported by the file system.

#define FS_MAX_FILES 50

The FS2_USE_PROGRAM_FLASH macro specifies how many kilobytes of pro-
gram Flash memory the file system can use.

 #define FS2_USE_PROGRAM_FLASH 32

The FTP_CREATE_MASK macro provides the servermask parameter for the
sspec_addfsfile() function, which makes files available to the FTP
server. The default is SERVER_FTP | SERVER_WRITABLE, which specifies
the FTP server and enables authorized users to delete and overwrite files on
the server.

#define FTP_CREATE_MASK SERVER_FTP | SERVER_WRITABLE

A portion of the user block in memory holds a structure that associates the
names of files with the files’ locations. The FTP_USERBLOCK_OFFSET macro
specifies the offset in the user block where the structure will be stored. The
default is zero. Change this value if your application uses the default portion

Chapter 9

404

of the user block for another purpose. The sizeof(server_spec) func-
tion returns the structure’s size.

#define FTP_USERBLOCK_OFFSET 0

The SSPEC_MAXSPEC macro specifies the maximum number of files sup-
ported by the FTP server. The default is 10.

#define SSPEC_MAXSPEC 10

The FTP_EXTENSIONS macro enables support for the FTP DELE (delete)
command.

#define FTP_EXTENSIONS

As in the previous examples, the #memmap xmem directive causes all C func-
tions not declared as root to be stored in extended memory, and the code
requires the dcrtcp.lib library to support TCP/IP. This example also requires
the fs2.lib library to support the FS2 file system and ftp_server.lib to support
the FTP server’s functions.

#memmap xmem
#use "fs2.lib"
#use "dcrtcp.lib"
#use "ftp_server.lib"

Starting the FTP Server

The main() routine performs initialization functions and starts the FTP
server.

void main()
{
 File private_file;
 File public_file;
 FSLXnum ext;
 int file;
 int user;
 long len;
 static char create_file1_buffer[127];
 static char create_file2_buffer[127];

The fs_get_flash_lx() function returns a logical extent number that
indicates the preferred Flash-memory device for FS2 files. The preferred
device is the second Flash memory if one is available, and otherwise is the
reserved area in the program Flash memory.

Using the File Transfer Protocol

 405

To use a portion of the program Flash memory for the file system, you must
define two constants. In rabbitbios.c (in the \bios directory of the Dynamic
C distribution), set XMEM_RESERVE_SIZE to the number of bytes to reserve
for the file system in the program Flash. And in your application, before the
statement #use "fs2.lib", define FS2_USE_PROGRAM_FLASH to equal the
number of kilobytes the file system will use. The application uses the smaller
of the two values. (This application sets FS2_USE_PROGRAM_FLASH to 32
kilobytes above.)

To use battery-backed RAM for the file system, use the fs_get_ram_lx()
function in place of fs_get_flash_lx(). To use the non-preferred Flash
memory for the file system, use the fs_get_other_lx() function.

 ext = fs_get_flash_lx();

The fs_init() function initializes the file system.

 fs_init(0, 0);

If the FORMAT macro is defined in the application, the file system and user
block are initialized to known states. The lx_format() function formats
the file system extent, deleting any files that were present. The writeUser-
Block() function initializes the user block in memory to zeros. Don’t exe-
cute this block of code if you want to preserve files already in memory.

#ifdef FORMAT
 lx_format(ext, 0);
 len = 0;
 writeUserBlock(FTP_USERBLOCK_OFFSET, &len,
 sizeof(long));
#endif

The application creates two FS2 files and stores text in each. File 1 is
public_file and contains the text “public file”. File 2 is private_file
and contains the text “private file”.

 sprintf(create_file1_buffer, "public file");
 fcreate(&public_file, 1);
 fwrite(&public_file, create_file1_buffer,
 strlen(create_file1_buffer));
 fclose(&public_file);

 sprintf(create_file2_buffer, "private file");
 fcreate(&private_file, 2);

Chapter 9

406

 fwrite(&private_file, create_file2_buffer,
 strlen(create_file2_buffer));
 fclose(&private_file);

The ftp_load_filenames() function loads the data structure that keeps
track of the locations of the files. On success, ftp_load_filenames()
returns zero and a call to ftp_save_filenames() saves the data structure
to the user block. Even if there are no file names defined yet, saving the data
structure puts it in a known state.

 if (ftp_load_filenames() < 0) {
 ftp_save_filenames();
 }

The application uses Dynamic C’s ServerSpec structure defined in
zserver.lib and introduced in Chapter 7. The sauth_adduser() function
defines a user who can access files on the server. A file can be accessible to a
specific user or users, or to any user.

To make a file accessible to all users, define a user with the user name of
anonymous and an empty string ("") for a password. The SERVER_FTP
parameter names the server that the user can access. The
ftp_set_anonymous() function specifies the user name for files that any-
one can access.

The sspec_addfsfile() function enables the FTP server to access the
FS2 files created earlier. The function associates the file name public.txt with
file 1 on the FTP server. The sspec_setuser() function enables the
anonymous user defined above to access the file.

 user = sauth_adduser("anonymous", "", SERVER_FTP);
 ftp_set_anonymous(user);

 file = sspec_addfsfile("public.txt", 1, SERVER_FTP) ;
 sspec_setuser(file, user);

In a similar way, the following statements define a user with the user name
rabbit1 and password embedded. The sauth_setwriteaccess() func-
tion enables rabbit1 to send files to the server in addition to requesting files.
Rabbit1 can access file 2 on the server as the file private.txt. This file isn’t
available to anonymous users.

 user = sauth_adduser("rabbit1", "embedded",

Using the File Transfer Protocol

 407

 SERVER_FTP);
 sauth_setwriteaccess(user, 1);

 file = sspec_addfsfile("private.txt", 2, SERVER_FTP);
 sspec_setuser(file, user);

A call to sock_init() initializes the TCP/IP stack. A call to
ftp_init(NULL) initializes the FTP server using the default handlers. As
explained in Chapter 6, calling tcp_reserveport() can improve the
server’s performance. The FTP_CMDPORT constant is 21, the default FTP
command port.

An endless loop calls ftp_tick() to process FTP requests as needed.

 sock_init();
 ftp_init(NULL);

 tcp_reserveport(FTP_CMDPORT);

 while(1) {
 ftp_tick();
 }
} // end main()

TINI FTP Server
The TINI software includes an FTP server. When the .startup file in the
TINI’s /etc/ directory contains this line:

setenv FTPServer enable

the slush shell runs the FTP server on start up. This is the server you use to
transfer .tini programs to the TINI. You can use the same server to transfer
files in both directions for any purpose using a standard FTP client applica-
tion.

The TINI’s FTPServer class assumes that slush is present and uses some of
its commands. For example, on receiving an FTP LIST command from a
client, the server tries to invoke slush’s ls command. Other slush commands
that the FTP server might call include cd, cd .., del, ls, ls -l, md, move,
and rd. If you want to use the TINI’s FTP server in your application, the
TINI will need to also be running slush or another shell that implements
the above commands.

Chapter 9

408

The source code for the FTP server is in the
com.dalsemi.shell.server.ftp classes FTPServer.java, FTPSes-

sion.java, and FTPInputStream.java. These are in the file APIsrc.jar in
the \src directory of the TINI distribution.

In Depth:
Inside the File Transfer Protocol

The File Transfer Protocol defines a standard protocol for transferring files
between computers. The main documents that define FTP are RFC 959:
File Transfer Protocol (FTP) and RFC 1123: Requirements for Internet Hosts --
Application and Support.

Requirements
An embedded system can function as an FTP client or server. A client ini-
tiates communications with a server and sends requests to transmit or
receive files. In most cases, an embedded system that needs to exchange files
with a single PC should function as a client. Many embedded systems don’t
have a lot of resources to spare, and running an FTP server that is always
available requires processing time and memory. Running a server also puts
the system at a greater security risk because any computer in the network
might be able to gain access to the system’s files. But if the embedded system
needs to make its files available to anyone on the network, or if the files need
to be available to other computers at all times, the system will need to func-
tion as a server.

A computer that uses FTP must have a file system, which enables the system
to store information in named entities called files. Files are of course useful
in desktop computers, where you select files to run programs, view docu-
ments and images, and perform other tasks.

Embedded systems can support file systems as well. A small embedded sys-
tem may just store data in specified locations in memory, with no need to
place the data in named files. But for many embedded systems, a file system

Using the File Transfer Protocol

 409

provides a useful structure for accessing information, both locally and over a
network.

For example, a system can store collected data or configuration settings in
files. A system functioning as an FTP client can initiate communications
periodically with a remote computer to request to send or receive files. A sys-
tem functioning as an FTP server can make its files available on request and
can allow remote computers to send files that the system will use. The user
that communicates with the embedded system can be a human using an
FTP program or a process that functions without human intervention. For
example, a PC can be programmed to retrieve a file once a day from an
embedded system.

In PCs, the file system includes the ability to store files in a directory struc-
ture and to specify attributes such as whether a file is write-protected or
accessible to certain users. Under Windows XP, from the My Computer
folder, you can browse the directories and view file names and attributes. (In
the View menu, click Choose Details to specify what information to dis-
play and click Details to view the information.) The TINI supports a simi-
lar file system, which you can browse from the slush shell using commands
such as ls -l and cd.

A very basic file system might just consist of a structure with a series of
entries that each store the name, starting address in memory, and length of a
file. In Dynamic C, entries in an HttpSpec or ServerSpec structure can
specify files that are accessible to a Web or FTP server. Each entry includes a
file name, the address in memory where the file’s length and contents are
stored, and optional security information.

On a PC, you can perform FTP transfers using an FTP client application
such as WS_FTP from Ipswitch, Inc. Two other ways to perform FTP trans-
fers are from a command prompt and from a browser. To use the com-
mand-line interface, enter ftp at a command prompt and enter ? for a list
of commands. The browser interface is explained later in this chapter.
Ipswitch and others also offer applications that enable a PC to function as
an FTP server.

Chapter 9

410

Transferring a File
To transfer a file, an FTP session uses two channels, or communications
paths, one for control information and one for the file being transferred.
Each channel has a separate TCP connection.

On the server, the default port for the control channel is 21 and the default
port for the data channel is 20. The client can use any available port or
ports. The default for the client is to use the same port for both the control
and data channels. However, transfers that use FTP’s stream mode, which
requires a new data connection for each file, should send a PORT command
to specify a new, non-default port for each file transfer.

Requesting a new port for each transfer prevents problems due to TCP’s
timeout requirements. When a connection closes, TCP requires a timeout
before the same connection can be reused. The timeout prevents a new con-
nection that is identical to a recently closed connection from receiving data
intended for the previous connection. When transferring multiple files in a
single session, if a transfer tries to use the same port as the previous connec-
tion, the port may be unavailable because thes timeout for the previous con-
nection hasn’t expired. Specifying a different port for each data connection
eliminates the problem. Other alternatives are to use the block or com-
pressed transfer modes, which don’t require a new data connection for each
file.

These are typical steps in sending a file to a server in stream mode, where the
file’s contents are sent without a header or any assumed structure for the
file’s data:

1. The client opens a control channel between any available local port and
port 21 on the server. The client sends commands to establish communica-
tions and request to send a file.

2. The server opens a data channel between the server’s port 20 and the port
the client is using for the control channel.

3. The client sends the file’s contents, closes the data channel, and requests
the server to close the control channel.

4. The server closes the control channel.

Using the File Transfer Protocol

 411

In a similar way, these are the steps in receiving a file from a server in stream
mode:

1. The client opens a control channel between any available local port and
port 21 on the server. The client sends commands to establish communica-
tions and request a file.

2. The server opens a data channel between the server’s port 20 and the port
the client is using for the control channel. The server sends the file and
closes the data channel.

3. The client requests the server to close the control channel.

4. The server closes the control channel.

A client that is communicating from behind a firewall may find that the fire-
wall blocks the server’s request to open the data connection. To get around
this limitation without having to reconfigure the firewall, the client can send
a command that requests a passive transfer process (PASV or EPSV), where
the client, rather than the server, opens the data connection. The client must
send the command to request a passive transfer preceding each transfer.

When a client specifies the location of a file on a server, the location is rela-
tive to the directories that the server makes available to the client. This loca-
tion can differ from the file’s absolute location in the computer. For
example, a computer functioning as a server may allow the user to access the
directory /ftp/user1 and its subdirectories. The server’s root directory for that
user is then /user1. To access a file at /ftp/user1/data/test.txt, the client would
specify the location on the server as /data/test.txt, which is the file’s location
relative to the user’s root directory.

Commands
The FTP standard defines required and optional commands for FTP servers
to support.

All of the commands and symbols that represent parameter values are
case-insensitive. A command ends with CRLF.

Chapter 9

412

Minimum Implementation

RFC 959 specifies the commands that a minimum implementation of FTP
must support, and RFC 1123 updates this list with additional commands.
The implementation specified by RFC 1123 is more capable in handling
communications between computers that may use different operating sys-
tems, file systems, and firewall protection.

However, RFC 1123 says that computers whose operating system or file sys-
tem doesn’t allow or support a command aren’t obligated to add support for
it. So for example, an embedded system whose file system doesn’t support
subdirectories can run an FTP server that doesn’t support MKD, CWD, or
other commands that manipulate directories.

In reality, which commands a system’s software needs to support depends in
part on how the system will use FTP. On a PC, a user that needs to exchange
files with varied FTP servers will want an FTP client application that is as
capable and flexible as possible. And an FTP server that is available to varied
clients will want to support a large command set. But an embedded system
that exchanges files only with known FTP clients or servers can have a more
minimal implementation. If the transfers are only with known servers or cli-
ents and are controlled entirely by software at both ends, the commands can
be known, predictable, and thus limited.

The following commands are the minimum implementation required by
RFC 1123, plus EPSV and EPRT, which have additional support for IP v6
addresses. The commands included in RFC 959’s smaller subset are noted as
well.

ACCT account

The ACCT command identifies a user account. A server may require an
ACCT value to log on, or a system may use accounts to grant specific privi-
leges (to store files, for example) at any time after logging on.

APPE pathname

With the APPE command, the client requests the server to append the
received data to the named file if it exists, and otherwise to create the file
and store the received data in it.

Using the File Transfer Protocol

 413

CDUP

The CDUP command requests to change to the current directory’s parent
directory.

CWD pathname

The CWD command requests to change the working directory to the direc-
tory specified in pathname.

DELE pathname

The DELE command requests to delete the file specified in pathname on the
server.

EPSV

The EPSV command requests the server to wait for the client to open the
data connection instead of having the server open the connection. The
server responds to this request with code 227 entering extended pas-
sive mode, followed by the port number where the server will listen for the
client. The format of the response is:

Entering Extended Passive Mode (|||port_number|)

where port_number is the number of the port the server will be listening on.
The recommended delimiter character is ASCII 124 (|). The first two fields
are place holders for future use and must be empty. The format is similar to
the format of the argument passed with EPRT, described below.

This command is defined in RFC 2428: FTP Extensions for IPv6 and NATs.
Also see the PASV command. Many servers support PASV, but not EPSV.

EPRT

The EPRT command enables the client to provide an extended address for
the data connection.

The format of EPRT is:

EPRT |net-prt|net-addr|tcp-port|

where:

Chapter 9

414

net-prt is an Address Family Number from the list maintained by IANA. IP
Version 4 is 1; IP Version 6 is 2.

net-addr is the IP address. IP Version 4 addresses use dotted quad notation.
IP Version 6 addresses use the representation described in RFC 2373: IP Ver-
sion 6 Addressing Architecture.

tcp-port is the number of the TCP port where the host is listening for a con-
nection.

This command is defined in RFC 2428: FTP Extensions for IPv6 and NATs.
Also see the PORT command. Many servers support PORT, but not EPRT.

HELP [command name]

The HELP command requests text that explains how to use the server or
how to use an optional command provided as a parameter with the com-
mand.

LIST [pathname]

The LIST command requests the server to send a list of files in the directory
specified in pathname or information about the file specified in pathname. If
there is no parameter sent with the command, the server returns informa-
tion about the current directory.

MKD pathname

The MKD command requests to create a directory specified in pathname on
the server.

MODE mode

The MODE command specifies a transfer mode: stream (s), block (b), or
compressed (c). In stream mode, the default, the data has no assumed for-
mat. In the optional block and compressed modes, the data begins with a
header that enables the receiver to determine when a transfer is complete, so
there’s no need to close the data connection after each transfer to indicate
end of file. Compressed mode also enables sending compressed data for
faster transfers.

RFC 959’s minimum implementation requires support for stream mode.

Using the File Transfer Protocol

 415

NLST [pathname]

The NLST command requests the server to send a list of file names in the
directory specified in pathname.

NOOP

The NOOP command performs no function except to elicit a response that
confirms that the server is responding to commands.

RFC 959’s minimum implementation includes support for NOOP.

PASS password

With the PASS command, the client specifies the password for the user
name. If the user name is anonymous, the password conventionally is the
user’s e-mail address.

PASV

The PASV command requests the server to wait for the client to open the
data connection instead of having the server open the connection. The
server responds to this request with the code 227 entering passive

mode, followed by the IP address and port number where the server will lis-
ten for the client. This information uses the same format as the PORT com-
mand. Passive mode can be useful when communicating through firewalls.
Also see EPSV.

PORT host-port

The PORT command enables the client to specify an IP address and port
number the client will use for the data connection. The host-port parameter
consists of four decimal numbers that represent the four bytes that make up
a 32-bit IP address, followed by the two bytes of the port address. The
parameter uses the format h1,h2,h3,h4,p1,p2, where h1 is the high byte in
the IP address followed by the next three bytes in order and p1 is the high
byte in the port number, followed by the low byte.

For example, to request to use port 53249 (D001h) at IP address
192.168.111.100, the command would be PORT

192,168,111,100,208,1. (The decimal value 53249 equals D001h. D0h
is 208 in decimal, so the decimal values of the two bytes are 208 and 1.)

Chapter 9

416

As explained above, issuing a PORT command before establishing a data
connection can prevent problems due to TCP’s timeout requirements.
Transfers that use passive or extended-passive mode don’t require a PORT
command because the server waits for the client to connect on the port the
server has specified.

RFC 959’s minimum implementation includes support for PASV.

PWD

The PWD command prints the name of the current working directory.

QUIT

With the QUIT command, the client requests the server to close the control
connection. If the data connection is open, the server will wait for it to close
before closing the control connection.

RFC 959’s minimum implementation includes support for QUIT.

RETR pathname

A client uses the RETR command to request a file from the server. The
pathname parameter specifies the file’s path, if needed, and name.

RFC 959’s minimum implementation includes support for RETR.

RMD pathname

The RMD command requests to remove a directory specified in pathname
on the server.

STAT [path]

The STAT command requests status information. If the command has no
parameter, the server returns the current values of all transfer parameters and
the status of connections. If the command includes a path, the command
returns a directory listing for the path, as in a LIST command, but using the
control connection.

STOR pathname

A client uses the STOR command to request to send a file to the server. The
pathname parameter specifies the file’s path, if needed, and name. If the file

Using the File Transfer Protocol

 417

doesn’t already exist on the server, the server creates the file. If the file does
exist on the server, the server overwrites the file.

RFC 959’s minimum implementation includes support for STOR.

STRU

The STRU command specifies the structure of the data’s contents. The file
structure (f), which is the default, makes no assumptions about the structure
of the data. With the record structure (r), the data is assumed to consist of
sequential records in a prescribed format.

RFC 959’s minimum implementation includes support for the file structure
and support for the record structure if the file system supports records.

SYST

The SYST command returns text that indicates what operating system the
server is running. Standard text to use for popular operating systems is avail-
able at www.iana.org/assignments/operating-system-names. The options
include WIN32 and more specific designations such as WINDOWS-98 and
WINDOWS-CE.

TYPE

The TYPE command can specify how text characters are encoded in the files
being transferred. In ASCII Non-print (AN), which is the default, a charac-
ter is represented by a byte containing a 7-bit NVT-ASCII code, with the
most significant bit set to zero. The Telnet standard (RFC 854: Telnet Proto-
col Specification) defines the NVT-ASCII character set, which includes codes
for carriage return (CR) and line feed (LF). Non-print means that the data
isn’t required to include vertical-format information such as CRLF or page
breaks. Other FTP types are EBCDIC and Image.

RFC 959’s minimum implementation includes support for ASCII
Non-print type.

USER username

In the USER command, username identifies the client requesting access to
the server’s resources. When a server is available to any client, username is
anonymous.

Chapter 9

418

RFC 959’s minimum implementation includes support for USER.

Additional Commands

RFC 959 defines additional commands and valid reply codes, and RFC
2228: FTP Security Extensions adds more. On receiving an unrecognized
command, a server returns reply code 502 (Command not implemented).

Requesting a File with a URL
A computer that only needs to receive files, but not send them, can use a
URL to communicate with an FTP server. The URL standard (RFC 1738)
defines an ftp scheme for URLs. The scheme is:

ftp://user:password@host[:port]/url-path

where

user is the user name to gain access to the FTP server.

password is the user’s password. If the URL doesn’t supply a password, a
browser may prompt for it.

host is the host’s IP address in dotted-quad format or a domain name.

port is the port to connect to on the server. The port is 21 if not specified.

url-path is the location and name of the file being requested.

The url-path is in the form:

[cwd1/cwd2/...cwdn]/filename[;type=typecode]

where cwd1, cwd2, and so on are any directories required to specify the
location of the file on the server, filename is the name of the file being
requested, and an optional typecode specifies the type of resource being
requested. A typecode of a means ASCII Non-print, which is the default
if not specified. A typecode of i is Image (binary), and d means directory.
Requesting a URL for an ASCII or image file causes the client to send a
RETR command for the named file. Requesting a URL that names a direc-
tory causes the client to send an NLST command to request a list of files in
the specified directory.

Using the File Transfer Protocol

 419

The browser or other software that supports the FTP scheme opens a con-
nection with the specified host, and sends the appropriate FTP commands
to retrieve the file or list of file names.

In Java, an instance of the URL class represents a URL. As the TINI example
in this chapter showed, an instance of the URLConnection class can com-
municate with a resource that a URL references, such as an FTP server.

Chapter 9

420

Keeping Your Devices and Network Secure

 421

If your device connects to the Internet, you need to pay attention to net-
work security. Many devices that connect only to local networks can benefit
from security measures as well.

Without effective security, an unauthorized user may do any of the follow-
ing:

• View your data, device firmware, or the contents of any files.

• Alter or erase files.

• Install and run program code on your device.

• Submit Web-page form data that causes the device to malfunction or has
other unintended consequences.

• Spy on transmissions to and from your device.

• Gain access to other computers in the local network.

Keeping Your Devices and Network Secure

 421

If your device connects to the Internet, you need to pay attention to net-
work security. Many devices that connect only to local networks can benefit
from security measures as well.

Without effective security, an unauthorized user may do any of the follow-
ing:

• View your data, device firmware, or the contents of any files.

• Alter or erase files.

• Install and run program code on your device.

• Submit Web-page form data that causes the device to malfunction or has
other unintended consequences.

• Spy on transmissions to and from your device.

• Gain access to other computers in the local network.

Chapter 10

422

• Clog your network with repeated attempts to communicate, preventing
authorized users from accessing the device and other computers in the
local network and possibly preventing the device from performing the
tasks it’s responsible for.

Fortunately, there are steps you can take to prevent these activities. Not
every device needs to implement every security measure. What steps to take
depend on the device, its capabilities and responsibilities, the local network
the device resides in, and any connections the device has to networks outside
the local network.

In some ways, embedded systems are often inherently more secure than a
PC with a familiar operating system and plenty of resources to exploit. If
your device’s firmware is in a one-time-programmable (OTP) ROM, you
don’t have to worry about preventing malicious users from overwriting the
firmware. If your device serves Web pages that contain no private informa-
tion, there’s no need to encrypt the data being sent. But in most cases, there
are risks you need to protect against, to ensure that your device continues to
operate as it should and to ensure that the security of other computers in the
local network aren’t compromised.

One way to limit who has access to a resource is to require a user name and
password before serving the resource. This chapter shows how you can use
HTTP’s Basic Authentication to protect resources with user names and pass-
words. The In Depth section details four steps that will go a long way to
ensuring the security of your devices and the local networks they reside in.

Quick Start:
Limiting Access with Passwords

For many applications, it’s desirable to limit access to certain Web pages by
requiring users to enter a valid user name and password. HTTP 1.0 supports
Basic Authentication, which enables a server to require a valid user name
and password before returning a Web page.

Basic Authentication is sufficient protection for some applications, and
many networking libraries and packages for embedded systems support it.

Keeping Your Devices and Network Secure

 423

Using Basic Authentication
When a client requests a Web page protected with Basic Authentication, the
server requests the client to authenticate, or prove that the client is autho-
rized to receive the resource. The server does this by returning an HTTP
header with the error code 401 (Unauthorized) and a WWW-Authenticate
field that names the type of authentication required. Here is an example:

HTTP/1.0 401 Unauthorized\r\n
Date: Mon, 14 Apr 2003 12:05:15 GMT\r\n
WWW-Authenticate: Basic realm="Embedded Ethernet" \r\n
\r\n

The WWW-Authenticate field names two values: the authentication
scheme, or method, to use (Basic in the example) and the realm the scheme
applies to ("Embedded Ethernet"). On returning a valid user name and
password in the format required by the named authentication scheme, a cli-
ent can access resources within the named realm. A server can support mul-
tiple realms, with each allowing access to a different set of users.

On receiving a header requesting Basic Authentication, the client’s browser
typically displays a window that requests the user to enter a user name and
password. Figure 10-1 shows an example. The window displays the name of

Figure 10-1: On receiving a request for Basic Authentication, browsers display a
window like this to enable users to enter a user name and password.

Chapter 10

424

the page’s realm, so when naming a realm, use something meaningful to end
users. For added security, most browsers display dots in place of the pass-
word’s characters when they’re entered. When the user has entered the
requested information and clicks OK, the browser sends an authorization
request containing the password and user name. The request travels in an
HTTP GET request that includes an Authorization request with the
encrypted user name and password:

GET / HTTP/1.0\r\n
Authorization Basic ZW1liZWRkZWQ6ZXRoZXJuZXQ/r/n
/r/n

On receiving the GET request, the server decrypts the user name and pass-
word. If both are valid for the specified realm, the server returns the Web
page originally requested. If not, the server typically returns another
response with error 401 and a request to authenticate. Most browsers display
the authentication window again, but after receiving a third request to
authenticate, some browsers give up and don’t re-display the window. Open-
ing a new browser window typically allows the user to try again, however.

The encryption used in Basic Authentication is the Base64 Content-Trans-
fer-Encoding method described in RFC 1521: MIME (Multipurpose Internet
Mail Extensions) Part One: Mechanisms for Specifying and Describing the For-
mat of Internet Message Bodies, minus the specified limit of 72 characters per
line.

In the encoding, the data to transmit is first divided into 24-bit chunks.
Each chunk is then divided into four 6-bit numbers. A table provided in the
standard assigns a character in the BASE64 alphabet to each 6-bit value (0
to 63). The BASE64 alphabet includes upper- and lower-case letters,
numerals, and a few additional characters. For example, binary 000000 in
BASE64 is the character A, and binary 011010 (26 decimal) is the character
a.

In a request for Basic Authorization, the client converts a string in this for-
mat:

user_name:password

Keeping Your Devices and Network Secure

 425

to BASE64. The resulting characters transmit in the Authorization field of
the HTTP header.

For example, if the user name is embedded and the password is ethernet,
the string to encrypt is:

embedded:ethernet

Each character is a byte, so there are 17 bytes, which equal 22 6-bit values
with four bits left over. To obtain an integral number of 6-bit values, pad the
end with two zeroes. Encrypting the user name and password gives this
23-character string:

ZWliZWRkZWQ6ZXRoZXJuZXQ

The result must be an integral multiple of 24 bits. When needed, add one or
two equal signs (=) to the end of the string to lengthen it. The example
above requires one equal sign.

The BASE64 encryption can be easily decrypted by anyone spying on a
transmission. It’s also possible for a determined hacker to keep trying differ-
ent user names and passwords until something works. The In Depth section
of this chapter describes Digest Authentication, which is more complex but
more secure and thus more suitable for some applications.

Basic Authentication on the Rabbit
Rabbit Semiconductor’s http.lib library includes support for Basic Authenti-
cation. Chapter 6’s example introduced the HttpSpec structure, which con-
tains an HTTP_FILE entry for each file a Rabbit’s Web server can access.
Each entry can also specify a realm for password-protecting the file.

To protect a file, the application must include an HttpRealm structure with
one or more user names and passwords, and the file’s HTTP_FILE entry must
specify the realm, as in the following example application.

Initial Defines and Declares

Much of the code that configures and initializes the Rabbit is the same as in
previous examples in Chapter 6 and Chapter 7, so I’ll skip extended expla-
nations of these statements.

Chapter 10

426

#define TCPCONFIG 1
#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

An #ximport directive imports a Web page (index.html) that displays a mes-
sage on successful authentication.

#ximport "c:/rabbit/passworddemo/index.html"
 index_html

Figure 10-2 shows an example Web page. In a real-world application, this
page would display the protected contents.

The HttpRealm structure myrealm contains a single entry that defines an
authorized user with a user name ("embedded"), password ("ethernet"),
and realm name ("Lakeview Research"):

const HttpRealm myrealm[] =
{
 {"embedded", "ethernet", "Lakeview Research"}
};

The single entry in the HttpType structure associates the file extension
.html with the handler for files of type text/html.

const HttpType http_types[] =
{
 { ".html", "text/html", NULL}
};

Figure 10-2: On receiving a valid user name and password, the application
returns the requested Web page.

Keeping Your Devices and Network Secure

 427

The HttpSpec structure contains information about the file the server
serves. The two entries enable clients to request the file by name
("/index.html") or as the default file served on entering the server’s IP
address alone ("/") in a browser’s Address text box.

const HttpSpec http_flashspec[] =
{
 { HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL,
 myrealm},
 { HTTPSPEC_FILE, "/index.html", index_html, NULL,
 0, NULL, myrealm}
};

The main() Function

The main() function initializes the TCP/IP stack and the HTTP handler
and calls tcp_reserveport() to enable establishing a connection even if
no sockets are available. An endless while loop then calls http_handler()
repeatedly to handle any incoming requests.

main()
{

 sock_init();
 http_init();
 tcp_reserveport(80);

 while (1) {
 http_handler();
 }
} // end main()

When the program is running and a client requests index.html or the server’s
default file, the server returns an authentication request. On receiving an
authentication request from the client with the required encrypted user
name, password, and realm, the server returns the Web page index.html.

In a similar way, you can use Basic Authentication in Rabbit applications
that use forms and the zserver.lib library, as described in Chapter 7. Rabbit
Semiconductor has an example application that illustrates Basic Authentica-
tion with forms.

Chapter 10

428

Basic Authentication on the TINI
For the TINI, Web servers that support Java servlets, such as the Tynamo
Web server and TiniHttpServer, typically support Basic Authentication as
well. The following BasicAuthentication servlet for the Tynamo Web
server requires clients to provide a valid user name and password before the
servlet will serve its Web page to the client.

Initial Imports

As in the previous example, the name of the realm is “Lakeview Research,”
the user name is “embedded,” and the password is “ethernet.”

In addition to the java.io.IOException, javax.servlet, and
javax.servlet.http classes, the servlet imports the AuthenticatedHt-
tpServlet class from Tynamo’s com.qindesign.servlet package.

import java.io.IOException;
import javax.servlet.ServletOutputStream;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.qindesign.servlet.AuthenticatedHttpServlet;

public class BasicAuthentication extends
 AuthenticatedHttpServlet {

Methods

The getRealm() method returns the name of the realm. The class must
support this method.

 public String getRealm(HttpServletRequest req) {
 return "Lakeview Research";
 }

The isAuthorized() method is passed a realm, user name, and password
and checks to see if these match the values supported by the servlet. The
class must support this method.

 public boolean isAuthorized(String realm,
 String username, String password) {
 return "Lakeview Research".equals(realm) &&
 "embedded".equals(username) &&

Keeping Your Devices and Network Secure

 429

 "ethernet".equals(password);
 } // end getRealm()

The doGet() method functions like the doGet methods in previous exam-
ples, except that it is called only after a GET request has been authorized. In
this example, the method returns a Web page containing a single line of text
informing the client that the user name and password are valid. In a
real-world application, this page would display the protected information.

 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/html");
 ServletOutputStream out = resp.getOutputStream();
 out.println("<P>Valid username and password
 detected.");
 } // end doGet()

In a similar way, the servlet can respond to authorized POST requests. This
example just calls the doGet() method.

 protected void doPost(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 doGet(req, resp);
 } // end doPost()

The doUnauthorizedGet() method is like doGet(), except that it’s called
when an authorization attempt fails. The method writes the contents of a
Web page to a ServletOutputStream object. The Web page contains an
error message and a link that requests the servlet again to give the user
another chance.

Users may not see this Web page every time they send a request that fails
authentication. On receiving an HTTP response with error code 401
(Unauthorized), many browsers display the authentication window again
and ignore the Web page returned in the response. But if the browser gives
up after three tries, or if the user closes the authentication window without
clicking OK, the browser may display the Web page.

 protected void doUnauthorizedGet(HttpServletRequest
 req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/html");

Chapter 10

430

 ServletOutputStream out = resp.getOutputStream();
 out.print("<P>Invalid username or password.");
 out.print("<P><A HREF=
 \"/servlet/BasicAuthentication\">Try
 again");
 } // end doUnauthorizedGet()

In a similar way, the servlet can respond to unauthorized POST requests.
This example just calls the doUnauthorizedPost() method.

 protected void doUnauthorizedPost (HttpServletRequest
 req, HttpServletResponse resp)
 throws ServletException, IOException {
 doUnauthorizedGet(req, resp);
 } // end doUnauthorizedPost

} end BasicAuthentication

When this servlet has been compiled and the Tynamo Web server is run-
ning, requesting the servlet /servlet/BasicAuthentication at the TINI’s IP
address will cause Figure 10-1’s window to display. On receiving a GET
request with the user name “embedded” and password “ethernet” using
Basic Authentication, the doGet() method returns the Web page with pro-
tected content to the client.

In Depth:
Four Rules for Securing Your Devices
and Local Network

Paying attention to the following four rules will go a long way in ensuring
that your device, data, and local network are as secure as possible from secu-
rity risks:

1. Use a firewall and configure it with the most restrictive settings that allow
your device to perform the communications it requires.

2. Restrict access to individual protected resources with user names and
passwords.

3. Validate data provided by users to ensure the contents won’t cause harm.

Keeping Your Devices and Network Secure

 431

4. Encrypt data that must remain private.

For each of these, you need to review the risks as they apply to your device,
then take actions as needed to reduce or eliminate the risks. The actions will
vary with the device, the firmware, and the security needs of the computers
in any local network the device attaches to.

Use a Firewall
A firewall is the first line of defense against unauthorized access to the
resources of your device and local network. Chapter 4 introduced firewalls
and explained the need to configure them to allow a device to function as a
server on the Internet. This chapter has more about firewalls, including how
to select and use a firewall to provide the maximum protection for your
device and local network while still allowing necessary communications to
pass through the firewall.

Three ways for an embedded system to obtain firewall protection are a dedi-
cated firewall device, firewall software running on a PC in the same local
network as the embedded system, and firewall firmware in the device itself.
A dedicated device is the easiest to use. Firewall software in a PC has the
advantage of costing nothing if you have a PC available and running that
can function as a firewall for a local network. Firmware that performs the
function of a firewall in the device can be an option in some cases where you
need to protect a single device.

Firewall Basics

A firewall device is an embedded system that connects between a local
device or network and the Internet or other networks the local computer(s)
communicate with. The firewall typically has multiple LAN ports for con-
necting local computers and hubs and a single WAN port that connects to
the outside world. The local computers are said to be behind the firewall.
Everything the WAN port can communicate with is outside the firewall. In
smaller networks, the WAN port often connects to a cable or DSL modem
that connects to an ISP. Every communication to or from a computer out-
side the firewall must go through the firewall to reach a computer in the

Chapter 10

432

local network. The firewall’s configuration determines which communica-
tions can pass through the firewall.

Firewalls are mainly concerned with restricting incoming communications,
though in some cases, a firewall may also block outgoing communications
that appear to be fraudulent, such as an outgoing datagram with a non-local
Source Address.

Many firewall devices are multi-function devices that also perform the func-
tions of a hub and a router with network address translation (NAT). (See
Chapter 4 for more about NAT.) The hub enables multiple computers to
connect to the firewall. To add more computers, you can connect another
hub to one of the local ports as described in Chapter 2.

In a similar way, a Windows XP PC configured to use Internet Connection
Sharing (ICS) can protect a local network, including embedded systems, by
enabling Windows XP’s Internet Connection Firewall. The PC must have
two network interfaces. An Ethernet interface connects the PC to the local
computers protected by the firewall. A second Ethernet interface or an inter-
face to a modem connects the PC to the world outside the firewall. The
Internet Connection Firewall has configuration options similar to those for
a dedicated firewall device.

A firewall’s configuration determines which IP datagrams the firewall will
allow to pass through to the local network. Most firewall devices support a
password-protected Web interface for setting the configuration. To config-
ure the firewall device, you need a network-connected PC or other com-
puter that enables you to view and enter information on the Web pages, but
once the firewall is configured, the device protects the network without
requiring a connected PC. For added security, many firewalls enable you to
restrict access to the configuration pages to computers in the local network
only.

The specifics of how to configure a firewall vary with the manufacturer and
model, but the general concepts are the same for all firewalls. The basic rule
for configuring a firewall is to block all communications through the fire-
wall except those that you explicitly want to allow.

Keeping Your Devices and Network Secure

 433

Functioning as a Client

Some embedded systems can function strictly as clients that request
resources from or send data to other computers but don’t have to accept
communications from hosts the client hasn’t initiated communications
with. For example, a system that uses the Internet only to send periodic sen-
sor readings to remote computers doesn’t need to accept communications
from computers other than the ones the system sends the reading to. The
firewall can examine each datagram received from outside the firewall. If the
information in the headers shows that the datagram’s source and destination
match those of a valid, currently active connection, the datagram can pass
through to the local network. If not, the firewall drops the datagram and
may return a response indicating that the data was refused.

To help in deciding whether to allow a received datagram to pass to the local
network, the firewall may maintain and consult a table that contains an
entry for each connection. When a local computer sends a TCP segment or
UDP datagram to a remote host and port, a firewall can create a table entry
that allows incoming traffic from that remote host and port to pass to the
specified local host and port. For TCP connections, the firewall deletes the
entry when the TCP connection is closed as indicated by the FIN or RST
flag. For UDP, which doesn’t use formal connections, the firewall can use a
timeout to decide when to delete the entry. TCP connections can also use a
timeout as a backup for cases where the connection doesn’t close properly.

As Chapter 9 explained, in FTP transfers, by default the server requests to
open a TCP connection for a transfer’s data channel. If the client’s firewall
blocks requests to open a connection, the client can request to use passive or
extended passive mode, where the client computer opens the connection
using a port number provided by the server.

Hosting a Server

If a local computer needs to be able to serve resources to requesting comput-
ers outside the firewall, you need to configure the firewall to allow the
requests to pass through the firewall while preventing other, unwanted traf-
fic from entering the local network.

Chapter 10

434

A firewall may allow several options for restricting incoming traffic. For
example, a local network might include an embedded system that hosts a
Web server on port 80, the default port for HTTP communications. Con-
figuration options for allowing incoming HTTP requests include the fol-
lowing, from most restrictive to least restrictive:

• Allow incoming IP datagrams that don’t belong to an established connec-
tion only if they contain TCP segments that contain HTTP requests that
are directed to port 80, and forward the TCP segments to a specified
host. This is the most secure option. A datagram passes through the fire-
wall only if the datagram contains a TCP segment, the contents of the
segment’s Destination Port Number field is 80, and the contents of the
segment’s data area indicate that the message is an HTTP request. Not all
firewall devices are capable of filtering in this much detail. Also, addi-
tional fragments in a fragmented datagram won’t have a TCP or HTTP
header to examine, so the firewall needs to have a mechanism that allows
additional fragments to pass through the firewall.

• Allow incoming IP datagrams that don’t belong to an established connec-
tion only if they contain TCP segments directed to port 80. Forward the
TCP segments to a specified host and port. This option is like the previ-
ous one except that it doesn’t examine the contents of the TCP segment’s
data area to verify that it contains an HTTP request.

• Allow all incoming IP datagrams that don’t belong to an established con-
nection and forward their contents to a specified host. This is the least
secure option, but it can be sufficient for some applications. For example,
the specified host may be an embedded system that accepts only HTTP
requests from specific IP addresses, ignoring all other communications.

Other configuration options a firewall might have include these:

• Specify remote IP addresses that a local host can receive traffic from. This
option is useful if your embedded system communicates only with a spe-
cific IP address or series of IP addresses.

• Allow only specified computers to communicate with computers outside
the firewall. Or block specified computers from communicating with
computers outside the firewall. These options enable you to allow an

Keeping Your Devices and Network Secure

 435

embedded system to communicate on the Internet while protecting
other computers in the local network that don’t need Internet access. The
firewall may enable you to identify the computers by IP address or by
Ethernet hardware address. Using hardware addresses can be useful if the
IP addresses are assigned dynamically and are subject to change.

• Block any outgoing communication where the Source Address of the dat-
agram isn’t a local address. (A firewall with NAT support will translate
the local address to the firewall’s public IP address when sending the dat-
agram on the Internet.) This option can prevent some malicious software
from using your local computers to access the Internet.

• Allow a host behind the firewall to communicate without firewall protec-
tion. The host is said to reside in a “demilitarized zone” (DMZ) and
must have its own public IP address.

Embedded Firewalls

If you have a device that connects to the Internet by itself, without connect-
ing to a local network, you may be able to provide adequate protection in
the device firmware, without requiring a separate firewall device. This is
especially true if the device requires only specific and limited Internet access.
For example, if the device communicates with a single IP address over a spe-
cific user port, the firmware can ignore all other network communications.
For other applications, requiring all users to enter a user name and password
before accessing the device’s resources (as in the Basic Authentication exam-
ples earlier in this chapter) may provide adequate protection.

Restrict Access with User Names and Passwords
A firewall enables you to control which local resources are available on the
Internet and which IP addresses can access those resources. But firewalls fil-
ter only on the information in IP and other headers. They can’t identify spe-
cific, authorized users who may be using IP addresses that the firewall
doesn’t know about ahead of time.

A solution is to provide authorized users with a password and to require
users to enter the password before accessing a resource. For additional secu-

Chapter 10

436

rity and to identify who is accessing the resources, you can require a user
name in addition to a password. Each user name and password combination
can be unique to a user, so different users can have different access. The
accepted passwords and user names may be hard-coded into the firmware,
with authorized users informed of the values to use. Or you may want to
allow users to obtain access to a resource by filling out a form that requires
selecting a user name and password. The form can request additional infor-
mation as well.

Two words you’ll encounter relating to password protection are authentica-
tion and authorization. A user who wants to access a protected resource must
provide authentication, or proof that the user has permission to access the
resource. On receiving a valid user name and password, the server grants
authorization, or permission, to access the resource.

Basic Authentication and Digest Authentication

The examples at the beginning of this chapter showed how to use Basic
Authentication to require a user name and password before accessing a
resource.

A more secure option than Basic Authentication is Digest Authentication.
To access a resource protected with Digest Authentication, the user must
provide a message digest, which is a 32-character ASCII hex string created
from information provided by both the client requesting the resource and
the server that is hosting the resource. The information that goes into creat-
ing the message digest includes a nonce value that the server returns in
response to a request for a protected resource, a user name, a password, a
realm, and the request. The default method for obtaining the message-digest
string is the MD5 algorithm described in RFC 1321: The MD5 Mes-
sage-Digest Algorithm.

The nonce value provided by the server typically incorporates a time stamp
and an Etag value that identifies the resource being requested. The time
stamp enables the server to allow access for a specified time before requiring
re-authentication. A server can use the Etag value to prevent replay attacks,

Keeping Your Devices and Network Secure

 437

where an unauthorized user requests an updated version of a resource previ-
ously returned to an authorized user.

Rabbit Semiconductor’s Dynamic C includes functions that support Digest
Authentication on Web servers hosted by Rabbit modules. Some older Web
browsers don’t support Digest Authentication.

HTML Passwords

For very basic password protection, HTML’s password box can do the job. A
password box on a Web page is just like a text box except that the TYPE
attribute of HTML’s input tag is "password":

<input type = "password" name=mypassword maxlength=20>

When a user types a password in the box, the browser displays a dot for each
character typed. When the user clicks the form’s Submit button, the
browser sends the password to the server without encrypting it. Unlike Basic
Authentication, which many servers support automatically, the use of this
type of password box is application-specific. The server must provide pro-
gram code to check the password and take appropriate action.

Additional Password Considerations

Be sure to limit access to any files that store user names and passwords so
they aren’t easily viewable by unauthorized users. And be aware that pass-
word protection only limits who can request a resource. The resource itself
isn’t encrypted when traveling on the network.

As previous chapters have shown, user names and passwords can also control
access to e-mail mailboxes and files on an FTP server.

Validate User Data
Another way a device’s resources can be at risk is via data received from a cli-
ent, such as data submitted on a form. Users can cause harm due to mali-
cious behavior or carelessness.

Chapter 10

438

Limiting Input Range

When enabling users to enter data to be used in configuring or controlling a
device, it’s always a good idea to limit valid inputs to a reasonable range. For
example, in a system that controls heating and cooling for a house, you may
want to allow inputs only between, say, 50 and 80 degrees Fahrenheit. That
way, if someone mistakenly types a thermostat setting of 0 instead of 60, the
system can display an error message instead of attempting to implement the
setting.

Limiting Input Length

On a form, input tags that enable users to enter text should always have a
maxlength attribute that limits the number of characters a user can send.
This line of HTML code creates an input box called temperature and allows
the user to enter up to three characters:

<input type= "text" name="temperature" maxlength=3>

Limiting the length helps to ensure that the received value doesn’t extend
beyond the amount of memory reserved for the value on the server.

SSI Vulnerabilities

Chapter 6 introduced SSI directives. A couple of directives can have unin-
tended consequences. The #exec directive can request the server to execute
program code, and the #include directive can request the contents of a file
to be included in a requested resource. If your server supports these direc-
tives but they’re unneeded by applications, it’s best to disable them if possi-
ble. In any case, to guard against unauthorized release of data or execution of
program code, anything stored in the device that should remain private
should be in an area unavailable to unauthorized users.

The Rabbit’s http.lib library supports #include and an #exec cmd direc-
tive, which can execute a function named in an HTTPSPEC_FUNCTION entry
in the application’s HttpSpec structure.

Keeping Your Devices and Network Secure

 439

Encrypt Private Data
The fourth rule for securing network resources is to encrypt data that must
remain private. Basic and Digest Authentication encrypt passwords. It’s also
possible to encrypt any data exchanged between two computers.

Encrypting and decrypting large amounts of data can take up a lot of CPU
cycles and time. On small embedded systems, the challenge is to obtain the
needed security without overwhelming the system’s resources. Options such
as AES encryption and stand-alone firewalls that support Virtual Private
Network protocols are two possible solutions for embedded systems.

AES (Rijndael) Encryption

In 1997, the U.S. National Institute of Standards and Technology (NIST)
began a search for a new encryption standard that was royalty-free, easy to
implement even on small embedded systems, and able to withstand attack.
In 2001, Federal Information Processing Standard (FIPS) 197 designated
the Rijndael algorithm the winner of the search. The algorithm was named
the government’s Advanced Encryption Standard (AES) to use for sensitive
but unclassified information. Entities other than the U.S. Government are
welcome to use the algorithm as well, of course.

Rabbit Semiconductor’s Dynamic C offers a library module with support
for the Rijndael Advanced Encryption Standard (AES) cipher.

Virtual Private Networks

Another option for securing network data is a virtual private network
(VPN). The computers at each end of the VPN can use authentication and
encryption to ensure that the data is secure from spying and to block all
other traffic from entering the VPN.

The program code required to implement a VPN can be too complex and
time-consuming to develop for a small embedded system. However, just
about any system can communicate over a VPN by connecting to a rela-
tively inexpensive firewall device with VPN support.

Chapter 10

440

VPNs use IP Security (IPsec) protocols for encryption and authentication. A
variety of RFC documents cover the protocols. A good place to start is with
RFC 2411: IP Security Document Roadmap.

To establish a VPN, a computer at each end of the network must have soft-
ware that knows how to use the required protocols to establish a connection
to the other end. Windows XP includes an IPSec Security Manager that
enables PCs to communicate over a VPN. For embedded systems, the easi-
est way to support VPN is to connect the system to a firewall device that
supports VPNs.

Firewalls that support VPNs typically include a variety of configuration
options. At the local network, you can enable a single IP address, an entire
subnet, or a user-specified range of addresses within a subnet to access the
VPN. You can specify that the local network will accept VPN communica-
tions from a specified IP address or domain name, or from any requesting
host.

To use encryption, both ends of the VPN must agree on the type of encryp-
tion to use and they must share a key that enables each end to encrypt and
decrypt network traffic. Encryption options include AES and the older
methods 3DES and DES. Authentication options include MD5 and the
more secure 160-bit Secure Hash Algorithm (SHA).

When both ends have been configured, the devices can communicate and
attempt to establish the VPN. When the VPN has been established, the two
devices can use encryption to transfer data securely.

Secure Sockets Layer Encryption

Many Web browsers support the Secure Sockets Layer (SSL) protocol for
encrypting data such as the credit-card numbers customers send to on-line
retailers. SSL uses public-key cryptography, which uses separate keys for
encrypting and decrypting. The computer requesting the encrypted data
generates a public key for encrypting and a private key for decrypting. The
sender of the data uses the public key in encrypting the data. Decrypting
requires the private key, which only the receiving computer has access to.

Keeping Your Devices and Network Secure

 441

SSL encryption is very secure but requires more resources than many small
embedded systems can provide. Netburner is one company that offers SSL
support for its products, which use Motorola’s 32-bit ColdFire processors.

Chapter 10

442

Index

 443

Symbols
- (hyphen) 365
" (quotation marks) 277, 302, 336
(number sign) 308
+ operator 262
. (period). See period
/ (forward slash) 150, 268, 292, 306, 317
; (semicolon) 307
<!-- and --> delimiters 280, 281
<> (angle brackets) 274
= (equal sign) 425
? (question mark) 297
\ (back slash) 302, 306, 336
^ (caret) 115
| (pipe) 413

Numerics
0.0.0.0 address 164, 172
1.1.1.1 address 164
1-Wire interface 101, 103, 104
10BASE-2 media system 76
10BASE-5 media system 76
10BASE-FL media system 74, 82
10BASE-T

cable used 42
CS8900A 131
DSTINIm400 TINI module 100
IP2022 Wireless Network Processor 112
isolation transformers 120
Lantronix Device Server 111
MOD5282 Processor Module 109
multi-speed repeater hubs 85
network specifics 36–38, 72
Packet Whacker 116

PICDEM.net Demonstration Board 110
RabbitCore RCM3200 93
Realtek RTL8019AS 128
SitePlayer Ethernet Web Server 113
SMSC LAN91C96 130
transmission paths 82

10-Gigabit Ethernet 22, 83
10-Mb/s Ethernet

bit patterns 23
Category 3 cable 45
crossover cables and 48
interfaces 22
multimode fiber 59
on-chip MII 122
slot times 29

10-Mb/s media systems
coaxial cable 61
connector types 60
CS8900A 131
RTL8019AS 128
shielded cable and 47
SMSC LAN91C96 130
transmission 70

100BASE-FX 74, 82
100BASE-TX

DSTINIm400 TINI module 100
isolation transformers 120
Lantronix Device Server 111
MOD5282 Processor Module 109
multi-speed repeater hubs 85
RabbitCore RCM3200 93
specifics 73
transmission paths 82

100 Mb/s 22, 122
400 (Bad Request) error code 271

Index

444

401 (Unauthorized) error code 423, 424, 429
404 (Not Found) error code 272
1000BASE-T 71, 73
1000BASE-FX 83
1000BASE-LX 75
1000BASE-SX 75
1000BASE-TX 83

A
<a> tag 277
absolute location 411
absorption 59
AC (alternating current) 65
Accept Broadcast (AS) bit 126
Accept header (HTTP) 270
ACCT command (FTP) 412
ACK bit (TCP header) 233, 237
acknowledgement

application layer 238
flow control and 240
TCP and 89, 229, 230, 232, 240, 241
UDP and 184, 225

Acknowledgement Number field (TCP header)
232, 233

ACTION attribute (FORM tag) 317, 328
Address Resolution Protocol. See ARP
addresses. See IP addresses
addressing

AX88796 123
frames and 22
IP and 9–11
modules and 5
RS-485 limitations 18
RTL8019AS 128

ADSL (asymmetric DSL) 139
AES (Advanced Encryption Standard) 96,

439, 440
Agilent Technologies 34, 59
air quality (harsh environments) 63
aj-100 microprocessor 108
aJile Systems 108
alarm notification 11
allocation, DHCP options 171–174

ALT attribute (IMG) 274, 276
alternating current (AC) 65
AMD 112, 131
America Online 223
American National Standards Institute (ANSI)

43
American Registry for Internet Numbers

(ARIN) 157
AND operator 162
angle brackets <> 274
ANSI (American National Standards Institute)

43
ANSI characters 364, 425
Ant build utility 304, 305, 309
Apache Group 280
Apache HTTP Server 13, 280
Apache Software Foundation 13, 280
API (application programming interface) 218
APOP command (POP3) 374, 376
APPE command (FTP) 400, 412
application layer 6, 7, 238
application programming interface (API) 218
applications

configuring 185, 186
dynamic content support 14
network communications 19
network protocol stack and 6, 7
UDP/TCP communication 218–220

ARIN (American Registry for Internet Num-
bers) 157

ARP (Address Resolution Protocol)
broadcast messages 32
frame format 176–178
functionality 155
IP addresses 10, 176

AS (Accept Broadcast) bit 126
ASCII Non-print (TYPE) 390, 417, 418
ASIX 88796L (NICkita) 116
ASIX AX88796 95, 122–128
asymmetric DSL (ADSL) 139
asymmetrical connections 141
asynchronous communication 17, 23, 111,

220
aton function (Dynamic C) 186

WIRELESS EMBEDDED NETWORKING:

Wireless sensor networks

Introduction

Applications

Network Topology

Localization

Time Synchronization

Energy efficient MAC protocols

 SMAC

Energy efficient and robust routing

 Data Centric routing

1

Introduction

1.1 Wireless sensor networks: the vision

Recent technological advances allow us to envision a future where large num-
bers of low-power, inexpensive sensor devices are densely embedded in the
physical environment, operating together in a wireless network. The envisioned
applications of these wireless sensor networks range widely: ecological habitat
monitoring, structure health monitoring, environmental contaminant detection,
industrial process control, and military target tracking, among others.

A US National Research Council report titled Embedded Everywhere notes
that the use of such networks throughout society “could well dwarf previous
milestones in the information revolution” [47]. Wireless sensor networks provide
bridges between the virtual world of information technology and the real phys-
ical world. They represent a fundamental paradigm shift from traditional inter-
human personal communications to autonomous inter-device communications.
They promise unprecedented new abilities to observe and understand large-scale,
real-world phenomena at a fine spatio-temporal resolution. As a result, wireless
sensor networks also have the potential to engender new breakthrough scientific
advances.

While the notion of networking distributed sensors and their use in military
and industrial applications dates back at least to the 1970s, the early systems were
primarily wired and small in scale. It was only in the 1990s – when wireless tech-
nologies and low-power VLSI design became feasible – that researchers began
envisioning and investigating large-scale embedded wireless sensor networks for
dense sensing applications.

1

2 Introduction

Figure 1.1 A Berkeley mote (MICAz MPR2400 series)

Perhaps one of the earliest research efforts in this direction was the low-
power wireless integrated microsensors (LWIM) project at UCLA funded by
DARPA [98]. The LWIM project focused on developing devices with low-power
electronics in order to enable large, dense wireless sensor networks. This project
was succeeded by the Wireless Integrated Networked Sensors (WINS) project
a few years later, in which researchers at UCLA collaborated with Rockwell
Science Center to develop some of the first wireless sensor devices. Other early
projects in this area, starting around 1999–2000, were also primarily in academia,
at several places including MIT, Berkeley, and USC.

Researchers at Berkeley developed embedded wireless sensor networking
devices called motes, which were made publicly available commercially, along
with TinyOS, an associated embedded operating system that facilitates the use
of these devices [81]. Figure 1.1 shows an image of a Berkeley mote device.
The availability of these devices as an easily programmable, fully functional,
relatively inexpensive platform for experimentation, and real deployment has
played a significant role in the ongoing wireless sensor networks revolution.

1.2 Networked wireless sensor devices

As shown in Figure 1.2, there are several key components that make up a typical
wireless sensor network (WSN) device:

1. Low-power embedded processor: The computational tasks on a WSN device
include the processing of both locally sensed information as well as informa-
tion communicated by other sensors. At present, primarily due to economic

Networked wireless sensor devices 3

Sensors

Processor GPSMemory

Radio transceiver

Power source

Figure 1.2 Schematic of a basic wireless sensor network device

constraints, the embedded processors are often significantly constrained in
terms of computational power (e.g., many of the devices used currently
in research and development have only an eight-bit 16-MHz processor).
Due to the constraints of such processors, devices typically run specialized
component-based embedded operating systems, such as TinyOS. However,
it should be kept in mind that a sensor network may be heterogeneous and
include at least some nodes with significantly greater computational power.
Moreover, given Moore’s law, future WSN devices may possess extremely
powerful embedded processors. They will also incorporate advanced low-
power design techniques, such as efficient sleep modes and dynamic voltage
scaling to provide significant energy savings.

2. Memory/storage: Storage in the form of random access and read-only mem-
ory includes both program memory (from which instructions are executed
by the processor), and data memory (for storing raw and processed sensor
measurements and other local information). The quantities of memory and
storage on board a WSN device are often limited primarily by economic
considerations, and are also likely to improve over time.

3. Radio transceiver: WSN devices include a low-rate, short-range wireless
radio (10–100 kbps, <100 m). While currently quite limited in capability too,
these radios are likely to improve in sophistication over time – including
improvements in cost, spectral efficiency, tunability, and immunity to noise,
fading, and interference. Radio communication is often the most power-
intensive operation in a WSN device, and hence the radio must incorporate
energy-efficient sleep and wake-up modes.

4. Sensors: Due to bandwidth and power constraints, WSN devices primarily
support only low-data-rate sensing. Many applications call for multi-modal
sensing, so each device may have several sensors on board. The specific

4 Introduction

sensors used are highly dependent on the application; for example, they may
include temperature sensors, light sensors, humidity sensors, pressure sensors,
accelerometers, magnetometers, chemical sensors, acoustic sensors, or even
low-resolution imagers.

5. Geopositioning system: In many WSN applications, it is important for all
sensor measurements to be location stamped. The simplest way to obtain
positioning is to pre-configure sensor locations at deployment, but this may
only be feasible in limited deployments. Particularly for outdoor operations,
when the network is deployed in an ad hoc manner, such information is most
easily obtained via satellite-based GPS. However, even in such applications,
only a fraction of the nodes may be equipped with GPS capability, due to
environmental and economic constraints. In this case, other nodes must obtain
their locations indirectly through network localization algorithms.

6. Power source: For flexible deployment the WSN device is likely to be
battery powered (e.g. using LiMH AA batteries). While some of the nodes
may be wired to a continuous power source in some applications, and energy
harvesting techniques may provide a degree of energy renewal in some cases,
the finite battery energy is likely to be the most critical resource bottleneck
in most WSN applications.

Depending on the application, WSN devices can be networked together in a
number of ways. In basic data-gathering applications, for instance, there is a node
referred to as the sink to which all data from source sensor nodes are directed.
The simplest logical topology for communication of gathered data is a single-hop
star topology, where all nodes send their data directly to the sink. In networks
with lower transmit power settings or where nodes are deployed over a large area,
a multi-hop tree structure may be used for data-gathering. In this case, some nodes
may act both as sources themselves, as well as routers for other sources.

One interesting characteristic of wireless sensor networks is that they often
allow for the possibility of intelligent in-network processing. Intermediate nodes
along the path do not act merely as packet forwarders, but may also examine and
process the content of the packets going through them. This is often done for the
purpose of data compression or for signal processing to improve the quality of
the collected information.

1.3 Applications of wireless sensor networks

The several envisioned applications of WSN are still very much under active
research and development, in both academia and industry. We describe a few

Applications of wireless sensor networks 5

applications from different domains briefly to give a sense of the wide-ranging
scope of this field:

1. Ecological habitat monitoring: Scientific studies of ecological habitats (ani-
mals, plants, micro-organisms) are traditionally conducted through hands-on
field activities by the investigators. One serious concern in these studies
is what is sometimes referred to as the “observer effect” – the very pres-
ence and potentially intrusive activities of the field investigators may affect
the behavior of the organisms in the monitored habitat and thus bias the
observed results. Unattended wireless sensor networks promise a cleaner,
remote-observer approach to habitat monitoring. Further, sensor networks,
due to their potentially large scale and high spatio-temporal density, can
provide experimental data of an unprecedented richness.

One of the earliest experimental deployments of wireless sensor networks
was for habitat monitoring, on Great Duck Island, Maine [130]. A team of
researchers from the Intel Research Lab at Berkeley, University of California
at Berkeley, and the College of the Atlantic in Bar Harbor deployed wireless
sensor nodes in and around burrows of Leach’s storm petrel, a bird which
forms a large colony on that island during the breeding season. The sensor-
network-transmitted data were made available over the web, via a base station
on the island connected to a satellite communication link.

2. Military surveillance and target tracking: As with many other information
technologies, wireless sensor networks originated primarily in military-related
research. Unattended sensor networks are envisioned as the key ingredient
in moving towards network-centric warfare systems. They can be rapidly
deployed for surveillance and used to provide battlefield intelligence regarding
the location, numbers, movement, and identity of troops and vehicles, and for
detection of chemical, biological, and nuclear weapons.

Much of the impetus for the fast-growing research and development
of wireless sensor networks has been provided though several programs
funded by the US Defense Advanced Research Projects Agency (DARPA),
most notably through a program known as Sensor Information Technology
(SensIT) [188] from 1999 to 2002. Indeed, many of the leading US researchers
and entrepreneurs in the area of wireless sensor networks today have been
and are being funded by these DARPA programs.

3. Structural and seismic monitoring: Another class of applications for sensor
networks pertains to monitoring the condition of civil structures [231]. The
structures could be buildings, bridges, and roads; even aircraft. At present the
health of such structures is monitored primarily through manual and visual

6 Introduction

inspections or occasionally through expensive and time-consuming technolo-
gies, such as X-rays and ultrasound. Unattended networked sensing techniques
can automate the process, providing rich and timely information about incip-
ient cracks or about other structural damage. Researchers envision deploying
these sensors densely on the structure – either literally embedded into the
building material such as concrete, or on the surface. Such sensor networks
have potential for monitoring the long-term wear of structures as well as
their condition after destructive events, such as earthquakes or explosions.
A particularly compelling futuristic vision for the use of sensor networks
involves the development of controllable structures, which contain actuators
that react to real-time sensor information to perform “echo-cancellation" on
seismic waves so that the structure is unaffected by any external disturbance.

4. Industrial and commercial networked sensing: In industrial manufacturing
facilities, sensors and actuators are used for process monitoring and control.
For example, in a multi-stage chemical processing plant there may be sensors
placed at different points in the process in order to monitor the temperature,
chemical concentration, pressure, etc. The information from such real-time
monitoring may be used to vary process controls, such as adjusting the amount
of a particular ingredient or changing the heat settings. The key advantage
of creating wireless networks of sensors in these environments is that they
can significantly improve both the cost and the flexibility associated with
installing, maintaining, and upgrading wired systems [131]. As an indication
of the commercial promise of wireless embedded networks, it should be noted
that there are already several companies developing and marketing these
products, and there is a clear ongoing drive to develop related technology
standards, such as the IEEE 802.15.4 standard [94], and collaborative industry
efforts such as the Zigbee Alliance [244].

1.4 Key design challenges

Wireless sensor networks are interesting from an engineering perspective,
because they present a number of serious challenges that cannot be adequately
addressed by existing technologies:

1. Extended lifetime: As mentioned above, WSN nodes will generally be
severely energy constrained due to the limitations of batteries. A typical alka-
line battery, for example, provides about 50 watt-hours of energy; this may
translate to less than a month of continuous operation for each node in full
active mode. Given the expense and potential infeasibility of monitoring and

12 Network deployment

device. Additional post-deployment self-configuration mechanisms are therefore
required to obtain the desired coverage and connectivity. In case of a uniform
random deployment, the only parameters that can be controlled a priori are the
numbers of nodes and some related settings on these nodes, such as their trans-
mission range. We shall discuss some results from Random Graph Theory in
Section 2.4 that provide useful insights into the settings of these parameters.

Regardless of whether the deployment is randomized or structured, the connec-
tivity properties of the network topology can be further adjusted after deployment
by varying transmit powers. We will discuss variable power-based topology
control techniques in Section 2.5.

2.3 Network topology

The communication network can be configured into several different topologies,
as seen in Figure 2.1. We describe these topologies below.

2.3.1 Single-hop star

The simplest WSN topology is the single-hop star shown in Figure 2.1(a). Every
node in this topology communicates its measurements directly to the gateway.
Wherever feasible, this approach can significantly simplify design, as the net-
working concerns are reduced to a minimum. However, the limitation of this
topology is its poor scalability and robustness properties. For instance, in larger
areas, nodes that are distant from the gateway will have poor-quality wireless
links.

2.3.2 Multi-hop mesh and grid

For larger areas and networks, multi-hop routing is necessary. Depending on how
they are placed, the nodes could form an arbitrary mesh graph as in Figure 2.1(b)
or they could form a more structured communication graph such as the 2D grid
structure shown in Figure 2.1(c).

2.3.3 Two-tier hierarchical cluster

Perhaps the most compelling architecture for WSN is a deployment architec-
ture where multiple nodes within each local region report to different cluster-
heads [76]. There are a number of ways in which such a hierarchical architecture

Network topology 13

(a) (b)

(d)(c)

Figure 2.1 Different deployment topologies: (a) a star-connected single-hop topology,
(b) flat multi-hop mesh, (c) structured grid, and (d) two-tier hierarchical cluster topology

may be implemented. This approach becomes particularly attractive in hetero-
geneous settings when the cluster-head nodes are more powerful in terms of
computation/communication [90, 114]. The advantage of the hierarchical cluster-
based approach is that it naturally decomposes a large network into separate
zones within which data processing and aggregation can be performed locally.
Within each cluster there could be either single-hop or multi-hop communication.
Once data reach a cluster-head they would then be routed through the second-
tier network formed by cluster-heads to another cluster-head or a gateway. The
second-tier network may utilize a higher bandwidth radio or it could even be
a wired network if the second-tier nodes can all be connected to the wired
infrastructure. Having a wired network for the second tier is relatively easy in
building-like environments, but not for random deployments in remote locations.
In random deployments there may be no designated cluster-heads; these may
have to be determined by some process of self-election.

3

Localization

3.1 Overview

Wireless sensor networks are fundamentally intended to provide information
about the spatio-temporal characteristics of the observed physical world. Each
individual sensor observation can be characterized essentially as a tuple of
the form < S�T�M >, where S is the spatial location of the measurement,
T the time of the measurement, and M the measurement itself. We shall address
the following fundamental question in this chapter: How can the spatial location
of nodes be determined?

The location information of nodes in the network is fundamental for a number
of reasons:

1. To provide location stamps for individual sensor measurements that are
being gathered.

2. To locate and track point objects in the environment.
3. To monitor the spatial evolution of a diffuse phenomenon over time, such

as an expanding chemical plume. For instance, this information is necessary
for in-network processing algorithms that determine and track the changing
boundaries of such a phenomenon.

4. To determine the quality of coverage. If node locations are known, the
network can keep track of the extent of spatial coverage provided by active
sensors at any time.

5. To achieve load balancing in topology control mechanisms. If nodes are
densely deployed, geographic information of nodes can be used to selectively
shut down some percentage of nodes in each geographic area to conserve
energy, and rotate these over time to achieve load balancing.

31

32 Localization

6. To form clusters. Location information can be used to define a partition of
the network into separate clusters for hierarchical routing and collaborative
processing.

7. To facilitate routing of information through the network. There are a number
of geographic routing algorithms that utilize location information instead of
node addresses to provide efficient routing.

8. To perform efficient spatial querying. A sink or gateway node can issue
queries for information about specific locations or geographic regions. Loca-
tion information can be used to scope the query propagation instead of
flooding the whole network, which would be wasteful of energy.

We should, at the outset, make it clear that localization may not be a significant
challenge in all WSN. In structured, carefully deployed WSN (for instance in
industrial settings, or scientific experiments), the location of each sensor may be
recorded and mapped to a node ID at deployment time. In other contexts, it may
be possible to obtain location information using existing infrastructure, such as
the satellite-based GPS [141] or cellular phone positioning techniques [218].

However, these are not satisfactory solutions to all contexts. A-priori knowl-
edge of sensor locations will not be available in large-scale and ad hoc deploy-
ments. A pure-GPS solution is viable only if all nodes in the network can be
provided with a potentially expensive GPS receiver and if the deployed area
provides good satellite coverage. Positioning using signals directly from cellular
systems will not be applicable for densely deployed WSN, because they generally
offer poor location accuracy (on the order of tens of meters). If only a subset of
the nodes have known location a priori, the position of other nodes must still be
determined through some localization technique.

3.2 Key issues

Localization is quite a broad problem domain [80, 185], and the component
issues and techniques can be classified on the basis of a number of key questions.

1. What to localize? This refers to identifying which nodes have a priori
known locations (called reference nodes) and which nodes do not (called
unknown nodes). There are a number of possibilities. The number and frac-
tion of reference nodes in a network of n nodes may vary all the way
from 0 to n − 1. The reference nodes could be static or mobile; as could

Key issues 33

the unknown nodes. The unknown nodes may be cooperative (e.g. partic-
ipants in the network, or robots traversing the networked area) or non-
cooperative (e.g. targets being surveilled). The last distinction is important
because non-cooperative nodes cannot participate actively in the localization
algorithm.

2. When to localize? In most cases, the location information is needed for
all unknown nodes at the very beginning of network operation. In static
environments, network localization may thus be a one-shot process. In other
cases, it may be necessary to provide localization on-the-fly, or refresh the
localization process as objects and network nodes move around, or improve
the localization by incorporating additional information over time. The time
scales involved may vary considerably from being of the order of minutes to
days, even months.

3. How well to localize? This pertains to the resolution of location information
desired. Depending on the application, it may be required for the localization
technique to provide absolute �x� y� z� coordinates, or perhaps it will suffice
to provide relative coordinates (e.g. “south of node 24 and east of node 22”);
or symbolic locations (e.g. “in room A”, “in sector 23”, “near node 21”).
Even in case of absolute locations, the required accuracy may be quite dif-
ferent (e.g. as good as ±20 cm or as rough as ±10 m). The technique must
provide the desired type and accuracy of localization, taking into account the
available resources (such as computational resources, time-synchronization
capability, etc.).

4. Where to localize? The actual location computation can be performed at
several different points in the network: at a central location once all component
information such as inter-node range estimates is collected; in a distributed
iterative manner within reference nodes in the network; or in a distributed
manner within unknown nodes. The choice may be determined by several
factors: the resource constraints on various nodes, whether the node being
localized is cooperative, the localization technique employed, and, finally,
security considerations.

5. How to localize? Finally, different signal measurements can be used as
inputs to different localization techniques. The signals used can vary from
narrowband radio signal strength readings or packet-loss statistics, UWB RF
signals, acoustic/ultrasound signals, infrared. The signals may be emitted and
measured by the reference nodes, by the unknown nodes, or both. The basic
localization algorithm may be based on a number of techniques, such as
proximity, calculation of centroids, constraints, ranging, angulation, pattern
recognition, multi-dimensional scaling, and potential methods.

34 Localization

3.3 Localization approaches

Generally speaking, there are two approaches to localization:

1. Coarse-grained localization using minimal information: These typically
use a small set of discrete measurements, such as the information used to
compute location. Minimal information could include binary proximity (can
two nodes hear each other or not?), near–far information (which of two nodes
is closer to a given third node?), or cardinal direction information (is one
node in the north, east, west, or south sector of the other given node?).

2. Fine-grained localization using detailed information: These are typically
based on measurements, such as RF power, signal waveform, time stamps,
etc., that are either real-valued or discrete with a large number of quantiza-
tion levels. These include techniques based on radio signal strengths, timing
information, and angulation.

The tradeoff that emerges between the two approaches is easy to see: while
minimal information techniques are simpler to implement, and likely involve
lower resource consumption and equipment costs, they provide lower accuracy
than the detailed information techniques. We shall now describe specific tech-
niques in detail.

We shall start first with the node localization problem involving a single
unknown node and several reference nodes, and then discuss the problem of
network localization where there are several unknown nodes in a multi-hop
network.

3.4 Coarse-grained node localization using minimal
information

3.4.1 Binary proximity

Perhaps the most basic location technique is that of binary proximity – involving
a simple decision of whether two nodes are within reception range of each other.
A set of references nodes are placed in the environment in some non-overlapping
(or nearly non-overlapping) manner. Either the reference nodes periodically emit
beacons, or the unknown node transmits a beacon when it needs to be localized.
If reference nodes emit beacons, these include their location IDs. The unknown
node must then determine which node it is closest to, and this provides a coarse-
grained localization. Alternatively, if the unknown node emits a beacon, the
reference node that hears the beacon uses its own location to determine the
location of the unknown node.

Coarse-grained node localization 35

An excellent example of proximity detection as a means for localization is
the Active Badge location system [221] meant for an indoor office environment.
This system consists of small badge cards (about 5 square centimeters in size
and less than a centimeter thick) sending unique beacon signals once every
15 seconds with a 6 meter range. The active badges, in conjunction with a wired
sensor network that provides coverage throughout a building, provide room-
level location resolution. A much larger application of localization, using binary
proximity detection, is with passive radio frequency identification (RFID) tags,
which can be detected by readers within a similar short range [52]. Today there
are a large number of inventory-tracking applications envisioned for RFIDs.
A key difference in RFID proximity detection compared with active badges is
that the unknown nodes are passive tags, being queried by the reference nodes
in the sensor network. These examples show that even the simplest localization
technique can be of considerable use in practice.

3.4.2 Centroid calculation

The same proximity information can be used to greater advantage when the den-
sity of reference nodes is sufficiently high that there are several reference nodes
within the range of the unknown node. Consider a two-dimensional scenario.
Let there be n reference nodes detected within the proximity of the unknown
node, with the location of the ith such reference denoted by �xi� yi�. Then, in this
technique, the location of the unknown node �xu� yu� is determined as

xu = 1
n

n∑
i=1

xi

yu = 1
n

n∑
i=1

yi (3.1)

This simple centroid technique has been investigated using a model with each
node having a simple circular range R in an infinite square mesh of reference
nodes spaced a distance d apart [16]. It is shown through simulations that, as the
overlap ratio R/d is increased from 1 to 4, the average RMS error in localization
is reduced from 0.5d to 0.25d.

3.4.3 Geometric constraints

If the bounds on radio or other signal coverage for a given node can be
described by a geometric shape, this can be used to provide location estimates by

36 Localization

determining which geometric regions that node is constrained to be in, because
of intersections between overlapping coverage regions.

For instance, the region of radio coverage may be upper-bounded by a circle
of radius Rmax. In other words, if node B hears node A, it knows that it must
be no more than a distance Rmax from A. Now, if an unknown node hears from
several reference nodes, it can determine that it must lie in the geometric region
described by the intersection of circles of radius Rmax centered on these nodes.
This can be extended to other scenarios. For instance when both lower Rmin and
upper bounds Rmax can be determined, based on the received signal strength,
the shape for a single node’s coverage is an annulus; when an angular sector
��min� �max� and a maximum range Rmax can be determined, the shape for a single
node’s coverage would be a cone with given angle and radius.

Although arbitrary shapes can be potentially computed in this manner, a
computational simplification that can be used to determine this bounded region
is to use rectangular bounding boxes as location estimates. Thus the unknown
node determines bounds xmin� ymin� xmax� ymax on its position.

Figure 3.1 illustrates the use of intersecting geometric constraints for localiza-
tion. Localization techniques using such geometric regions were first described
by Doherty et al. [40]. One of the nice features of these techniques is that not
only can the unknown nodes use the centroid of the overlapping region as a
specific location estimate if necessary, but they can also determine a bound on
the location error using the size of this region.

Disc

Annulus

Sector

Quadrant

Reference node
Unknown node
Constrained
location region

Figure 3.1 Localization using intersection of geometric constraints

Coarse-grained node localization 37

When the upper bounds on these regions are tight, the accuracy of this geo-
metric approach can be further enhanced by incorporating “negative information”
about which reference nodes are not within range [54].

3.4.4 Approximate point in triangle (APIT)

A related approach to localization using geometric constraints is the approximate
point-in-triangle (APIT) technique [72]. APIT is similar to the above techniques
in that it provides location estimates as the centroid of an intersection of regions.
Its novelty lies in how the regions are defined – as triangles between different
sets of three reference nodes (rather than the coverage of a single node). This
is illustrated in Figure 3.2. It turns out that an exact determination of whether
an unknown node lies within the triangle formed by three reference nodes is
impossible if nodes are static because wireless signal propagation is non-ideal.
An approximate solution can be determined using near–far information [72], i.e.
the ability to determine which of two nodes is nearer a third node based on signal
reception. One caveat for the APIT technique is that it can provide erroneous
results, because the determination of whether a node lies within a particular
triangle requires quite a high density of nodes in order to provide good location
accuracy.

3.4.5 Identifying codes

There is another interesting technique that utilizes overlapping coverage regions
to provide localization. In this technique, referred to as the identifying code

Reference node

Unknown node

Figure 3.2 The approximate point-in-triange (APIT) technique

38 Localization

construction (ID-CODE) algorithm [173], the sensor deployment is planned in
such a way as to ensure that each resolvable location is covered by a unique set
of sensors.

The algorithm runs on a deployment region graph G= �V�E� in which vertices
V represent the different regions, and the edges E represent radio connectivity
between regions. Let B�v� be the set of vertices that are adjacent to v, together
with v itself. A set of vertices C ∈ V is referred to as an identifying code, if, for
all u� v ∈ V , B�v� ∩ C �= B�u� ∩ C.

It can be shown that a graph is distinguishable, i.e. there exists an identifying
code for it, if and only if there are no two vertices u� v such that B�u�=B�v�. The
goal of the algorithm is to construct an identifying code for any distinguishable
graph, with each vertex in the code corresponding to a region where a reference
node must be placed. Once this is done, by the definition of the identifying code,
each location region in the graph will be covered by a unique set of reference
nodes. This is illustrated in Figure 3.3.

While the entire set of vertices V itself is an identifying code, such a placement
of a reference node in each region would clearly be inefficient. On the other hand,
obtaining a minimal cardinality identifying code is known to be NP-complete.
The algorithm ID-CODE is a polynomial greedy heuristic that provides good
solutions in practice. There also exists a robust variant of this algorithm called
r-ID-CODE [173] that can provide robust identification, i.e. guaranteeing a
unique set of IDs for each location, even if there is addition or deletion of up to
r ID values.

HF

CA B

D E

G

A B C

D E

F G H

HF,HFC,HA,FCA,CAID:

HGFEDCBAV:

Node locations Connectivity graph

Transmitters A, F, C, H provide unique IDs for all node locations

Figure 3.3 Illustration of the ID-CODE technique showing uniquely identifiable regions

Fine-grained node localization 39

3.5 Fine-grained node localization using detailed information

We now examine techniques based on detailed information. These include tri-
angulation using distance estimates, pattern matching, and sequence decoding.
Although used in the large-scale GPS, basic time-of-flight techniques using RF
signals are not capable of providing precise distance estimates over short ranges
typical of WSN because of synchronization limitations. Therefore other tech-
niques such as radio signal strength (RSS) measurements and time difference of
arrival (TDoA) must be used for distance-estimation.

3.5.1 Radio signal-based distance-estimation (RSS)

To a first-order approximation, mean radio signal strengths diminish with distance
according to a power law. One model that is used for wireless radio propagation
is the following [171]:

Pr�dB�d� = Pr�dB�d0� − �10 log
(

d

d0

)
+ X��dB (3.2)

where Pr�dB�d� is the received power at distance d and P�d0� is the received
power at some reference distance d0, � the path-loss exponent, and X��dB a log-
normal random variable with variance �2 that accounts for fading effects. So, in
theory, if the path-loss exponent for a given environment is known the received
signal strength can be used to estimate the distance. However, the fading term
often has a large variance, which can significantly impact the quality of the range
estimates. This is the reason RF-RSS-based ranging techniques may offer location
accuracy only on the order of meters or more [154]. RSS-based ranging may
perform much better in situations where the fading effects can be combatted by
diversity techniques that take advantage of separate spatio-temporally correlated
signal samples.

3.5.2 Distance-estimation using time differences (TDoA)

As we have seen, time-of-flight techniques show poor performance due to preci-
sion constraints, and RSS techniques, although somewhat better, are still limited
by fading effects. A more promising technique is the combined use of ultra-
sound/acoustic and radio signals to estimate distances by determining the TDoA
of these signals [164, 183, 223]. This technique is conceptually quite simple, and
is illustrated in Figure 3.4. The idea is to simultaneously transmit both the radio
and acoustic signals (audible or ultrasound) and measure the times Tr and Ts of the

40 Localization

Transmitter

Receiver
Tr Ts

T0

Distance ≅ (Tr – Ts) . Vs

RF Acoustic

Figure 3.4 Ranging based on time difference of arrival

arrival of these signals respectively at the receiver. Since the speed of the radio sig-
nal is much larger than the speed of the acoustic signal, the distance is then simply
estimated as �Ts − Tr� · Vs, where Vs is the speed of the acoustic signal.

One minor limitation of acoustic ranging is that it generally requires the nodes
to be in fairly close proximity to each other (within a few meters) and preferably
in line of sight. There is also some uncertainty in the calculation because the
speed of sound varies depending on many factors such as altitude, humididity,
and air temperature. Acoustic signals also show multi-path propagation effects
that may impact the accuracy of signal detection. These can be mitigated to a
large extent using simple spread-spectrum techniques, such as those described in
[61]. The basic idea is to send a pseudo-random noise sequence as the acoustic
signal and use a matched filter for detection, (instead of using a simple chirp and
threshold detection).

On the whole, acoustic TDoA ranging techniques can be very accurate in prac-
tical settings. For instance, it is claimed in [183] that distance can be estimated
to within a few centimeters for node separations under 3 meters. Of course,
the tradeoff is that sensor nodes must be equipped with acoustic transceivers in
addition to RF transceivers.

3.5.3 Triangulation using distance estimates

The location of the unknown node �x0� y0� can be determined based on measured
distance estimates d̂i to n reference nodes ��x1� y1�� 	 	 	 � �xi� yi�� 	 	 	 � �xn� yn�
.
This can be formulated as a least squares minimization problem.

Let di be the correct Euclidean distance to the n reference nodes, i.e.:

di =
√

�xi − x0�
2 + �yi − y0�

2 (3.3)

Fine-grained node localization 41

Thus the difference between the measured and actual distances can be repre-
sented as

�i = d̂i − di (3.4)

The least squares minimization problem is then to determine the �x0� y0� that

minimizes
n∑

i=1
��i�

2. This problem can be solved by the use of gradient descent

techniques or by iterative successive approximation techniques such as described
in [146]. An alternative is the following approach, which provides a numerical
solution to an over-determined (n ≥ 3) linear system [183].

The over-determined linear system can be obtained as follows. Rearranging
and squaring terms in equation (3.3), we would have n such equations:

x2
i + y2

i − d2
i = 2x0xi + 2y0yi − �x2

0 + y2
0� (3.5)

By subtracting out the nth equation from the rest, we would have n − 1
equations of the following form:

x2
i + y2

i − x2
n − y2

n − d2
i + d2

n = x02�xi − xn� + y02�yi − yn� (3.6)

which yields the linear relationship

Ax = B (3.7)

where A is an �n−1�×2 matrix, such that the ith row of A is �2�xi −xn� 2�yi −
yn�, x is the column vector representing the coordinates of the unknown location
�x0 y0

T , and B is the �n − 1� element column vector whose ith term is the
expression x2

i + y2
i −x2

n − y2
n −d2

i +d2
n. Now, in practice we cannot determine B,

since we have access to only the estimated distances, so we can calculate instead
the elements of the related vector B̂, which is the same as B with d̂i substituted
for di. Now the least squares solution to equation (3.7) is to determine an estimate
for x that minimizes �Ax − B̂�2. Such an estimate is provided by

x = �AT A�−1AT B̂ (3.8)

Solving for the above may not directly yield a numerical solution if the matrix
A is ill-conditioned, so a recommended approach is to instead use the pseudo-
inverse A+ of the matrix A:

x = A+B̂ (3.9)

42 Localization

3.5.4 Angle of arrival (AoA)

Another possibility for localization is the use of angular estimates instead of dis-
tance estimates. Angles can potentially be estimated by using rotating directional
beacons, or by using nodes equipped with a phased array of RF or ultrasonic
receivers. A very simple localization technique, involving three rotating refer-
ence beacons at the boundary of a sensor network providing localization for all
interior nodes, is described in [143]. A more detailed description of AoA-based
triangulation techniques is provided in [147].

Angulation with ranging is a particularly powerful combination [27]. In theory,
if the angular information provided to a given reference node can be combined
with a good distance estimate to that reference node, then localization can be
performed with a single reference using polar coordinate transformation. While
the accuracy and precision with which angles in real systems can be determined
are unclear, significant improvements can be obtained by combining accurate
ranging estimates with even coarse-grained angle estimates.

3.5.5 Pattern matching (RADAR)

An alternative to measuring distances or angles that is possible in some con-
texts is to use a pre-determined “map” of signal coverage in different locations
of the environment, and use this map to determine where a particular node is
located by performing pattern matching on its measurements. An example of
this technique is RADAR [5]. This technique requires the prior collection of
empirical measurements (or high-fidelity simulation model) of signal strength
statistics (mean, variance, median) from different reference transmitters at vari-
ous locations. It is also important to take into account the directional orientation
of the receiving node, as this can result in significant variations. Once this
information is collected, any node in the area is localized by comparing its
measurements from these references to determine which location matches the
received pattern best. This technique has some advantages, in particular as a
pure RF technique it has the potential to perform better than the RSS-based
distance-estimation and the triangulation approach we discussed before. How-
ever, the key drawback of the technique is that it is very location specific and
requires intensive data collection prior to operation; also it may not be use-
ful in settings where the radio characteristics of the environment are highly
dynamic.

Network-wide localization 43

3.5.6 RF sequence decoding (ecolocation)

The ecolocation technique [238] uses the relative ordering of received radio
signal strengths for different references as the basis for localization. It works as
follows:

1. The unknown node broadcasts a localization packet.
2. Multiple references record their RSSI reading for this packet and report it to

a common calculation node.
3. The multiple RSSI readings are used to determine the ordered sequence of

references from highest to lowest RSSI.
4. The region is scanned for the location for which the correct ordering of

references (as measured by Euclidean distances) has the “best match” to the
measured sequence. This is considered the location of the unknown node.

In an ideal environment, the measured sequence would be error free, and
ecolocation would return the correct location region. However, in real environ-
ments, because of multi-path fading effects, the measured sequence is likely to
be corrupted with errors. Some references, which are closer than others to the
true location of the unknown node, may show a lower RSSI, while others, which
are farther away, may appear earlier in the sequence. Therefore the sequence
must be decoded in the presence of errors. This is why a notion of “best match”
is needed.

The best match is quantified by deriving the n�n − 1�/2 pair-wise ordering
constraints (e.g. reference A is closer than reference B, reference B is closer than
reference C, etc.) at each location, and determining how many of these constraints
are satisfied/violated in the measured sequence. The location which provides
the maximum number of satisfied constraints is the best match. Simulations
and experiments suggest that ecolocation can provide generally more accurate
localizations compared with other RF-only schemes, including triangulation using
distance estimates. Intuitively, this is because the ordered relative sequence of
RSSI values at the references provides robustness to fluctuations in the absolute
RSSI value.

3.6 Network-wide localization

3.6.1 Issues

So far, we have focused on the problem of node localization, which is that of
determining the location of a single unknown node given a number of nearby

44 Localization

references. A broader problem in sensor systems is that of network localization,
where several unknown nodes have to be localized in a network with a few
reference nodes. While the network localization problem can rarely be neatly
decomposed into a number of separate node localization problems (since there
may be unknown nodes that have no reference nodes within range), the node
localization and ranging techniques described above do often form an integral
component of solutions to network localization.

The performance of network localization depends very much on the resources
and information available within the network. Several scenarios are possible: for
instance there may be no reference nodes at all, so that perhaps only relative coor-
dinates can be determined for the unknown nodes; if present, the number/density
of reference nodes may vary (generally the more reference nodes there are, the
lower the network localization error); there may be just a single mobile reference.
Information about which nodes are within range of each other may be available;
or inter-node distance estimates may be available; inter-node angle information
may be available.

Some network localization approaches are centralized, in which all the avail-
able information about known nodes, and the inter-node distances or other inter-
node relationships are provided to a central node, where the solution is computed.
Such a centralized approach may be sufficient in moderate-sized networks, where
the nodes in the network need to be localized only once, post-deployment. Other
network localization approaches are distributed, often involving the iterative
communication of updated location information.

There may be several ways to measure the performance of network local-
ization. If the ground truth is available, these can range from the full distribu-
tion/histogram of location errors, to the mean location error, to the percentage
of unknown nodes that can be located within a desired accuracy. Alternatively
some localization approaches provide an inherent way to estimate the uncertainty
associated with each node’s calculated location.

3.6.2 Constraint-based approaches

Geometric constraints can often be expressed in the form of linear matrix inequal-
ities and linear constraints [40]. This applies radial constraints (two nodes are
determined to be within range R of each other), annular constraints (a node
is determined to be within ranges �Rmin�Rmax of another), angular constraints
(a node is determined to be within a particular angular sector of another), as well
as other convex constraints. Information about a set of reference nodes together

Network-wide localization 45

with these constraints (which provide the inter-node relationships amongst ref-
erence as well as unknown nodes) describes a feasible set of constraints for a
semidefinite program. By selecting an appropriate objective function for the pro-
gram, the constraining rectangle, which bounds the location for each unknown
node, can be determined.

When using bounding rectangles, a distributed iterative solution can be
used [54]. In this solution, at each step nodes broadcast to their neighbors their
current constrained region, which is calculated based on the overheard informa-
tion about their neighbors’ constrained regions at the previous step. If continued
for a sufficient number of iterations, or until there is no longer a significant
improvement in the bounds, this can provide a solution that is near or at optimal.

Network localization can also be performed in the presence of mobile ref-
erence/target nodes [54]. If the mobile node is a reference and able to provide
an accurate location beacon, then it can substantially improve localization over
time, because each new observation of the moving beacon introduces additional
constraints. In theory the location error can be reduced to an arbitrarily small
quantity if the moving beacon is equally likely to move to any point in the
network. If the mobile node is a non-cooperative target, then the distributed
iterative algorithm can be extended to provide simultaneous network localization
and tracking with performance that improves over time.

3.6.3 RSS-based joint estimation

If radio signal strengths can be measured between all pairs of nodes in the network
that are within detection range, then a joint maximum likelihood estimation
(MLE) technique can be used to determine the location of unknown nodes in a
network [154]. In the joint MLE technique, first an expression is derived for the
likelihood that the obtained matrix of power measurements would be received
given a particular location set for all nodes; the objective is then to find the
location set that maximizes this likelihood. The performance of this joint MLE
technique has been verified through simulations and experiments to show that
localization of the order of 2 meters is possible when there is a high density of
unknown nodes, even if there are only a few reference nodes sparsely placed.

3.6.4 Iterative multilateration

The iterative multilateration technique [183] is applicable whenever inter-node
distance information is available between all neighboring nodes (regardless
of whether it is obtained through RSS measurements or TDoA or any other

46 Localization

approach). The algorithm is quite simple. It applies the basic triangulation tech-
nique for node localization (see Section 3.5.3 above) in an iterative manner to
determine the locations of all nodes. One begins by determining the location
of an unknown node that has the most reference nodes in its neighborhood. In
a distributed version, the location of any node with sufficient references in its
neighborhood may be calculated as the initial step. This node is then added to the
set of reference nodes and the process is repeated. Figure 3.5 shows an example
of a network with one possible sequence in which unknown nodes can each
compute their location so long as at least three of their neighbors have known or
already computed locations.

Note that a version of iterative multilateration can also be utilized if only
connectivity information is available. In such a case, a centroid calculation could
be used at each iterative step by the unknown nodes, instead of using distance-
based triangulation.

The iterative multilateration technique suffers from two shortcomings: first, it
may not be applicable if there is no node that has sufficient (≥3 for the 2D plane)
reference nodes in its neighborhood; second, the use of localized unknown nodes
as reference nodes can introduce substantial cumulative error in the network
localization (even if the more certain high-reference neighborhood nodes are
used earlier in the iterative process).

3.6.5 Collaborative multilateration

One approach to tackle the deficiency of iterative multilateration with respect to
nodes with insufficient reference neighbors is the collaborative multilateration

Reference node

Unknown node

I1

I1

I1

I2

I2

I2

I3

I3

I3

I4

I4

I4

In = n th iteration.

Figure 3.5 Illustration of sequence of iterative multilateration steps

Network-wide localization 47

approach described by Savvides et al. [183]. The key insight is to determine
collaborative subgraphs within the network that contain reference and unknown
nodes in a topology such that their positions and inter-node distances can be writ-
ten as an over-constrained set of quadratic equations with a unique solution for
the location of unknown nodes (which can be obtained through gradient descent
or local search algorithms). Used in conjunction with iterative multilateration,
this technique is generally useful in portions of the network where the reference
node density is low.

3.6.6 Multi-hop distance-estimation approaches

An alternative approach to network localization utilizes estimates of distances
to reference nodes that may be several hops away [146]. These distances are
propagated from reference nodes to unknown nodes using a basic distance-vector
technique. There are three variants of this approach:

1. DV-hop: In this approach, each unknown node determines its distance from
various reference nodes by multiplying the least number of hops to the
reference nodes with an estimated average distance per hop. The average
distance per hop depends upon the network density, and is assumed to be
known.

2. DV distance: If inter-node distance estimates are directly available for each
link in the graph, then the distance-vector algorithm is used to determine the
distance corresponding to the shortest distance path between the unknown
nodes and reference nodes.

3. Euclidean propagation: Geometric relations can be used in addition to dis-
tance estimates to determine more accurate estimates to reference nodes. For
instance consider a quadrilateral ABCR, where A and R are at opposite ends;
if node A knows the distances AB, AC, BC and nodes B and C have estimates
of their distance to the reference R, then A can use the geometric relations
inherent in this quadrilateral to calculate an estimated distance to R.

Once distance estimates are available from each unknown node to differ-
ent reference nodes throughout the network, a triangulation technique (such as
described in Section 3.5.3) can be employed to determine their locations. Through
simulations, it has been seen that location errors for most nodes can be kept
within a typical single-hop distance [146]. In a comparative simulation study of
these approaches, it has been shown that the relative performance of these three
schemes depends on factors such as the radio range and accuracy of available
distance estimates [113].

48 Localization

3.6.7 Refinement

Once a possible initial estimate for the location of unknown nodes has
been determined through iterative multilateration/collaborative multilateration or
the distance-vector estimation approaches, additional refinement steps can be
applied [182]. Each node continues to iterate, obtaining its neighbors location
estimates and using them to calculate an updated location using triangulation.
After some iterations, the position updates become small and this refinement
process can be stopped.

3.6.8 Force-calculation approach

An inherently distributed iterative approach to network localization is to use a
physics-based analogy [86, 214]. Each node first picks a reasonable initial guess
as to its location, which need not be very accurate. If di�j is the calculated distance
between the two nodes as per their current positions, d̂i�j the estimated distance
and −→ui�j the unit vector between them, and Hi is the set of all neighboring nodes
of i, then a vector force on a link and the resultant force on a node can be
respectively defined as

−→
Fi�j = �di�j − d̂i�j�

−→ui�j (3.10)
−→
Fi = ∑

j∈Hi

−→
Fi�j (3.11)

Each unknown node then updates its position in the direction of the resulting
vector force in small increments over several iterations (with the force being
recalculated at each step). However, it should be kept in mind that this technique
may be susceptible to local minima.

3.6.9 Multi-dimensional scaling

Given a network with a sparse set of reference nodes, and a set of pair-wise
distances between neighboring nodes (including reference and unknown nodes),
another network localization approach utilizes a data analysis technique known
as multi-dimensional scaling (MDS) [193]. It consists of the following three
steps:

1. Use a distance-vector algorithm (similar to DV-distance) to generate an n×n

matrix M, whose �i� j� entry contains the estimated distance between nodes
i and j.

Network-wide localization 49

2. Apply classical metric-MDS to determine a map that gives the locations
of all nodes in relative coordinates. The classical metric MDS algorithm is
a matrix-based numerical technique that solves the following least squares
problem: if the estimated distance matrix M can be expressed as the sum of
the actual distance matrix D and a residual error matrix E (i.e. M = D + E),
then determine possible locations for all n nodes, such that the sum of squares
of the elements of E is minimized.

3. Take the position of reference nodes into account to obtain normalized abso-
lute coordinates.

3.6.10 Reference-less localization

In some scenarios, we may encounter sensor networks that are deployed in such
an ad hoc manner, without GPS capabilities, that there are no reference nodes
whatsoever. In such a case, the best that can be hoped for is to obtain the location
of the network nodes in terms of relative, instead of absolute, coordinates. While
such a map is not useful for location stamping of sensor data, it can be quite useful
for other functions, such as providing the information required to implement
geographic routing schemes.

The multi-dimensional scaling problem (described above) can provide such a
relative map, by simply eliminating step 3. Rao et al. [170] also develop such a
technique for creating a virtual coordinate system for a network where there are
no reference nodes and also where no distance estimates are available (unlike
with MDS). Their algorithm is described as a progression of three scenarios with
successively fewer assumptions:

1. All (and only) nodes at the boundary of the network are reference nodes.
2. Nodes at the boundary are aware that they are at the boundary, but are not

reference nodes.
3. There are no reference nodes in the network, and no nodes are aware that

they are at the boundary.

In the first scenario, all nodes execute a simple iterative algorithm for local-
ization. Unknown interior nodes begin by assuming a common initial coordinate
(say [0,0]), then at each step, each unknown node determines its location as the
centroid of the locations of all its neighbors. It is shown that this algorithm tends
to “stretch” the locations of network nodes through the location region. When
the algorithm converges, nodes have determined a location that is close to their
nearest boundary nodes. Figure 3.6 gives an example of a final solution.

50 Localization

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

(b)

(a)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Figure 3.6 An illustration of the reference-less network localization technique assuming
boundary node locations are known: (a) original map and (b) obtained relative map

While the final solution is generally not accurate, it is shown that for greedy
geographic routing it results in only slightly longer routing paths and potentially
even slightly better routing success rates (as non-ideal positions can sometimes
improve over the local optima that arise in greedy geographic routing).

Theoretical analysis of localization techniques 51

The second scenario can be reduced approximately to the first. This can be
done by having the border nodes first flood messages to communicate with each
other and determine the pair-wise hop-counts between themselves. These hop-
counts are then used in a triangulation algorithm to obtain virtual coordinates for
the set B of all border nodes by minimizing

∑
i�j∈B

�hops�i� j� − dist�i� j��2 (3.12)

where hops�i� j� is the number of hops between border nodes i, j, and dist�i� j�

their Euclidean distance for given virtual coordinates. An additional bootstrapping
mechanism ensures that all nodes calculate consistent virtual coordinates.

Finally, the third scenario can be reduced to the second. Any node that is
farthest away from a common node in terms of hop-count with respect to all
its two-hop neighbors can determine that it is on the border. This hop-count
determination is performed through a flood from one of the bootstrap nodes.

3.7 Theoretical analysis of localization techniques

3.7.1 Cramér–Rao lower bound

One theoretical tool of utility in analyzing limitations on the performance of
localization techniques is the use of the Cramér–Rao bound. The Cramér–Rao
bound (CRB) is a well-known lower bound on the error variance of any unbi-
ased estimator, and is defined as the inverse of the Fisher information matrix
(a measure of information content with respect to parameters). The CRB can
be derived for different assumptions about the localization technique (e.g. TOA-
based, RSS-based, proximity-based, node/network localization).

The CRB has been used to investigate error performance of K-level quantized
RSSI-based localization [155]. A special case is K = 2, which corresponds to
proximity information (whether the node is within range or not). The lower bound
can be improved monotonically with K, with about 50% improvement if K is
large compared with just using proximity alone. On the other hand, K = 8 (three
bits of RSS quantization) suffices to give a lower bound that is very close to the
best possible. It is also found that the MLE estimator, which is a biased estimator,
provides location errors with variance close to that observed with the CRB.

CRB analysis has also been used to investigate the performance of network
localization under different densities, and shown to give similar trends to the iter-
ative/collaborate multilateration technique [184]. The CRB-based analysis sug-
gests that localization accuracy improves with network density, with diminishing

52 Localization

returns once each node has about 6–8 neighbors on average. It also suggests,
somewhat surprisingly, that increasing the fraction of beacon nodes from 4% to
20% does not dramatically decrease the localization error (under the assumptions
of uniform placement, high-density, low-ranging error).

3.7.2 Unique network localization

There is a strong connection between the problem of unique network localization
and a mathematical subject known as rigidity theory [46].

Definition 3
Consider a sensor network with n nodes (m reference nodes and n − m unknown nodes)
located in the 2D plane, with edges between neighboring nodes. Information is available
about the exact location coordinates of the reference nodes, and the exact Euclidean
distance between all neighboring nodes. This network is said to be uniquely localizable if
there exists only one possible assignment of �x� y� coordinates to all unknown nodes that
is consistent with all the available information about distances and positions.

The key result concerning the conditions for a network to be unique localizable
is the following:

Theorem 6
A network N is uniquely localizable if and only if the weighted grounded graph G′

N

corresponding to it is globally rigid.

There are two terms here that need to be explained – weighted grounded graph
and global rigidity. The weighted grounded graph G′

N is constructed from the
graph described by network N (with each edge weighed by the corresponding
distance) by adding additional edges between all pairs of reference nodes, labelled
with the distance between them (which can be readily calculated, since reference
positions are known).

We shall give an intuitive definition of global rigidity. Consider a configuration
graph of points in general position on the plane, with edges connecting some of
them to represent distance constraints. Is there another configuration consisting
of different points on the plane that preserves all the distance constraints on
the edges (excluding trivial changes, such as translations, rotations, and mirror
images)? If there is not, the configuration graph is said to be globally rigid in
the plane. Figure 3.7 gives examples of non-globally rigid and globally rigid
configuration graphs.

There exist polynomial algorithms to determine whether a given configuration
graph is globally rigid in the plane, and hence to determine if a given network is
uniquely localizable. However, the problem of realizing globally rigid weighted
graphs (which is closely related to actually determining possible locations of

Summary 53

(c)

E B

CD

A

(d)

E
A

B

CD

(a)

E B

CD

A

(b)

E

A

B

CD

Figure 3.7 Examples of configuration graphs that are not globally rigid ((a),(b)) and that
are globally rigid ((c),(d))

the unknown nodes in the corresponding network) is NP-hard. While this means
that in the worst case there exist no known tractable algorithms to solve all
instances, in the case of geometric random graphs, with at least three reference
nodes within range of each other, there exists a critical radius threshold that

is O

(√
log n

n

)
, beyond which the network is uniquely localizable in polynomial

time with high probability.

3.8 Summary

Determining the geographic location of nodes in a sensor network is essential
for many aspects of system operation: data stamping, tracking, signal processing,
querying, topology control, clustering, and routing. It is important to develop
algorithms for scenarios in which only some nodes have known locations.

The design space of localization algorithms is quite large. The selection of a
suitable algorithm for a given application and its performance depends upon sev-
eral key factors, such as: what information about known locations is already avail-
able, whether the problem is to locate a cooperative node, how dynamic location
changes are, the desired accuracy, and the constraints placed on hardware. On the
basis of what needs to be localized, the location algorithms that have been pro-
posed can be broadly classified into two categories: (i) node localization algorithms,
which provide the location of a single unknown node given a number of refer-
ence nodes, and (ii) network localization algorithms, which provide the location

54 Localization

of multiple unknown nodes in a network given other reference nodes. The node
localization algorithms are often a building-block component of network local-
ization algorithms. The accuracy of the localization algorithms is often dependent
crucially upon how detailed the information obtained from reference nodes is.

The node localization algorithms we discussed include centroids, the use of
overlapping geometric constraints, triangulation using distance estimates obtained
using received signal strength and time difference of arrival, as well as AoA and
pattern-matching approaches. For triangulation, TDoA techniques provide very
accurate ranging at the expense of slightly more complex hardware. For RSS-
based systems, an alternative to ranging-based triangulation for dense deploy-
ments is the ecolocation technique, which uses sequence-based decoding instead
of absolute RSS values.

Network localization techniques include joint estimation techniques, iterative
and collaborative multilateration, force-calculation, and multi-dimensional scal-
ing. Even when no reference points are available, it is possible to construct a
useful map of relative locations.

On the theoretical front, the Cramér–Rao bound on the error variance of unbi-
ased estimators is useful in analyzing the performance of localization techniques.
Rigidity theory is useful in formalizing the necessary and sufficient conditions
for the existence of unique network localization.

Exercises

3.1 Centroid: Consider a node with unknown coordinates located in a square
region of side d, with four reference nodes on the corners of the square.
Consider three cases, when the reference beacons can be received within
circles of radius: (a) R = d√

2
, (b) R = d, and (c) R = √

2d. In each
case, identify the different unique centroid solutions that can be obtained
(depending on the location of the unknown node) and the corresponding
distinct regions. Estimate the worst case and average location estimate
error in each case.

3.2 Centroid versus proximity: Consider three polygonal regions with reference
nodes located at the vertices: (a) an equilateral triangle, (b) a square,
and (c) a regular pentagon. Assume that an unknown node is uniformly
likely to be located anywhere within the region, and that it is always
within range of all reference nodes (and can correctly determine its nearest
reference node if needed for a proximity determination). For each case
compare the centroid localization technique with proximity localization,

4

Time synchronization

4.1 Overview

Given the need to coordinate the communication, computation, sensing, and
actuation of distributed nodes, and the spatio-temporal nature of the monitored
phenomena, it is no surprise that an accurate and consistent sense of time is
essential in sensor networks. In this chapter, we shall discuss the many motiva-
tions for time synchronization, the challenges involved, as well as some of the
solutions that have been proposed.

Distributed wireless sensor networks need time synchronization for a number
of good reasons, some of which are described below:

1. For time-stamping measurements: Even the simplest data collection appli-
cations of sensor networks often require that sensor readings from different
sensor nodes be provided with time stamps in addition to location information.
This is particularly true whenever there may be a significant and unpredictable
delay between when the measurement is taken at each source and when it is
delivered to the sink/base station.

2. For in-network signal processing: Time stamps are needed to determine
which information from different sources can be fused/aggregated within the
network. Many collaborative signal processing algorithms, such as those for
tracking unknown phenomena or targets, are coherent and require consistent
and accurate synchronization.

3. For localization: Time-of-flight and TDoA-based ranging techniques used
in node localization require good time synchronization.

4. For cooperative communication: Some physical layer multi-node cooper-
ative communication techniques involve multiple transmitters transmitting

57

58 Time synchronization

in-phase signals to a given receiver. Such techniques [105] have the poten-
tial to provide significant energy savings and robustness, but require tight
synchronization.

5. For medium-access: TDMA-based medium-access schemes also require that
nodes be synchronized so that they can be assigned distinct slots for collision-
free communication.

6. For sleep scheduling: As we shall see in the following chapters, one of the
most significant sources of energy savings is turning the radios of sensor
devices off when they are not active. However, synchronization is needed
to coordinate the sleep schedules of neighboring devices, so that they can
communicate with each other efficiently.

7. For coordinated actuation: Advanced applications in which the network
includes distributed actuators in addition to sensing require synchronization
in order to coordinate the actuators through distributed control algorithms.

4.2 Key issues

The clock at each node consists of timer circuitry, often based on quartz crystal
oscillators. The clock is incremented after each K ticks/interrupts of the timer.
Practical timer circuits, particularly in low-end devices, are unstable and error
prone. A model for clock non-ideality can be derived using the following expres-
sions [89]. Let f0 be the ideal frequency, �f the frequency offset, df the drift
in the frequency, and rf �t� an additional random error process, then the instan-
taneous oscillator frequency fi�t� of oscillator i at time t can be modeled as
follows:

fi�t� = f0 + �f + df t + rf �t� (4.1)

Then, assuming t = 0 as the initial reference time, the associated clock reads
time Ci�t� at time t, which is given as:

Ci�t� = Ci�0� + 1
f0

t∫
0

fi���d�

= Ci�0� + t + �f

f0

t + df t2

2
+ rc�t� (4.2)

Key issues 59

where rc�t� is the random clock error term corresponding to the error term rf �t�

in the expression for oscillator frequency. Frequency drift and the random error
term may be neglected to derive a simpler linear model for clock non-ideality:

Ci�t� = �i + �it (4.3)

where �i is the clock offset at the reference time t = 0 and �i the clock drift
(rate of change with respect to the ideal clock). The more stable and accurate the
clock, the closer �i is to 0, and the closer �i is to 1. A clock is said to be fast if
�i is greater than 1, and slow otherwise.

Manufactured clocks are often specified with a maximum drift rate parameter
�, such that 1−�≤�i ≤1+�. Motes, typical sensor nodes, have � values on the
order of 40 ppm (parts per million), which corresponds to a drift rate of ±40	s
per second.

Note that any two clocks that are synchronized once may drift from each other
at a rate at most 2�. Hence, to keep their relative offset bounded by
 seconds
at all times, the interval �sync corresponding to successive synchronization events
between these clocks must be kept bounded: �sync ≤
/2�.

Perhaps the simplest approach to time synchronization in a distributed system
is through periodic broadcasts of a consistent global clock. In the US, the National
Institute for Standards and Technology runs the radio stations WWV, WWVH,
WWVB, that continuously broadcast timing signals based on atomic clocks. For
instance WWVB, located at Fort Collins, Colorado, broadcasts timing signals on
a 60 kHz carrier wave on a high power (50 kW) signal. Although the transmitter
has an accuracy of about 1 	s, due to communication delays, synchronization
around only 10	s is possible at receivers with this approach. While this can
be implemented relatively inexpensively, the accuracy may not be sufficient for
all purposes. Satellite-based GPS receivers can provide much better accuracy,
of the order of 1	s or less, albeit at a higher expense, and they operate only
in unobstructed environments. In some deployments it may be possible to use
beacons from a subset of GPS-equipped nodes to provide synchronization to all
nodes. In yet other networks, there may be no external sources of synchronization.

The requirements for time synchronization can vary greatly from application
to application. In some cases the requirements may be very stringent – say
1	s synchronization between clocks – in others, it may be very lax – of the
order of several milliseconds or even more. In some applications it will be
necessary to keep all nodes synchronized globally to an external reference, while
in others it will be sufficient to keep nodes synchronized locally and pair-wise
to their immediate neighbors. In some applications it may be necessary to keep
nodes synchronized at all times, and in other cases it may suffice only to know,

60 Time synchronization

post facto, the times when particular events occurred. Additional factors that
determine the suitability of a particular synchronization approach to a given
sensor network context include the corresponding energy costs, convergence
times, and equipment costs.

4.3 Traditional approaches

Time synchronization is a long-studied subject in distributed systems, and a
number of well-known algorithms have been developed for different conditions.1

For example, there is a well-known algorithm by Lamport [112] that provides
a consistent ordering of all events in a distributed system, labelling each event
x with a distinct time stamp Lx, such that: (a) Lx �= Ly for all unique events
x and y, (b) if event x precedes event y within a node Lx <Ly, and (c) if x is the
transmission of a message and y its reception at another node, Lx < Ly. These
Lamport time stamps do not provide true causality. Say the true time of event
x is indicated as Tx; then, while it is true that Tx < Ty → Lx < Ly, it is not true
that Lx < Ly → Tx < Ty. Such a true causal ordering requires other approaches,
such as the use of vector time stamps [209].

A fundamental technique for two-node clock synchronization is known as
Cristian’s algorithm [36]. A node A sends a request to node B (which has the
reference clock) and receives back the value of B’s clock, TB. Node A records
locally both the transmission time T1 and the reception time T2. This is illustrated
in Figure 4.1.

A A

B

T1 TB T2

Req
Ref =

 T
B

Transmit = T1 Recv = T2

Figure 4.1 Cristian’s synchronization algorithm

1 The text by Tanenbaum and van Steen [209] provides a good discussion of many of these algorithms;
we shall summarize these only briefly here.

Fine-grained clock synchronization 61

In Cristian’s time-synchronization algorithm, there are many sources of
uncertainty and delay, which impact its accuracy. In general, message latency
can be decomposed into four components, each of which contributes to
uncertainty [108]:

• Send time – which includes any processing time and time taken to assemble
and move the message to the link layer.

• Access time – which includes random delays while the message is buffered at
the link layer due to contention and collisions.

• Propagation time – which is the time taken for point-to-point message travel.
While negligible for a single link, this may be a dominant term over multiple
hops if there is network congestion.

• Receive time – which is the time taken to process the message and record its
arrival.

Good estimates of the message latency as well as the processing latency
within the reference node must be obtained for Cristian’s algorithm. The simplest
estimate is to approximate the message propagation time as �T2 − T1�/2. If the
processing delay is known to be I , then a better estimate is �T2 − T1 − I �/2.
More sophisticated approaches take several round-trip delay samples and use
minimum or mean delays after outlier removal.

The network time protocol (NTP) [138] is used widely on the Internet for
time synchronization. It uses a hierarchy of reference time servers providing
synchronization to querying clients, essentially using Cristian’s algorithm.

4.4 Fine-grained clock synchronization

Several algorithms have been proposed for time synchronization in WSN. These
all utilize time measurement-based message exchanges between nodes from time
to time in order to synchronize the clocks on different nodes.

4.4.1 Reference broadcast synchronization (RBS)

The reference broadcast synchronization algorithm (RBS) [43] exploits the
broadcast nature of wireless channels. RBS works as follows. Consider the
scenario shown in Figure 4.2, with three nodes A, B, and C within the same
broadcast domain. If B is a beacon node, it broadcasts the reference signal (which
contains no timing information) that is received by both A and C simultaneously
(neglecting propagation delay). The two receivers record the local time when
the reference signal was received. Nodes A and C then exchange this local
time stamp through separate messages. This is sufficient for the two receivers

62 Time synchronization

B
Ref

 =
 T B

A C

R
ef =

 T
B

B

A C

Exchange ref

Figure 4.2 The reference broadcast synchronization (RBS) technique

to determine their relative offsets at the time of reference message reception.
This basic scheme, which is quite similar to the CesiumSpray mechanism for
synchronizing GPS-equipped nodes [213], can be extended to greater numbers
of receivers. Improvements can be made by incorporating multiple reference
broadcasts, which can help mitigate reception errors, as well as by estimating
clock drifts.

A key feature of RBS is that it eliminates sender-side uncertainty completely.
In scenarios where sender delays could be significant (particularly when time
stamping has to be performed at the application layer instead of the link layer)
this results in improved synchronization.

RBS can be extended to a multi-hop scenario as follows. If there are several
separate reference beacons, each has its own broadcast domain that may overlap
with the others. Receivers that lie in the overlapping region (in the broadcast
domains of multiple references) provide “bridges” that allow nodes across these
domains to determine the relationship between their local clocks, e.g., if nodes
A and C are in range of reference B and nodes C and D are in range of
reference E, then node C provides this bridge. In a large network, different paths
through the temporal graph, representing connections between nodes sharing
the same reference broadcast domain, provide different ways to convert times
between arbitrary nodes. For efficiency, instead of computing these conversions
a priori using global network information, these conversions can also be per-
formed locally, on-the-fly, as packets traverse the network.

An interesting extension to the RBS technique is proposed and examined
analytically in [103]. In particular, it is noted that the basic RBS scheme is
composed only of a series of independent pair-wise synchronizations. This does
not ensure global consistency in the following sense. Consider three nodes A, B,
and C in the same domain, whose pair-wise offsets are determined through RBS.

Fine-grained clock synchronization 63

There is no guarantee that the estimates obtained of CA�t� − CB�t� and CB�t� −
CC�t� add up to the estimate obtained for CA�t�−CC�t�. An alternative technique
has been developed for obtaining globally consistent minimum-variance pair-wise
synchronization estimates, based on flow techniques for resistive networks [103].

4.4.2 Pair-wise sender–receiver synchronization (TPSN)

The timing-sync protocol for sensor networks (TPSN) [55] provides for classi-
cal sender–receiver synchronization, similar to Cristian’s algorithm. As shown in
Figure 4.3, node A transmits a message that is stamped locally at node A as T1. This
is received at node B, which stamps the reception time as its local time T2. Node B
then sends the packet back to node A, marking the transmission time locally at B as
T3. This is finally received at node A, which marks the reception time as T4.

Let the clock offset between nodes A and B be � and the propagation delay
between them be d. Then

T2 = T1 + � + d (4.4)

T4 = T3 − � + d (4.5)

which then result in the following:

� = �T2 − T4� − �T1 − T3�

2
(4.6)

d = �T2 + T4� − �T1 + T3�

2
(4.7)

A

T1 T2 T3

TransA = T1 RecvA = T4

B

T4

Processing time

Tr
an

s A
 =

 T 1

Trans
B =

 T
3 , R

ecv
B =

 T
2

B

A

Figure 4.3 The basic sender–receiver synchronization technique used in TPSN

64 Time synchronization

Network-wide time synchronization in TPSN is obtained level-by-level on a
tree structure. Nodes at level 1 first synchronize with the root node. Nodes at
level 2 then each synchronize with one node at level 1 and so on until all nodes
in the network are synchronized with respect to the root.

Under the assumption that sender-side uncertainty can be mitigated by per-
forming time stamping close to transmissions and receptions at the link layer, it is
shown in [55] that the synchronization error with the pair-wise sender–receiver
technique can actually provide twice the accuracy of the receiver–receiver tech-
nique used in RBS over a single link. This can potentially translate to even more
significant gains over multiple hops.

The lightweight time synchronization (LTS) technique [68] is also a similar
tree-based pair-wise sender–receiver synchronization technique.

4.4.3 Linear parameter-based synchronization

Another interesting approach to sender–receiver synchronization is the use of a
linear model for clock behavior and corresponding parameter constraints to obtain
synchronization [198]. This approach aims to provide deterministic bounds on
relative clock drift and offset. Recall the simplified linear relationship for the
behavior of a clock in equation (4.3). By combining that equation for nodes A and
B together, we can derive the relationship between any two clocks A and B:

CA�t� = �A − �B

�A

�B

+ �A

�B

CB�t� (4.8)

which can be re-written simply as

CA�t� = �AB + �ABCB�t� (4.9)

Assuming the same pair-wise message exchange as in TPSN for nodes A and B,
we have that the transmission time T1 and reception time T4 are measured in node
A’s local clock, while reception time T2 and transmission time T3 are measured
in node B’s local clock. We therefore get the following temporal relationships:

T1 < �AB + �ABT2 (4.10)

T4 > �AB + �ABT3 (4.11)

The principle behind this approach to synchronization is to use these inequal-
ities to determine constraints on the clock offset and drift. Each time such a
pair-wise message takes place the expressions (4.10) and (4.11) provide addi-
tional constraints that together result in upper and lower bounds on the feasible

Fine-grained clock synchronization 65

(T3,T4)

(T2,T1)

(T6,T5)

(T7,T8) (T10,T9)

Node A’s local time
TA

Node B’s local time TB

Constrained region (correct
linear fit must pass through
this shaded region)

Estimated linear fit
(β and α taken as
mean of the
bounding values)

Line providing lower bound
on β and upper bound on α

Line providing upper bound
on β and lower bound on α

Parameters:
β : y-intercept
α : horizontal angle

(T11,T12)

Figure 4.4 Visualization of bounding linear inequalities in the linear parameter-based
technique

values of �AB and �AB. These bounds can be used to generate estimates of these
quantities, which are needed for synchronization. The technique is illustrated in
Figure 4.4.

To keep the storage and computational requirements of this approach bounded,
there are two approaches. The first, called Tiny-Sync, keeps only four constraints
at any time but can be suboptimal because it can discard potentially useful
constraints. The second approach, called Mini-Sync, is guaranteed to provide
optimal results and in theory may require a large number of constraints, but in
practice is found to store no more than 40 constraints.

4.4.4 Flooding time synchronization protocol (FTSP)

The flooding time synchronization protocol (FTSP) [134] aims to further reduce
the following sources of uncertainties, which exist in both RBS and TPSN:

1. Interrupt handling time: This is the delay in waiting for the processor to
complete its current instruction before transferring the message in parts to the
radio.

66 Time synchronization

2. Modulation/encoding time: This is the time taken by the radio to perform
modulation and encoding at the transmitter, and the corresponding demodula-
tion and decoding at the receiver.

FTSP uses a broadcast from a single sender to synchronize multiple receivers.
However, unlike RBS, the sender actually broadcasts a time measurement, and the
receivers do not exchange messages among themselves. Each broadcast provides
a synchronization point (a global–local time pair) to each receiver. FTSP has two
main components:

1. Multiple time measurements: The sender takes several time stamp measure-
ments during transmission, one at each byte boundary after a set of SYNC bytes
used for byte alignment. These measurements are normalized by subtracting
an appropriate multiple of the byte transmission time, and only the minimum
of these multiple measurements is embedded into the message. At the receiver
too, multiple time measurements are taken and the minimum of those is used
as the receiver time. This serves to reduce the jitter significantly in interrupt
handling and the (de)coding and (de)modulation times. With as few as six
time stamps, an order of magnitude improvement in precision can be obtained
on a Mica Mote platform (from the order of tens of microseconds to the order
of about one microsecond).

2. Flooded messaging: To propagate the synchronization information, a flooding
approach is used. First, a single uniquely identifiable node in the network
provides the global clock. The reception of each broadcast message allows
a receiver to accumulate a reference synchronization point. When a receiver
accumulates several reference points, it becomes synchronized itself (e.g.
using a regression line to estimate the local clock drift). Nodes can collect
reference points either from the global reference node, or from other nodes that
are already synchronized. The frequency of the flooding provides a tradeoff
between synchronization accuracy and overhead.

4.4.5 Predictive time synchronization

The simple linear model of equation (4.3) is only reasonable for very short time
intervals. In the real world, clock drift can vary over time quite drastically due
to environmental temperature and humidity changes. This is the reason clock
drifts must be continually reassessed. The na�̈ve approach to this reassessment
is to re-synchronize nodes periodically at the same interval. However, a static
synchronization period must be chosen conservatively to accommodate a range
of environments. This does not take into account the possibility of temporal

Coarse-grained data synchronization 67

correlations in clock drift. It will thus incur an unnecessarily high overhead in
many cases.

This problem is addressed by the predictive synchronization mechanism [56]
in which the frequency of inter-node time sampling is adaptively adjusted. It has
been determined through an empirical study that environments are characterized
by a time constant T over which drift rates are highly correlated, which can be
determined through a learning phase. Depending on the time sampling period S,
a window of T/S prior sample measurements is used in this technique not only
to predict the clock drift (through linear regression), but also to estimate the error
in the prediction. A MIMD technique is used to adapt the sampling period: if the
prediction error is above a desirable threshold, the sampling period S is reduced
multiplicatively; and if it is below threshold, the sampling period is increased
accordingly. This adaptive scheme provides for robust long-term synchronization
in a self-configuring manner.

4.5 Coarse-grained data synchronization

The Wisden system (a wireless sensor network system for structural-response
data acquisition [231]) presents an excellent lightweight alternative to clock-
synchronization approaches that is suitable for data-gathering applications. The
approach is to collect and record latency measurements within each packet in a
special residence time field as the packet propagates through the network. The
estimate of delivery latency recorded in the packet is then used to provide a
retroactive time stamp eventually at the base station when the packet arrives.

In this approach, only the base station is required to have an accurate reference
clock. Since the radio propagation delays are insignificant, what is measured at
each hop is actually the time that the packet spends at each node – which can
be of the order of milliseconds due to queuing and processing delays. Say the
time spent by packet i at the kth intermediate node on an n + 1 hop-path to the
destination is �i

k, let the time at the base station d when the packet is received be
T i

d, then the packet’s original contents are time stamped to have been generated
at source s at

T i
s = T i

d −
n∑

k=1

�i
k (4.12)

This approach assumes that time stamps can be added as close to the packet
transmission and reception as possible at the link layer. It is thus robust to many of
the sources of latency uncertainty that contribute to error in other synchronization

68 Time synchronization

approaches. However, it is vulnerable to varying clock drifts at the intermediate
nodes, particularly when packet residence times within the network are long. For
example, it has been estimated that with a 10 ppm drift, data samples cannot reside
for more than 15 minutes before accumulating 10 ms of error in the time stamp.

4.6 Summary

Like localization, time synchronization is also a core configuration problem
in WSNs. It is a fundamental service building block useful for many net-
work functions, including time stamping of sensor measurements, coherent dis-
tributed signal processing, cooperative communication, medium-access, and sleep
scheduling. Synchronization is necessitated by the random clock drifts that vary
depending on hardware and environmental conditions.

Two approaches to fine-grained time synchronization are the receiver–receiver
synchronization technique of RBS, and the more traditional sender–receiver
approach of TPSN. While the latter provides for greater accuracy on a single link,
RBS has the advantage that multiple receivers can be synchronized with fewer
messages. It has been shown that these can provide synchronization of the order
of tens of micro-seconds. The flooding-time synchronization protocol further
improves performance by another order of magnitude by reducing uncertainties
due to jitter in interrupt handling and coding/modulation. Thus it appears that even
fairly demanding synchronization requirements can be met in principle through
such algorithms. However, there is an energy–accuracy tradeoff involved in long-
term synchronization, because the accuracy is determined by the frequency with
which nodes are periodically re-synchronized. It has been shown that adaptive
prediction-based drift-estimation techniques can reduce this overhead further.

For some applications, instead of using inter-node synchronization, coarse-
grained data time stamps can be obtained by timing packets as they move through
the network and by performing a simple calculation at the final destination.

Exercises

4.1 Unsynchronized clock drift: Plot the variation of a clock’s measured time
with respect to real time, assuming f0 = 1, �f = 01, df = −001.

4.2 Synchronization frequency: How frequently should a clock with �f =
03� df = 0 be synchronized with an ideal clock to ensure that it does not
stray more than one time unit from the real clock?

Exercises 69

4.3 Communication scaling: Assume there are n nodes within range of each
other, among which one has an ideal clock. How many messages in total
are required to synchronize the clocks of all nodes in case of (a) RBS and
(b) TPSN? What does this suggest about the scalability of these techniques?

4.4 Error propagation: Consider n nodes in a chain, numbered 1 to n left to
right. Assume that, starting with node 2, each node’s clock is successively
synchronized pair-wise with the node on its left. Due to processing-time
uncertainties, assume that the clock difference between each pair of neigh-
boring nodes after synchronization (i.e. the synchronization error) is not
deterministically zero, but rather a zero-mean Gaussian with variance �2.
What is the form of the end-to-end synchronization error across n hops?

4.5 Linear parameter-based synchronization: Consider the following three
sets of four time stamps on messages exchanged between the nodes
A and B: [(1,2,3,8), (9,10,11,12), (13,18,19,20)]. As in Figure 4.4, draw
a diagram showing the corresponding linear inequalities, indicating the
constrained region as well as the lines corresponding to the bounds on �AB

and �AB. What are these bounds and the corresponding mean estimate for
synchronization?

4.6 Data-stamping error accumulation: Assuming a worst case drift of 40 ppm
at each intermediate node, how long can a packet stay within the network
when using the Wisden data-stamping technique before the total error
exceeds 1 second?

4

Time synchronization

4.1 Overview

Given the need to coordinate the communication, computation, sensing, and
actuation of distributed nodes, and the spatio-temporal nature of the monitored
phenomena, it is no surprise that an accurate and consistent sense of time is
essential in sensor networks. In this chapter, we shall discuss the many motiva-
tions for time synchronization, the challenges involved, as well as some of the
solutions that have been proposed.

Distributed wireless sensor networks need time synchronization for a number
of good reasons, some of which are described below:

1. For time-stamping measurements: Even the simplest data collection appli-
cations of sensor networks often require that sensor readings from different
sensor nodes be provided with time stamps in addition to location information.
This is particularly true whenever there may be a significant and unpredictable
delay between when the measurement is taken at each source and when it is
delivered to the sink/base station.

2. For in-network signal processing: Time stamps are needed to determine
which information from different sources can be fused/aggregated within the
network. Many collaborative signal processing algorithms, such as those for
tracking unknown phenomena or targets, are coherent and require consistent
and accurate synchronization.

3. For localization: Time-of-flight and TDoA-based ranging techniques used
in node localization require good time synchronization.

4. For cooperative communication: Some physical layer multi-node cooper-
ative communication techniques involve multiple transmitters transmitting

57

58 Time synchronization

in-phase signals to a given receiver. Such techniques [105] have the poten-
tial to provide significant energy savings and robustness, but require tight
synchronization.

5. For medium-access: TDMA-based medium-access schemes also require that
nodes be synchronized so that they can be assigned distinct slots for collision-
free communication.

6. For sleep scheduling: As we shall see in the following chapters, one of the
most significant sources of energy savings is turning the radios of sensor
devices off when they are not active. However, synchronization is needed
to coordinate the sleep schedules of neighboring devices, so that they can
communicate with each other efficiently.

7. For coordinated actuation: Advanced applications in which the network
includes distributed actuators in addition to sensing require synchronization
in order to coordinate the actuators through distributed control algorithms.

4.2 Key issues

The clock at each node consists of timer circuitry, often based on quartz crystal
oscillators. The clock is incremented after each K ticks/interrupts of the timer.
Practical timer circuits, particularly in low-end devices, are unstable and error
prone. A model for clock non-ideality can be derived using the following expres-
sions [89]. Let f0 be the ideal frequency, �f the frequency offset, df the drift
in the frequency, and rf �t� an additional random error process, then the instan-
taneous oscillator frequency fi�t� of oscillator i at time t can be modeled as
follows:

fi�t� = f0 + �f + df t + rf �t� (4.1)

Then, assuming t = 0 as the initial reference time, the associated clock reads
time Ci�t� at time t, which is given as:

Ci�t� = Ci�0� + 1
f0

t∫
0

fi���d�

= Ci�0� + t + �f

f0

t + df t2

2
+ rc�t� (4.2)

Key issues 59

where rc�t� is the random clock error term corresponding to the error term rf �t�

in the expression for oscillator frequency. Frequency drift and the random error
term may be neglected to derive a simpler linear model for clock non-ideality:

Ci�t� = �i + �it (4.3)

where �i is the clock offset at the reference time t = 0 and �i the clock drift
(rate of change with respect to the ideal clock). The more stable and accurate the
clock, the closer �i is to 0, and the closer �i is to 1. A clock is said to be fast if
�i is greater than 1, and slow otherwise.

Manufactured clocks are often specified with a maximum drift rate parameter
�, such that 1−�≤�i ≤1+�. Motes, typical sensor nodes, have � values on the
order of 40 ppm (parts per million), which corresponds to a drift rate of ±40	s
per second.

Note that any two clocks that are synchronized once may drift from each other
at a rate at most 2�. Hence, to keep their relative offset bounded by
 seconds
at all times, the interval �sync corresponding to successive synchronization events
between these clocks must be kept bounded: �sync ≤
/2�.

Perhaps the simplest approach to time synchronization in a distributed system
is through periodic broadcasts of a consistent global clock. In the US, the National
Institute for Standards and Technology runs the radio stations WWV, WWVH,
WWVB, that continuously broadcast timing signals based on atomic clocks. For
instance WWVB, located at Fort Collins, Colorado, broadcasts timing signals on
a 60 kHz carrier wave on a high power (50 kW) signal. Although the transmitter
has an accuracy of about 1 	s, due to communication delays, synchronization
around only 10	s is possible at receivers with this approach. While this can
be implemented relatively inexpensively, the accuracy may not be sufficient for
all purposes. Satellite-based GPS receivers can provide much better accuracy,
of the order of 1	s or less, albeit at a higher expense, and they operate only
in unobstructed environments. In some deployments it may be possible to use
beacons from a subset of GPS-equipped nodes to provide synchronization to all
nodes. In yet other networks, there may be no external sources of synchronization.

The requirements for time synchronization can vary greatly from application
to application. In some cases the requirements may be very stringent – say
1	s synchronization between clocks – in others, it may be very lax – of the
order of several milliseconds or even more. In some applications it will be
necessary to keep all nodes synchronized globally to an external reference, while
in others it will be sufficient to keep nodes synchronized locally and pair-wise
to their immediate neighbors. In some applications it may be necessary to keep
nodes synchronized at all times, and in other cases it may suffice only to know,

60 Time synchronization

post facto, the times when particular events occurred. Additional factors that
determine the suitability of a particular synchronization approach to a given
sensor network context include the corresponding energy costs, convergence
times, and equipment costs.

4.3 Traditional approaches

Time synchronization is a long-studied subject in distributed systems, and a
number of well-known algorithms have been developed for different conditions.1

For example, there is a well-known algorithm by Lamport [112] that provides
a consistent ordering of all events in a distributed system, labelling each event
x with a distinct time stamp Lx, such that: (a) Lx �= Ly for all unique events
x and y, (b) if event x precedes event y within a node Lx <Ly, and (c) if x is the
transmission of a message and y its reception at another node, Lx < Ly. These
Lamport time stamps do not provide true causality. Say the true time of event
x is indicated as Tx; then, while it is true that Tx < Ty → Lx < Ly, it is not true
that Lx < Ly → Tx < Ty. Such a true causal ordering requires other approaches,
such as the use of vector time stamps [209].

A fundamental technique for two-node clock synchronization is known as
Cristian’s algorithm [36]. A node A sends a request to node B (which has the
reference clock) and receives back the value of B’s clock, TB. Node A records
locally both the transmission time T1 and the reception time T2. This is illustrated
in Figure 4.1.

A A

B

T1 TB T2

Req
Ref =

 T
B

Transmit = T1 Recv = T2

Figure 4.1 Cristian’s synchronization algorithm

1 The text by Tanenbaum and van Steen [209] provides a good discussion of many of these algorithms;
we shall summarize these only briefly here.

Fine-grained clock synchronization 61

In Cristian’s time-synchronization algorithm, there are many sources of
uncertainty and delay, which impact its accuracy. In general, message latency
can be decomposed into four components, each of which contributes to
uncertainty [108]:

• Send time – which includes any processing time and time taken to assemble
and move the message to the link layer.

• Access time – which includes random delays while the message is buffered at
the link layer due to contention and collisions.

• Propagation time – which is the time taken for point-to-point message travel.
While negligible for a single link, this may be a dominant term over multiple
hops if there is network congestion.

• Receive time – which is the time taken to process the message and record its
arrival.

Good estimates of the message latency as well as the processing latency
within the reference node must be obtained for Cristian’s algorithm. The simplest
estimate is to approximate the message propagation time as �T2 − T1�/2. If the
processing delay is known to be I , then a better estimate is �T2 − T1 − I �/2.
More sophisticated approaches take several round-trip delay samples and use
minimum or mean delays after outlier removal.

The network time protocol (NTP) [138] is used widely on the Internet for
time synchronization. It uses a hierarchy of reference time servers providing
synchronization to querying clients, essentially using Cristian’s algorithm.

4.4 Fine-grained clock synchronization

Several algorithms have been proposed for time synchronization in WSN. These
all utilize time measurement-based message exchanges between nodes from time
to time in order to synchronize the clocks on different nodes.

4.4.1 Reference broadcast synchronization (RBS)

The reference broadcast synchronization algorithm (RBS) [43] exploits the
broadcast nature of wireless channels. RBS works as follows. Consider the
scenario shown in Figure 4.2, with three nodes A, B, and C within the same
broadcast domain. If B is a beacon node, it broadcasts the reference signal (which
contains no timing information) that is received by both A and C simultaneously
(neglecting propagation delay). The two receivers record the local time when
the reference signal was received. Nodes A and C then exchange this local
time stamp through separate messages. This is sufficient for the two receivers

62 Time synchronization

B
Ref

 =
 T B

A C

R
ef =

 T
B

B

A C

Exchange ref

Figure 4.2 The reference broadcast synchronization (RBS) technique

to determine their relative offsets at the time of reference message reception.
This basic scheme, which is quite similar to the CesiumSpray mechanism for
synchronizing GPS-equipped nodes [213], can be extended to greater numbers
of receivers. Improvements can be made by incorporating multiple reference
broadcasts, which can help mitigate reception errors, as well as by estimating
clock drifts.

A key feature of RBS is that it eliminates sender-side uncertainty completely.
In scenarios where sender delays could be significant (particularly when time
stamping has to be performed at the application layer instead of the link layer)
this results in improved synchronization.

RBS can be extended to a multi-hop scenario as follows. If there are several
separate reference beacons, each has its own broadcast domain that may overlap
with the others. Receivers that lie in the overlapping region (in the broadcast
domains of multiple references) provide “bridges” that allow nodes across these
domains to determine the relationship between their local clocks, e.g., if nodes
A and C are in range of reference B and nodes C and D are in range of
reference E, then node C provides this bridge. In a large network, different paths
through the temporal graph, representing connections between nodes sharing
the same reference broadcast domain, provide different ways to convert times
between arbitrary nodes. For efficiency, instead of computing these conversions
a priori using global network information, these conversions can also be per-
formed locally, on-the-fly, as packets traverse the network.

An interesting extension to the RBS technique is proposed and examined
analytically in [103]. In particular, it is noted that the basic RBS scheme is
composed only of a series of independent pair-wise synchronizations. This does
not ensure global consistency in the following sense. Consider three nodes A, B,
and C in the same domain, whose pair-wise offsets are determined through RBS.

Fine-grained clock synchronization 63

There is no guarantee that the estimates obtained of CA�t� − CB�t� and CB�t� −
CC�t� add up to the estimate obtained for CA�t�−CC�t�. An alternative technique
has been developed for obtaining globally consistent minimum-variance pair-wise
synchronization estimates, based on flow techniques for resistive networks [103].

4.4.2 Pair-wise sender–receiver synchronization (TPSN)

The timing-sync protocol for sensor networks (TPSN) [55] provides for classi-
cal sender–receiver synchronization, similar to Cristian’s algorithm. As shown in
Figure 4.3, node A transmits a message that is stamped locally at node A as T1. This
is received at node B, which stamps the reception time as its local time T2. Node B
then sends the packet back to node A, marking the transmission time locally at B as
T3. This is finally received at node A, which marks the reception time as T4.

Let the clock offset between nodes A and B be � and the propagation delay
between them be d. Then

T2 = T1 + � + d (4.4)

T4 = T3 − � + d (4.5)

which then result in the following:

� = �T2 − T4� − �T1 − T3�

2
(4.6)

d = �T2 + T4� − �T1 + T3�

2
(4.7)

A

T1 T2 T3

TransA = T1 RecvA = T4

B

T4

Processing time

Tr
an

s A
 =

 T 1

Trans
B =

 T
3 , R

ecv
B =

 T
2

B

A

Figure 4.3 The basic sender–receiver synchronization technique used in TPSN

64 Time synchronization

Network-wide time synchronization in TPSN is obtained level-by-level on a
tree structure. Nodes at level 1 first synchronize with the root node. Nodes at
level 2 then each synchronize with one node at level 1 and so on until all nodes
in the network are synchronized with respect to the root.

Under the assumption that sender-side uncertainty can be mitigated by per-
forming time stamping close to transmissions and receptions at the link layer, it is
shown in [55] that the synchronization error with the pair-wise sender–receiver
technique can actually provide twice the accuracy of the receiver–receiver tech-
nique used in RBS over a single link. This can potentially translate to even more
significant gains over multiple hops.

The lightweight time synchronization (LTS) technique [68] is also a similar
tree-based pair-wise sender–receiver synchronization technique.

4.4.3 Linear parameter-based synchronization

Another interesting approach to sender–receiver synchronization is the use of a
linear model for clock behavior and corresponding parameter constraints to obtain
synchronization [198]. This approach aims to provide deterministic bounds on
relative clock drift and offset. Recall the simplified linear relationship for the
behavior of a clock in equation (4.3). By combining that equation for nodes A and
B together, we can derive the relationship between any two clocks A and B:

CA�t� = �A − �B

�A

�B

+ �A

�B

CB�t� (4.8)

which can be re-written simply as

CA�t� = �AB + �ABCB�t� (4.9)

Assuming the same pair-wise message exchange as in TPSN for nodes A and B,
we have that the transmission time T1 and reception time T4 are measured in node
A’s local clock, while reception time T2 and transmission time T3 are measured
in node B’s local clock. We therefore get the following temporal relationships:

T1 < �AB + �ABT2 (4.10)

T4 > �AB + �ABT3 (4.11)

The principle behind this approach to synchronization is to use these inequal-
ities to determine constraints on the clock offset and drift. Each time such a
pair-wise message takes place the expressions (4.10) and (4.11) provide addi-
tional constraints that together result in upper and lower bounds on the feasible

Fine-grained clock synchronization 65

(T3,T4)

(T2,T1)

(T6,T5)

(T7,T8) (T10,T9)

Node A’s local time
TA

Node B’s local time TB

Constrained region (correct
linear fit must pass through
this shaded region)

Estimated linear fit
(β and α taken as
mean of the
bounding values)

Line providing lower bound
on β and upper bound on α

Line providing upper bound
on β and lower bound on α

Parameters:
β : y-intercept
α : horizontal angle

(T11,T12)

Figure 4.4 Visualization of bounding linear inequalities in the linear parameter-based
technique

values of �AB and �AB. These bounds can be used to generate estimates of these
quantities, which are needed for synchronization. The technique is illustrated in
Figure 4.4.

To keep the storage and computational requirements of this approach bounded,
there are two approaches. The first, called Tiny-Sync, keeps only four constraints
at any time but can be suboptimal because it can discard potentially useful
constraints. The second approach, called Mini-Sync, is guaranteed to provide
optimal results and in theory may require a large number of constraints, but in
practice is found to store no more than 40 constraints.

4.4.4 Flooding time synchronization protocol (FTSP)

The flooding time synchronization protocol (FTSP) [134] aims to further reduce
the following sources of uncertainties, which exist in both RBS and TPSN:

1. Interrupt handling time: This is the delay in waiting for the processor to
complete its current instruction before transferring the message in parts to the
radio.

66 Time synchronization

2. Modulation/encoding time: This is the time taken by the radio to perform
modulation and encoding at the transmitter, and the corresponding demodula-
tion and decoding at the receiver.

FTSP uses a broadcast from a single sender to synchronize multiple receivers.
However, unlike RBS, the sender actually broadcasts a time measurement, and the
receivers do not exchange messages among themselves. Each broadcast provides
a synchronization point (a global–local time pair) to each receiver. FTSP has two
main components:

1. Multiple time measurements: The sender takes several time stamp measure-
ments during transmission, one at each byte boundary after a set of SYNC bytes
used for byte alignment. These measurements are normalized by subtracting
an appropriate multiple of the byte transmission time, and only the minimum
of these multiple measurements is embedded into the message. At the receiver
too, multiple time measurements are taken and the minimum of those is used
as the receiver time. This serves to reduce the jitter significantly in interrupt
handling and the (de)coding and (de)modulation times. With as few as six
time stamps, an order of magnitude improvement in precision can be obtained
on a Mica Mote platform (from the order of tens of microseconds to the order
of about one microsecond).

2. Flooded messaging: To propagate the synchronization information, a flooding
approach is used. First, a single uniquely identifiable node in the network
provides the global clock. The reception of each broadcast message allows
a receiver to accumulate a reference synchronization point. When a receiver
accumulates several reference points, it becomes synchronized itself (e.g.
using a regression line to estimate the local clock drift). Nodes can collect
reference points either from the global reference node, or from other nodes that
are already synchronized. The frequency of the flooding provides a tradeoff
between synchronization accuracy and overhead.

4.4.5 Predictive time synchronization

The simple linear model of equation (4.3) is only reasonable for very short time
intervals. In the real world, clock drift can vary over time quite drastically due
to environmental temperature and humidity changes. This is the reason clock
drifts must be continually reassessed. The na�̈ve approach to this reassessment
is to re-synchronize nodes periodically at the same interval. However, a static
synchronization period must be chosen conservatively to accommodate a range
of environments. This does not take into account the possibility of temporal

Coarse-grained data synchronization 67

correlations in clock drift. It will thus incur an unnecessarily high overhead in
many cases.

This problem is addressed by the predictive synchronization mechanism [56]
in which the frequency of inter-node time sampling is adaptively adjusted. It has
been determined through an empirical study that environments are characterized
by a time constant T over which drift rates are highly correlated, which can be
determined through a learning phase. Depending on the time sampling period S,
a window of T/S prior sample measurements is used in this technique not only
to predict the clock drift (through linear regression), but also to estimate the error
in the prediction. A MIMD technique is used to adapt the sampling period: if the
prediction error is above a desirable threshold, the sampling period S is reduced
multiplicatively; and if it is below threshold, the sampling period is increased
accordingly. This adaptive scheme provides for robust long-term synchronization
in a self-configuring manner.

4.5 Coarse-grained data synchronization

The Wisden system (a wireless sensor network system for structural-response
data acquisition [231]) presents an excellent lightweight alternative to clock-
synchronization approaches that is suitable for data-gathering applications. The
approach is to collect and record latency measurements within each packet in a
special residence time field as the packet propagates through the network. The
estimate of delivery latency recorded in the packet is then used to provide a
retroactive time stamp eventually at the base station when the packet arrives.

In this approach, only the base station is required to have an accurate reference
clock. Since the radio propagation delays are insignificant, what is measured at
each hop is actually the time that the packet spends at each node – which can
be of the order of milliseconds due to queuing and processing delays. Say the
time spent by packet i at the kth intermediate node on an n + 1 hop-path to the
destination is �i

k, let the time at the base station d when the packet is received be
T i

d, then the packet’s original contents are time stamped to have been generated
at source s at

T i
s = T i

d −
n∑

k=1

�i
k (4.12)

This approach assumes that time stamps can be added as close to the packet
transmission and reception as possible at the link layer. It is thus robust to many of
the sources of latency uncertainty that contribute to error in other synchronization

68 Time synchronization

approaches. However, it is vulnerable to varying clock drifts at the intermediate
nodes, particularly when packet residence times within the network are long. For
example, it has been estimated that with a 10 ppm drift, data samples cannot reside
for more than 15 minutes before accumulating 10 ms of error in the time stamp.

4.6 Summary

Like localization, time synchronization is also a core configuration problem
in WSNs. It is a fundamental service building block useful for many net-
work functions, including time stamping of sensor measurements, coherent dis-
tributed signal processing, cooperative communication, medium-access, and sleep
scheduling. Synchronization is necessitated by the random clock drifts that vary
depending on hardware and environmental conditions.

Two approaches to fine-grained time synchronization are the receiver–receiver
synchronization technique of RBS, and the more traditional sender–receiver
approach of TPSN. While the latter provides for greater accuracy on a single link,
RBS has the advantage that multiple receivers can be synchronized with fewer
messages. It has been shown that these can provide synchronization of the order
of tens of micro-seconds. The flooding-time synchronization protocol further
improves performance by another order of magnitude by reducing uncertainties
due to jitter in interrupt handling and coding/modulation. Thus it appears that even
fairly demanding synchronization requirements can be met in principle through
such algorithms. However, there is an energy–accuracy tradeoff involved in long-
term synchronization, because the accuracy is determined by the frequency with
which nodes are periodically re-synchronized. It has been shown that adaptive
prediction-based drift-estimation techniques can reduce this overhead further.

For some applications, instead of using inter-node synchronization, coarse-
grained data time stamps can be obtained by timing packets as they move through
the network and by performing a simple calculation at the final destination.

Exercises

4.1 Unsynchronized clock drift: Plot the variation of a clock’s measured time
with respect to real time, assuming f0 = 1, �f = 01, df = −001.

4.2 Synchronization frequency: How frequently should a clock with �f =
03� df = 0 be synchronized with an ideal clock to ensure that it does not
stray more than one time unit from the real clock?

Exercises 69

4.3 Communication scaling: Assume there are n nodes within range of each
other, among which one has an ideal clock. How many messages in total
are required to synchronize the clocks of all nodes in case of (a) RBS and
(b) TPSN? What does this suggest about the scalability of these techniques?

4.4 Error propagation: Consider n nodes in a chain, numbered 1 to n left to
right. Assume that, starting with node 2, each node’s clock is successively
synchronized pair-wise with the node on its left. Due to processing-time
uncertainties, assume that the clock difference between each pair of neigh-
boring nodes after synchronization (i.e. the synchronization error) is not
deterministically zero, but rather a zero-mean Gaussian with variance �2.
What is the form of the end-to-end synchronization error across n hops?

4.5 Linear parameter-based synchronization: Consider the following three
sets of four time stamps on messages exchanged between the nodes
A and B: [(1,2,3,8), (9,10,11,12), (13,18,19,20)]. As in Figure 4.4, draw
a diagram showing the corresponding linear inequalities, indicating the
constrained region as well as the lines corresponding to the bounds on �AB

and �AB. What are these bounds and the corresponding mean estimate for
synchronization?

4.6 Data-stamping error accumulation: Assuming a worst case drift of 40 ppm
at each intermediate node, how long can a packet stay within the network
when using the Wisden data-stamping technique before the total error
exceeds 1 second?

86 Medium-access and sleep scheduling

only wake-up just before their assigned GTS slots. The communication during
CAP is a simple CSMA-CA algorithm, which allows for a small backoff period
to reduce idle listening energy consumption. A performance evaluation of this
protocol and its various settings and parameters can be found in [126].

While the IEEE 802.15.4 can, in theory, be used for other topologies, the
beacon-enabled mode is not defined for them. In the rest of the chapter we
will concern ourselves with both contention-based and schedule-based energy-
efficient MAC protocols that are relevant to multi-hop wireless networks.

6.3 Energy efficiency in MAC protocols

Energy efficiency is obtained in MAC protocols essentially by turning off the
radio to sleep mode whenever possible, to save on radio power consumption.

6.3.1 Power management in IEEE 802.11

There exist power management options in the infrastructure mode for 802.11.
Nodes inform the access point (AP) when they wish to enter sleep mode so
that any messages for them can be buffered at the AP. The nodes periodically
wake-up to check for these buffered messages. Energy savings are thus provided
at the expense of lower throughput and higher latency.

6.3.2 Power aware medium-access with signalling (PAMAS)

The PAMAS (power aware multi-access protocol with signalling) [199] is an
extension of the MACA technique, where the RTS/CTS signalling is carried out
on a separate radio channel from the data exchange. It is one of the first power
aware MAC protocols proposed for multi-hop wireless networks. In PAMAS,
nodes turn off the radio (go to sleep) whenever they can neither receive nor
transmit successfully. Specifically they go to sleep whenever they overhear a
neighbor transmitting to another node, or if they determine through the control
channel RTS/CTS signaling that one of their neighbors is receiving. The duration
of the sleep mode is set to the length of the ongoing transmissions indicated by
the control signals received on the secondary channel. If a transmission is started
while a node is in sleep mode, upon wake-up the node sends probe signals to
determine the duration of the ongoing transmission and how long it can go back
to sleep. In PAMAS, a node will only be put to sleep when it is inhibited from
transmitting/receiving anyway, so that the delay/throughput performances of the

Asynchronous sleep techniques 87

network are not affected adversely. However, there can still be considerable
energy wastage in the idle reception mode (i.e. the condition when a node has
no packets to send and there is no activity on the channel).

6.3.3 Minimizing the idle reception energy costs

While PAMAS provides ways to save energy on overhearing, further energy
savings are possible by reducing idle receptions. The key challenge is to allow
receivers to sleep a majority of the time, while still ensuring that a node is awake
and receiving when a packet intended for it is being transmitted. Based on the
methods to solve this problem, there are essentially two classes of contention-
based sensor network MAC protocols.

The first approach is completely asynchronous and relies solely on the use of
an additional radio or periodic low-power listening techniques to ensure that the
receiver is woken up for an incoming transmission intended for it. The second
approach, with many variants, uses periodic duty-cycled sleep schedules for
nodes. Most often the schedules are coordinated in such a way that transmitters
know in advance when their intended receiver will be awake.

6.4 Asynchronous sleep techniques

In these techniques nodes normally keep their radios in sleep mode as a default,
waking up briefly only to check for traffic or to send/receive messages.

6.4.1 Secondary wake-up radio

Nodes need to be able to sleep to save energy when they do not have any commu-
nication activity and be awake to participate in any necessary communications.
The first solution is a hardware one – equipping each sensor node with two
radios. In such a hardware design, the primary radio is the main data radio, which
remains asleep by default. The secondary radio is a low-power wake-up radio that
remains on at all times. Such an idea is described in the Pico Radio project [166],
as well as by Shih et al. [195]. If the wake-up radio of a node receives a wake-up
signal from another node, it responds by waking up the primary radio to begin
receiving. This ensures that the primary radio is active only when the node has
data to send or receive. The underlying assumption motivating such a design is
that, since the wake-up radio need not do much sophisticated signal processing,
it can be designed to be extremely low power. A tradeoff, however, is that all
nodes in the broadcast domain of the transmitting node may be woken up.

8

Energy-efficient and robust routing

8.1 Overview

Information routing in wireless sensor networks can be made robust and
energy-efficient by taking into account a number of pieces of state information
available locally within the network.

1. Link quality: As we discussed in Chapter 5, link quality metrics (e.g. packet
reception rates) obtained through periodic monitoring are very useful in mak-
ing routing decisions.

2. Link distance: Particularly in case of highly dynamic rapidly fading envi-
ronments, if link monitoring incurs too high an overhead, link distances can
be useful indicators of link quality and energy consumption.

3. Residual energy: In order to extend network lifetimes it may be desirable to
avoid routing through nodes with low residual energy.

4. Location information: If relative or absolute location information is available,
geographic routing techniques may be used to minimize routing overhead.

5. Mobility information: Recorded information about the nearest static sensor
node near a mobile node is also useful for routing.

We examine in this chapter several routing techniques that utilize such infor-
mation to provide energy efficiency and robustness.

8.2 Metric-based approaches

Robustness can be provided by selecting routes that minimize end-to-end retrans-
missions or failure probabilities. This requires the selection of a suitable metric
for each link.

119

120 Energy-efficient and robust routing

8.2.1 The ETX metric

If all wireless links are considered to be ideal error-free links, then routing
data through the network along shortest hop–count paths may be appropriate.
However, the use of shortest hop–count paths would require the distances of the
component links to be high. In a practical wireless system, these links are highly
likely to be error-prone and lie in the transitional region. Therefore, the shortest
hop–count path strategy will perform quite poorly in realistic settings. This has
been verified in a study [39], which presents a metric suitable for robust routing
in a wireless network. This metric, called ETX, minimizes the expected number
of total transmissions on a path. Independently, an almost identical metric called
the minimum transmission metric was also developed for WSN [225].

It is assumed that all transmissions are performed with ARQ in the form
of simple ACK signals for each successfully delivered packet. Let df be the
packet reception rate (probability of successful delivery) on a link in the forward
direction, and dr the probability that the corresponding ACK is received in the
reverse direction. Then, assuming each packet transmission can be treated as
a Bernoulli trial, the expected number of transmissions required for successful
delivery of a packet on the link is:

ETX = 1
df · dr

(8.1)

This metric for a single link can then be incorporated into any relevant routing
protocol, so that end-to-end paths are constructed to minimize the sum of ETX
on each link on the path, i.e. the total expected number of transmissions on the
route.

Figure 8.1 shows three routes between a given source A and destination B,
each with different numbers of hops with the labelled link qualities (only the
forward probabilities are shown, assume the reverse probabilities are all dr = 1).

A

DC

F

E

B
dAB = 0.1

dAC = 0.9

dCD = 0.9 dDE = 0.9

dEB = 0.9

dAF = 0.8 dFB = 0.8

Figure 8.1 Illustration of the ETX routing metric

Metric-based approaches 121

The direct transmission from A to B incurs 10 retransmissions on average. The
long path through nodes C, D, and E incurs 1.11 retransmissions on each link,
hence a total of 4.44 retransmissions. The third path, through node F, incurs
1.25 retransmissions on each link for a total of 2.5 retransmissions. This is
the ETX-minimizing path. This example shows that ETX favors neither long
paths involving a large number of short-distance (high-quality) links, nor very
short paths involving a few long-distance (low-quality) links, but paths that are
somewhere in between.

The ETX metric has many advantages. By minimizing the number of trans-
missions required, it improves bandwidth efficiency as well as energy efficiency.
It also explicitly addresses link asymmetry by measuring reception probabilities
in both directions.

One of the practical challenges is in determining the values of the packet
reception probabilities df and dr, by performing an appropriate link monitoring
procedure. This can be done through some form of periodic measurement using
sliding windows.

8.2.2 Metrics for energy–reliability tradeoffs (MOR/MER)

If the environment contains highly mobile objects, or if the nodes are themselves
mobile, the quality of links may fluctuate quite rapidly. In this case, use of
ETX-like metrics based on the periodic collection of packet reception rates may
not be useful/feasible.

Reliable routing metrics for wireless networks with rapid link quality fluc-
tuations have been derived analytically [106]. They explicitly model the wire-
less channel as having multi-path fading with Rayleigh statistics (fluctuating
over time), and take an outage probability approach to reliability. Let d represent
the distance between transmitter and receiver, � the path-loss exponent, SNR the
normalized signal-to-noise ratio without fading, f the fading state of the channel,
then the instantaneous capacity of the channel is described as:

C = log
(

1 + �f �2
d�

SNR

)
(8.2)

The outage probability Pout is defined as the probability that the instantaneous
capacity of the channel falls below the transmission rate R. It is shown that

Pout = 1 − exp
(−d�

�SNR∗

)
(8.3)

122 Energy-efficient and robust routing

where SNR∗ =SNR/�2R −1� is a normalized SNR, and �=E��f �2� is the mean of
the Rayleigh fading. Based on this formulation, the authors derive the following
results for the case that each transmission is limited to the same power:

Theorem 8
Let the end-to-end reliability of a given route be defined as the probability that none of the
intermediate links suffer outage. Then, assuming that each link has the same transmitted
signal-to-noise ratio, the most reliable route between two nodes is one that minimizes the
path metric

∑
i d

�
i , where di is the distance of the ith hop in the path.

This metric (d� for each link of distance d) is referred to as the minimum
outage route (MOR) metric.

They also derive the following result for the case with power control:

Theorem 9
The minimum energy route between nodes that guarantees a minimum end-to-end reliability
Rmin is the route which minimizes the path metric

∑
i

√
d

�
i .

In this case the metric for each link is
√

d� with a proportional power setting,
which is referred to as the minimum energy route (MER) metric. It should
be noted, however, that here the energy that is being minimized is only the
distance-dependent output power term – not the cost of receptions or other
distance-independent electronics terms. It turns out that the MER metric can also
be used to determine the route which maximizes the end-to-end reliability metric,
subject to a total power constraint.

One key difference between MOR/MER metrics and the ETX metric is that
they do not require the collection of link quality metrics (which can change quite
rapidly in dynamic environments), but assume that the fading can be modelled by
a Rayleigh distribution. Also, unlike ETX, this work does not take into account
the use of acknowledgements.

8.3 Routing with diversity

Another set of techniques exploits the diversity provided by the fact that wireless
transmissions are broadcast to multiple nodes.

8.3.1 Relay diversity

The authors of [106] also propose and analyze the reliability–energy tradeoffs
for a simple technique for providing diversity in wireless routing that exploits
the wireless broadcast advantage. This is illustrated in Figure 8.2 by a simple
two-hop route from A to B to C. With traditional routing, the reliability of the

Routing with diversity 123

A

B

C

D

E
A

B

C

D

E

(a) (b)

Figure 8.2 Illustration of relay diversity: (a) traditionally C receives a packet from A
successfully only if the transmission from A to B and B to C are both successful; (b) with
relay diversity, the transmission could also be successful in addition if the transmission from
A to B is overheard successfully by C

path is purely a function of whether transmissions on A and B and B and C were
both successful. However, if C is also allowed to accept packets directly from
A (whenever they are received without error), then the reliability can be further
increased without any additional energy expenditure.

Allowing such packet receptions within two hops, it is shown that in the high-
SNR regime, the end-to-end outage probability decays as �SNR�−2 (a second-
order diversity gain). The authors further conjecture that, when nodes within L

hops can communicate with each other with high SNR, the end-to-end outage
probability would decay as SNR−L.

One tradeoff in using this technique is that it requires a larger number of
receivers to be actively overhearing each message, which may incur a radio
energy penalty.

8.3.2 Extremely opportunistic routing (ExOR)

A related innovative network layer approach to robust routing that takes unique
advantage of the broadcast wireless channel for diversity is the extremely oppor-
tunistic routing (ExOR) technique [10]. Unlike traditional routing techniques, in
ExOR the identity of the node, which is to forward a packet, is not pre-determined
before the packet is transmitted. Instead, it ensures that the node closest to the
destination that receives a given packet will forward the packet further. While this
technique does not explicitly use metric-based routing, the protocol is designed
to minimize the number of transmissions as well as the end-to-end routing delay
(Figure 8.3).

124 Energy-efficient and robust routing

Destination

Source

Priority of
candidate
receivers

B D CE

0.2

0.5

0.90.9
DC

0.60.6

0.9
B

E

A

Figure 8.3 ExOR routing

In detail, the protocol has three component steps:

1. Priority ordering: At each step, the transmitter includes in the packet a sched-
ule describing the candidate set of receivers and the priority order in which
they should forward the packet. The candidate list and ordering are con-
structed to ensure high likelihood of forward progress, as well as to ensure
that receivers that lie on shorter routes to the destination (which are also
generally the closest to the destination) have higher priority.

2. Transmission acknowledgements: A distributed slotted MAC scheme is used
whereby each candidate receiver sends the ID of the highest-priority success-
ful recipient known to it. All nodes listen to all ACK slots. This constitutes a
distributed election procedure whereby all nodes can determine which node
has the highest priority among the candidates that received the packet suc-
cessfully. Even if a node does not directly hear the highest-priority node’s
ACK, it is likely to hear that node’s ID during another candidate’s ACK.
Thus, by transmitting the IDs as per this protocol, and having all nodes wait
to receive all ACKs, an attempt is made to suppress duplicate forwarding to
the greatest extent possible.

3. Forwarding decision: After listening to all ACKs, the nodes that have not
heard any IDs with priorities greater than their own will transmit. There is a
small possibility that ACK losses can cause duplicate transmissions; these are
further minimized to some extent by ensuring that no node will ever retransmit
the same packet twice (upon receiving it from different transmitters).

There are several nice features of the ExOR protocol. The chief among these is
that it implements a unique network-layer diversity technique that takes advantage
of the broadcast nature of the wireless channel. Nodes that are further away

Multi-path routing 125

(yet closer to the destination) are less likely to receive a packet, but, whenever
they do, they are in a position to act as forwarders. The almost counter-intuitive
approach of routing without pre-specifying the forwarding node thus saves on
expected delay as well as the number of transmissions.

As with the relay diversity technique described before, ExOR also requires a
larger set of receivers to be active, which may have an energy penalty. Moreover,
to determine the priority ordering of candidate receivers, the inter-node delivery
ratios need to be tracked and maintained.

8.4 Multi-path routing

One basic solution for robustness that has been proposed with several variations
is the use of multiple disjoint or partially disjoint routes to convey information
from source to destination. There is considerable prior literature on multi-path
routing techniques; we will highlight here only a few recent studies focused on
sensor networks.

8.4.1 Braided multi-path routing

A good example of the use of localized enforcement-based routing schemes,
such as Directed Diffusion to provide for multi-path robustness, is the
“braided multi-path” schemes for alternate path routing in wireless sensor net-
works [58]. In alternate path routing, there is a primary path that is mainly used
for routing and several alternate paths are maintained for use when a failure
occurs on the primary path. A braided path is one where node disjointedness
between the alternate paths is not a strict requirement. It is defined as one in
which for each node on the main path there exists an alternate path from the
source to the sink that does not contain that node, but which may otherwise
overlap with the other nodes on the main path.

The braided multi-path construction is compared with a localized disjoint
multi-path construction in the study [58] in terms of resiliency to both isolated
and pattern failures, as well as the overhead required for multi-path maintenance
(which is assumed to be proportional to the number of participating nodes). While
the disjoint multi-path techniques have greater resiliency to pattern failures than
the braided multi-path techniques (which suffer due to the geographic proximity
of all alternate paths), this comes at the expense of significantly greater overhead.
Particularly for isolated failures, the braided approach can be significantly more
resilient and energy-efficient.

126 Energy-efficient and robust routing

8.4.2 Gradient cost routing (GRAd)

The gradient routing technique (GRAd) [163], provides a simple mechanism
for multi-path robustness. All nodes in the network maintain an estimated cost
to each active destination (this set would be restricted to the sinks in a sensor
network). In the simplest case, the cost metric would be just the number of hops;
however, the protocol can be enhanced to handle other metrics. When a packet
is transmitted, it includes a field that indicates the cost it has accrued to date
(i.e. number of hops traversed), and a remaining value field, that acts as a TTL
(time-to-live) field for the packet. Any receiver that receives this packet and notes
that its own cost is smaller than the remaining value of the packet can forward
the message, so long as it is not a duplicate. Before forwarding, the accrued cost
field is incremented by one and the remaining value field is decremented by one
(in the case of hop-count metric, the increment/decrements would be accordingly
different for other metrics). One issue that needs to be taken into account in
practice is that in the basic GRAd scheme cost fields are established using a
reverse-path approach, which assumes the existence of bidirectional links. Since
GRAd allows multiple nodes to forward the same message, it acts essentially as
a limited directed flood and provides significant robustness, at the cost of larger
overhead.

8.4.3 Gradient Broadcast routing (GRAB)

The Gradient Broadcast mechanism (GRAB) [236] enhances the GRAd approach
by incorporating a tunable energy–robustness tradeoff through the use of credits.
Similar to GRAd, GRAB also maintains a cost field through all nodes in the
network. The packets travel from a source to the sink, with a credit value that is
decremented at each step depending on the hop cost. An implicit credit-sharing
mechanism ensures that earlier hops receive a larger share of the total credit in a
packet, while the later hops receive a smaller share of the credit. An intermediate
forwarding node with greater credit can consume a larger budget and send the
packet to a larger set of forwarding eligible neighbors. This allows for greater
spreading out of paths initially, while ensuring that the diverse paths converge
to the sink location efficiently. This is illustrated in Figure 8.4, which shows the
set of nodes that may be used for forwarding between a given source and the
sink.

The GRAB-forwarding algorithm works as follows. Each packet contains three
fields: (i) Ro – the credit assigned at the originating node; (ii) Co – the cost-to-
sink at the originating node; and (iii) U – the budget already consumed from the
source to the current hop. The first two fields never change in the packet, while

Multi-path routing 127

Source

Sink

Figure 8.4 Forwarding mesh for gradient broadcast routing

the last is incremented at each step, depending on the cost of packet transmission
(e.g., it could be related to the power setting of the transmission). To prevent
routing loops, only receivers with lower costs can be candidates for forwarding.
Each candidate receiver i with a cost-to-sink of Ci computes a metric called �

and a threshold 	 as follows:

� = 1 − Roi

Ro

(8.4)

	 =
(

Ci

Co

)2

(8.5)

where

Roi = U − �Co − Ci� (8.6)

The expression Roi determines how much credit has already been used up in
traversing from the origin to the current node. The metric �, therefore, is an
estimate of the remaining credit of the packet. The threshold 	 is a measure of
remaining distance to the sink. The candidate node will forward the message so
long as �>	. The square gives the 	 threshold a weighting, so that the threshold
is more likely to be exceeded in the early hops than the later hops, as desired.
The authors of GRAB show that the choice of initial credit, Ro, provides a tunable
parameter to increase robustness at the expense of greater energy consumption.

128 Energy-efficient and robust routing

8.5 Lifetime-maximizing energy-aware routing techniques

A number of studies have explored the issue of energy aware, lifetime-
maximizing routing approaches for wireless ad hoc and sensor networks. Many
of these are based on identifying and defining suitable shortest-path link met-
rics, while some derive energy-efficient routes for a network using a global
optimization formulation.

8.5.1 Power-aware routing

In an ideal, lightly loaded environment, assuming all links require the same
energy for the transmission of a packet, the traditional minimum hop-count
routing approach will generally result in minimum energy expended per packet.
If different links have uneven transmission costs, then the route that minimizes
the energy expended in end-to-end delivery of a packet would be the shortest
path route computed using the metric Ti
j , the transmission energy for each link
i
 j. However, in networks with heterogeneous energy levels, this may not be the
best strategy to extend the network lifetime (defined, for instance, as the time
till the first node exhaustion).

The basic power-aware routing scheme [200] selects routes in such a way
as to prefer nodes with longer remaining battery lifetime as intermediate nodes.
Specifically, let Ri be the remaining energy of an intermediate node i, then
the link metric used is ci
j = 1

Ri
. Thus, the path P (indicating the sequence of

transmitting nodes for each hop) selected by a shortest-cost route determination
algorithm (such as Dijkstra’s or Bellman-Ford) would be one that minimizes∑

i∈P
1
Ri

.

8.5.2 Lifetime-maximizing routing

While minimizing per-hop transmission costs minimizes total energy, avoiding
nodes with low residual energy prevents early node failure. However, considering
these goals separately, as in the above, may not optimize the system lifetime.
What is needed is a technique that balances the two goals, selecting the minimum
energy path when all nodes have high energy at the beginning, and avoiding the
low residual energy nodes towards the end.

Chang and Tassiulas [20] propose the following link metric, which is a function
of the transmission cost on the link Ti
j , the residual energy of the transmitting
node Ri, and the initial energy of the transmitting node Ei:

ci
j = Ta
i
jR

−b
i Ec

i (8.7)

Lifetime-maximizing energy-aware routing 129

This general formulation captures a wide range of metrics. If �a
 b
 c�= �0
 0
 0�,
we have a minimum hop metric; if �a
 b
 c� = �1
 0
 0�, we have the minimum
energy-per-packet metric; if b = c, then normalized residual energies are used,
while c=0 implies that absolute residual energies are used; if �a
 b
 c�= �0
 1
 0�,
we have the inverse-residual-energy metric suggested in [200]. However, simu-
lation results in [20] suggest that a non-zero a and relatively large b = c terms
provide the best performance (e.g. (1, 50, 50)).

8.5.3 Load-balanced energy-aware routing

In order to provide an additional level of load balancing, which is necessary
in a static network, the following cost-based probabilistic forwarding mecha-
nism [189] can be used. Nodes forward packets only to neighbors that are closer
to the destination. Let the cost to destination from node i through a candidate
neighbor j be given as Cij = Cj + cij , where Cj is the expected minimum cost-to-
destination from j and cij is any link cost metric (e.g. the Ta

i
jR
−b
i Ec

i metric discussed
above). For each neighbor j in its set of candidate neighbors (Ni), node i assigns a
forwarding probability that is inversely proportional to the cost to destination

Pi
j = C−1
ij∑

k∈Ni
C−1

ik

(8.8)

Node i then calculates the expected minimum cost to destination for itself as

Ci =
∑
j∈Ni

PijCij (8.9)

Each time the node needs to route any packet, it forwards to any of its
neighbors randomly with the corresponding probability. This provides for load
balancing, preventing a single path from rapidly draining energy.

8.5.4 Flow optimization formulations

Chang and Tassiulas [21] also formulate the global problem of maximizing the
network lifetime with known origin–destination flow requirements as a linear
program (LP), and propose a flow augmentation heuristic technique based on
iterated saturation of shortest-cost paths to solve it. The basic idea is that in each
iteration every origin node computes the shortest cost path to its destination,
and augments the flow on this path by a small step. After each step the costs
are recalculated, and the process repeated until any node runs out of its initial
energy Ei.

130 Energy-efficient and robust routing

We should note that such LP formulations have been widely used by several
authors in the literature to study performance bounds and derive optimal routes.
Bhardwaj et al. use LP formulations to derive bounds on the lifetime of sensor
networks [9]. LP-based flow augmentation techniques are used by Sadagopan
and Krishnamachari [179] for a related problem involving the maximization
of total data gathered for a finite energy budget. Techniques to convert multi-
session flows obtained from such linear programming formulations into single-
session flows are discussed in [151]. Kalpakis et al. [99] also present an integer
flow formulation for maximum lifetime data-gathering with aggregation, along
with near-optimal heuristics. Ordonez and Krishnamachari present non-linear
flow optimization problems that arise when variable power-based rate control
is considered, and compare the gains obtained in energy-efficient data-gathering
with and without power control [110].

To illustrate this approach, consider the following simple flow-based linear
program. Let there be n-numbered source nodes in the network, and a sink
labelled n + 1. Let fij be the data rate on the corresponding link, Cij the cost of
transmitting a bit on the link, R the reception cost per bit at any node, T the total
time of operation under consideration, Ei the available energy at each node, and
Bi the total bandwidth available at each node.

max
n∑

j=i

fi
n+1 · T

s�t� ∀i �= �n + 1�

n+1∑
j=1

fij −
n∑

j=1

fji ≥ 0 (a)

(
n+1∑
j=1

fij · Cij +
n∑

j=1

fji · R
)

· T ≤ Ei (b)

n+1∑
j=1

fij +
c∑

j=1

fji ≤ Bi (c)

This linear program maximizes the total data gathered during the time dura-
tion T . It incorporates (a) a flow conservation constraint, (b) a per-node energy
constraint, and (c) a shared bandwidth constraint.

8.6 Geographic routing

Since location information is often available to all nodes in a sensor network
(if not directly, then through a network localization algorithm) in order to provide

Geographic routing 131

location-stamped data or satisfy location-based queries, geographic routing tech-
niques [135] are often a natural choice.

8.6.1 Local position-based forwarding

The simplest version of geographic forwarding, described by Finn [53], is to
forward the packet at each step to the neighbor that is closest to the destination
(the location or ID of this neighbor is marked in the packet, based on neigh-
borhood information obtained through a beaconing process). There are several
variants of this greedy forwarding mechanism. In the most forward within R

strategy (MFR) [208], the packet is forwarded to the neighbor whose projection
on the line joining the current node and the destination is the farthest (note that
this is not always the same as the greedy forwarding). In another variant, the
packet is forwarded to the nearest neighbor with forward progress (NFP) [85],
so that contention can be minimized and the wireless link quality is high. Yet
another variant is the random-forwarding technique in which the packet is for-
warded at random to a neighbor so long as it makes forward progress. We
should also note that the ExOR technique, described above, is a form of implicit
greedy geographic forwarding, which does not require beaconing – the timers
are designed so that packets are likely to be forwarded (only) by the node closest
to the destination that receives the packet correctly.

8.6.2 Perimeter routing (GFG/GPSR)

One major shortcoming of the greedy forwarding technique is that it is possi-
ble for it to get stuck in local maxima/dead-ends. Such dead-ends occur (see
Figure 8.5) when a node has no neighbors that are closer to the destination than
itself. For this case, the greedy-face-greedy (GFG) algorithm [14], which is the
basis of the greedy perimeter stateless routing protocol (GPSR) [102], routes
along the face of a planar sub-graph using the right-hand rule. The planar sub-
graph can be obtained using localized constructions such as the Gabriel graph
and the relative neighbor graph constructions. A packet switches from greedy
to face-routing mode whenever it reaches a dead end, is then routed using face
routing, and then reverts back to greedy mode as soon as it reaches a node that
is closer to the destination than the dead-end node. Other studies have examined
ways to improve upon and get provable efficiency guarantees with face-routing
approaches. It should be kept in mind, however, that the likelihood that such
dead ends exist decreases with network density; it can be shown that, if the graph
is dense enough that each interior node has a neighbor in every 2�/3 angular
sector, then greedy forwarding will always succeed [49].

132 Energy-efficient and robust routing

E

A

C D

B

F G

Source

Destination

Dead-end

Figure 8.5 A dead-end for greedy geographic forwarding

8.6.3 The PRR*D metric

Seada et al. show in [187] that greedy geographic forwarding techniques exhibit
a distance-hop–energy tradeoff over real wireless links. If at each step the packet
travels a long distance (as in the basic greedy and MFR techniques), the total
number of hops is minimized; however, because of the distance, each hop is
likely to be a weak link, with poor reception rate requiring multiple transmissions
for successful delivery. At the other extreme, if the packet travels only a short
distance at each hop (as with the NFP technique), the links are likely to be good
quality; however there are multiple hops to traverse, which would increase the
number of transmissions as well. By extensive simulations, real experiments as
well as analysis, it is shown that the localized metric that maximizes the energy
efficiency while providing a good end-to-end delivery reliability is the product of
the packet reception rate on the link (probability of successful delivery) and the
distance improvement towards the destination D, which is known as the PRR∗D

metric. Thus, when it has a packet to transmit to a given destination, each node
selects the neighbor with the highest PRR ∗ D metric to be the one to forward
the message further.

8.6.4 Geographical energy-aware routing (GEAR)

The geographical and energy-aware routing mechanism (GEAR) [240] is
designed to propagate queries/interests from a sink to all sensor nodes in a
geographically scoped destination region (e.g. a square sub-area with specified
bounds). The packets are routed from the origin to the destined region through a
series of forwarding steps, which make use of an adaptive learned cost function

Routing to mobile sinks 133

for each neighbor that is modified over time to provide a balance between reach-
ability and energy efficiency. This approach also provides robustness to dead
ends. When the packet reaches the destination region, a recursive forwarding
technique is employed as follows. The region is split into k sub-regions, and a
packet is forwarded to each sub-region. This split–forward sequence is repeated
until the region contains only one node, at which point the packet has been
successfully propagated to all nodes within the query region.

Finally, we should mention in this section the trajectory-based forwarding
technique (TBF) [148], which is also an important geographic routing technique
for sensor networks. As a significant application of TBF applies to the routing
of queries, however, we shall defer its description to the next chapter.

8.7 Routing to mobile sinks

Mobility of nodes in the network adds a significant challenge. The study of
routing over mobile ad hoc networks (MANET) has indeed been an entire field
in itself, with many protocols such as DSR, AODV, ZRP, ABR, TORA, etc.
proposed to provide robustness in the face of changing topologies [158, 211].
A thorough treatment of networking between arbitrary end-to-end hosts in the
case where all nodes are mobile is beyond the scope of this text. However, even in
predominantly static sensor networks, it is possible to have a few mobile nodes.
One scenario in particular that has received attention, is that of mobile sinks. In
a sensor network with a mobile sink (e.g. controlled robots or humans/vehicles
with gateway devices), the data must be routed from the static sensor sources to
the moving entity, which may not necessarily have a predictable/deterministic
trajectory. A key advantage of incorporating mobile sinks into the design of
a sensor network is that it may enable the gathering of timely information from
remote deployments, and may also potentially improve energy efficiency.

We describe below a few studies that propose solutions to different variants
of this problem.

8.7.1 Two-tier data dissemination (TTDD)

In the two-tier data dissemination (TTDD) approach [239], all nodes in the
network are static, except for the sinks that are assumed to be mobile with
unknown/uncontrolled mobility. The data about each event are assumed to origi-
nate from a single source. Each active source creates a grid overlay dissemination
network over the static network, with grid points acting as dissemination nodes

134 Energy-efficient and robust routing

(see Figure 8.6). A mobile sink, when it issues queries for information, sends
out a locally controlled flood that discovers its nearest dissemination point. The
query is then routed to the source through the overlay network. The sink includes
in the query packet information about its nearest static neighbor, which acts as
a primary agent. An alternative immediate agent is also chosen when the sink
is about to go out of reach of the primary agent for robust delivery. The source
sends data to the sink through the overlay dissemination network to its closest
grid dissemination node, which then forwards it to its primary agent. As the sink
moves through the network, new primary agents are selected and the old ones
time out; when a sink moves out of reach of its nearest dissemination node, a
new dissemination node is discovered and the process continues.

8.7.2 Asynchronous dissemination to mobile sinks (SEAD)

The scalable energy-efficient asynchronous dissemination technique (SEAD) pre-
sented in [107] provides for communication of information from a given source
in a static sensor network to multiple mobile sinks. Each mobile sink selects a
nearby static access node to communicate information to and from the source.
Only the access node keeps track of sink movement, so long as it does not
move too far away. When the hop-count between the sink and the nearest access
point exceeds a threshold, a new access node is selected by the sink. Data are
sent from the source first to the various access nodes through a dynamically

Mobile sinkPrimary
 agent

Active
source S

Figure 8.6 The two-tier data dissemination technique

Routing to mobile sinks 135

maintained multi-cast dissemination tree, which then forwards the information
to their respective sinks. The multi-cast tree construction scheme described for
SEAD relies on the replication of source data at multiple points in the net-
work. Each access node selects a nearby replica to obtain data from, based on a
minimum-cost increase criterion.

8.7.3 Data mules

For sparsely deployed sensor networks (e.g. deployed over large areas), the net-
work may never be truly connected; in the most extreme case no two sensor
devices may be within radio range of each other. The MULE (mobile ubiquitous
LAN extensions) architecture [190] aims to provide connectivity in this envi-
ronment through the use of mobile nodes that may help transfer data between
sensors and static access points, or may themselves act as mobile sinks.

It is assumed that MULE nodes do not have controlled mobility and that their
movements are random and unpredictable. Whenever a MULE node comes into
contact with a sensor node, it is assumed that all the sensors data are transferred
over to the MULE. Whenever the MULE comes into contact with an access
point, it transfers all information to the access point. It is assumed that there is
sufficient density of MULE nodes, with sufficiently uniform mobility, so that
all sensor nodes can be served, although delays are likely to be quite high. Both
MULEs and sensors are assumed to have limited buffers, so that new data are
stored or transferred only if there is buffer space available.

The MULE architecture has been analyzed using random walks on a grid [190].
The analysis provides an insight into the scaling behavior of this system with
respect to number of sensors, MULEs, and access points. One conclusion of
the study worth noting is that the buffer size of MULE nodes can be increased
to compensate for fewer MULE nodes in terms of delivery rates (albeit at
the expense of increased latency), but increasing sensor buffers alone does not
necessarily have a similar effect.

8.7.4 Learning enforced time domain routing

The hybrid learning enforced time domain routing (HLETDR) technique
(Figure 8.7) is proposed for situations where the sink follows a somewhat pre-
dictable but stochastic repeated pattern [7]. It is assumed that events happen
rarely, so that the sink does not issue queries, but rather that sources need to push
data about events towards the sink. Nodes near the path of the sink’s movements,
called moles, learn the probability distribution of the sink’s appearance in their

136 Energy-efficient and robust routing

M1

M2

M3

S

R
A

C

B

T : Current time domain
N (T) : Negative reinforcement
P (T): Positive reinforcement

Most likely position of
mobile sink at time domain T

S: Source
A, B, C, R: Relays
M1, M2, M3: Moles

N(T) N(T)

N(T)

N(T)

P(T)

P(T)

Si
nk

’s
tra

jec
tory

Figure 8.7 Illustration of hybrid learning enforced time domain routing

vicinity. The periodic time between tours of the sink is divided into multiple
domains, such that the sink may be more likely to be in the vicinity of one set of
moles in one time domain, and in the vicinity of another set of moles in another
time domain.

For each time domain, local forwarding probabilities are maintained at inter-
mediate nodes. When data are generated, depending on the time, they are routed
through the intermediate nodes based on these probabilities to try and reach a
mole that the sink will pass by. Initially, the probability weights at nodes are
all equal, resulting in unbiased random walks. Over time, these weights are
reinforced positively or negatively by moles, depending on the sink probability
distribution and success of the data delivery. Multiplicative weight update rules
for reinforcements are found to be most efficient and robust. A few iterations
may suffice to determine efficient routes for data to reach a mole that is highly
likely to encounter the sink and be delivered successfully.

8.8 Summary

We have examined a number of issues and design concepts relevant to reliable,
energy-efficient routing in wireless sensor networks: selection of routing metrics,
multi-path routing, geographic routing, and delivery of data to mobile nodes.

Exercises 137

Reliability in routing can be achieved in many ways. One approach is metric
based. The ETX metric requires nodes in the network to monitor the quality of
links to their neighbors to find routes that minimize the number of transmissions
incurred due to ARQ retries. The MOR/MER metrics, developed analytically,
are better suited for rapidly time-varying channels and offer an alternative way
to effect energy–reliability tradeoffs. Another approach to reliable data deliv-
ery is the use of multi-path routing techniques, such as the braided multi-path
mechanism, and the GRAd, GRAB routing protocols. Finally, reliability can be
enhanced even at the network layer by exploiting the spatial diversity of inde-
pendent fading channels, as in the relay diversity technique and the extremely
opportunistic routing mechanism.

Energy-aware routing techniques utilize metrics that take into account the
residual lifetimes of intermediate nodes on the routing path. They can be enhanced
with probabilistic forwarding to provide some degree of energy–load balanc-
ing. Global solutions in the form of flow-based optimization formulations have
also been used to analyze lifetime-maximizing flows and develop distributed
algorithms for energy-efficient routing.

Given that nodes in a sensor network are likely to have at least coarse-
grained position information, geographic forwarding techniques, which provide
low-overhead stateless routing, can be an attractive option.

Finally, while our focus has largely been on sensor networks with static nodes,
in some applications it may be necessary to include limited mobility in the form
of a moving sink. Routing techniques such as TTDD, SEAD, and HLETDR
address this scenario.

Exercises

8.1 ETX: For the directed graph labelled with reception probabilities shown in
Figure 8.3 (ignore the priorities associated with ExOR, and assume dr = 1
on all links), determine the optimal ETX route from node A to node B.

8.2 Relay diversity and MAC: Explain why the relay diversity scheme may not
work well with some sleep-oriented MAC protocols proposed for sensor
networks.

8.3 Relay diversity: For the example of relay diversity shown in Figure 8.2, say
the probabilities of reception for the links A–B, B–C, and A–C were 0.8,
0.8, and 0.6 respectively. What is the probability of successful reception
at C without and with relay diversity?

138 Energy-efficient and robust routing

8.4 Timer-based ExOR routing: Consider a variant of ExOR routing in which
successful recipients of a message set a timer for retransmission of the
message depending upon their priority. Thus, in the example of Figure 8.3,
node B’s timer would be set to 1, node D to 2, node E to 3, node C to 4.
If a node hears another one forwarding the message, it cancels its timer.
After a node’s timer expires, it will forward the message itself. In this case,
once A sends the packet, what is the expected delay before the first of its
recipients forwards the message?

8.5 Flow formulation: Adapt the linear program given in Section 8.5.4 for a
fairness-oriented objective function that maximizes the minimum flow rate
from all sources.

8.6 Greedy geographic routing fails when a forwarding node on the path finds
no neighbors within range that are closer than itself to the destination.
Prove that this implies the existence of a 2�/3 angular sector centered at
this node in which it has no neighbors.

8.7 MULE simulation study: On a 10×10 square grid, place the sink node
at the bottom-left-most grid, and ten sources at random squares. Simulate
the movement of k MULE nodes (with varying k), such that all execute
independent unbiased random walks on the grid, moving to a neighboring
cell at each time step. Assume the MULE nodes pick up one unit of
information from the source when they are in the same grid, and drop off
all information they contain when they arrive at the sink. Assume that the
sources always have data available for pick-up and an infinite buffer, and
that MULEs have an infinite buffer too. Analyze significant metrics, such
as the average time delay between each visit to the sink, average size of
the MULE buffers, average throughput between sources and the sink, as
functions of the number of MULE nodes. What is the impact of placing
additional static sink nodes?

9

Data-centric networking

9.1 Overview

A fundamental innovation in the area of wireless sensor networks has been the con-
cept of data-centric networking. In a nutshell, the idea is this: routing, storage, and
querying techniques for sensor networks can all be made more efficient if communi-
cation is based directly on application-specific data content instead of the traditional
IP-style addressing [74].

Consider the World Wide Web. When one searches for information on a popu-
lar search site, it is possible to enter a query directly for the content of interest, find
a hit, and then click to view that content. While this process is quite fast, it does
involve several levels of indirection and names: ranging from high-level names,
like the query string itself, to domain names, to IP (internet protocol) addresses,
and MAC addresses. The routing mechanism that supports the whole search pro-
cess is based on the hierarchical IP addressing scheme, and does not directly take
into account the content that is being requested. This is advantageous because the
IP is designed to support a huge range of applications, not just web searching. This
comes with increased indirection overhead in the form of the communication and
processing necessary for binding; for instance the search engine must go through
the index to return web page location names as the response to the query string,
and the domain names must be translated to IP addresses through DNS. This
tradeoff is still quite acceptable, since the Internet is not resource constrained.

Wireless sensor networks, however, are qualitatively different. They are appli-
cation specific so that the data content that can be provided by the sensors is
relatively well defined a priori. It is therefore possible to implement network
operations (which are all restricted to querying and transport of raw and processed

139

140 Data-centric networking

sensor data and events) directly in terms of named content. This data-centric
approach to networking has two great advantages in terms of efficiency:

1. Communication overhead for binding, which could cause significant energy
wastage, is minimized.

2. In-network processing is enabled because the content moving through the
network is identifiable by intermediate nodes. This allows further energy
savings through data aggregation and compression.

9.2 Data-centric routing

9.2.1 Directed diffusion

One of the first proposed event-based data-centric routing protocols for WSN is
the directed diffusion technique (Figure 9.1) [96, 97].

This protocol uses simple attribute-based naming as the fundamental building
block. Both requests for information (called interests) and the notifications of
observed events are described through sets of attribute–value pairs. Thus, a
request for 10 seconds worth of data from temperature sensors within a particular
rectangular region may be expressed as follows:

type = temperature // type of sensor data
start = 01:00:00 // starting time
interval = 1s // once every second
duration = 10s // for ten seconds
location = [24, 48, 36, 40] // within this region

And one of the data responses from a particular node may be:

type = temperature // type of sensor data
value = 38.3 // temperature reading
timestamp = 01:02:00 // time stamp
location = [30, 38] // x,y coordinate

The steps of the basic directed diffusion are as follows:

1. The sink issues an interest for a specific type of information that is flooded
throughout the network (the overhead of this can be reduced if necessary by
using geographic scoping or some other optimization). The interest may be
periodically repeated if robustness is called for.

2. Every node in the network caches the interest while it is valid, and creates
a local gradient entry towards the neighboring node(s) from which it heard

Data-centric routing 141

A

C

D

F

E

B Event

Sink
A

C

D

F

E

B Event

Sink

Source

A

C

D

F

E

B

Sink

Source

A

C

D

F

E

B

Sink

Source

(a) (b)

(c) (d)

Figure 9.1 Directed diffusion routing

the interest. The sink’s ID/network address is not available and hence not
recorded, however the local neighbors are assumed to be uniquely identifiable
through some link-layer address. The gradient also specifies a value (which
could be an event rate, for instance).

3. A node which obtains sensor data that matches the interest begins sending its
data to all neighbors it has gradients toward. If the gradient values stand for
event rates then the rate to each neighbor must satisfy the gradients on the
respective link. All received data are cached in intermediate nodes to prevent
routing loops.

4. Once the sink starts receiving response data to its interest from multiple
neighbors, it begins reinforcing one particular neighbor (or k neighbors, in
case multi-path routing is desired), requesting it to increase the gradient
value (event rate). These reinforcements are propagated hop by hop back to
the source. The determination of which neighbor to reinforce can take into
account other considerations such as delay, link quality, etc. Nodes continue
to send data along the outgoing gradients, depending on their values.

5. (Optional) Negative reinforcements are used for adaptability. If a reinforced
link is no longer useful/efficient, then negative reinforcements are sent to
reduce the gradient (rate) on that link. The negative reinforcements could be
implemented by timing out existing gradients, or by re-sending interests with
a lower gradient value.

Essentially what directed diffusion does is (a) the sink lets all nodes in the
network know what the sink is looking for, (b) those with corresponding data

142 Data-centric networking

respond by sending their information through multiple paths, and (c) these are
pruned via reinforcement so that an efficient routing path is obtained.

The directed diffusion mechanism presented here is highly versatile. It can
be extended easily to provide multi-path routing (by changing the number of
reinforced neighbors) as well as routing with multiple sinks/sources. It also
allows for data aggregation, as the data arriving at any intermediate node from
multiple sources can be processed/combined together if they correspond to the
same interest.

9.2.2 Pull versus push diffusion

The basic version of directed diffusion described above can be viewed as a two-
phase pull mechanism. In phase 1, the sink pulls for information from sources
with relevant information by propagating the interest, and sources respond along
multiple paths; in phase 2, the sink initiates reinforcement, then sources continue
data transfer over the reinforced path. Other variants of directed diffusion include
the one-phase pull and the push diffusion mechanisms [75].

The two-phase pull diffusion can be simplified to a one-phase pull mechanism
by eliminating the reinforcements as a separate phase. In one-phase pull diffusion,
the sink propagates the interest along multiple paths, and the matching source
directly picks the best of its gradient links to send data and so on up the reverse
path back to the sink. While potentially more efficient than two phase pull,
this reverse-path selection assumes some form of bidirectionality in the links, or
sufficient knowledge of the link qualities/properties in each direction.

In push diffusion, the sink does not issue its interests. Instead sources with
event detections send exploratory data through the network along multiple paths.
The sink, if it has a corresponding interest, reinforces one of these paths and the
data-forwarding path is thus established.

The push and pull variants of diffusion have been compared and analyzed
empirically [75] as well as through a simple mathematical model [111]. The
results quantify the intuition that the pull and push variants are each appropriate
for different kinds of applications. In terms of the route setup overhead, pull
diffusion is more energy-efficient than push diffusion whenever there are many
sources that are highly active generating data but there are few, infrequently
interested sinks; while push diffusion is more energy-efficient whenever there
are few infrequently active sources but there are many frequently interested
sinks.

The threshold-sensitive energy-efficient sensor network protocol (TEEN) [132]
is another example of a push-based data-centric protocol. In TEEN, nodes react

Data-gathering with compression 143

immediately to drastic changes in the value of a sensed attribute and when this
change exceeds a given threshold communicate their value to a cluster-head for
forwarding to the sink.

9.3 Data-gathering with compression

Several researchers have investigated the combination of gathering information
in a WSN by combining routing with in-network compression. While the exact
type of compression involved can be quite application specific, these studies
reveal a number of general principles and the tradeoffs involved. In most of
these studies, the efficiency metric of interest is the total number of data bit
transmissions (i.e. cumulative number of bits over each hop of transmission) per
round of data-gathering from all sources. Besides providing energy efficiency
by reducing the amount of transmissions, combining routing with compression
also has the potential to improve network data throughput in the face of band-
width constraints [186]. We now describe some of the pertinent techniques and
analytical studies.

9.3.1 LEACH

The LEACH protocol [76] is a simple routing mechanism proposed for con-
tinuous data-gathering applications. In LEACH, illustrated in Figure 9.2, the

Cluster-
head

Base station

Figure 9.2 The LEACH cluster-based routing technique

144 Data-centric networking

network is organized into clusters. The cluster-heads periodically collect and
aggregate/compress the data from nodes within the cluster using TDMA, before
sending them to the sink. The cluster-heads may send to the sink through a direct
transmission or through multiple hops. Cluster-heads are rotated periodically for
load balancing.

9.3.2 Distributed source coding

There exist distributed source coding techniques based on the Slepian–Wolf
theorem [34] that allow joint coding of correlated data from multiple sources
without explicit communication, so long as the individual source rates satisfy
certain constraints pertaining to different conditional entropies. These techniques
require that the correlation structure be available in advance at the independent
coders. While this approach increases the complexity of the coding and requires
upfront collection of information about joint statistics (which may not be feasible
in all practical conditions), it effectively makes routing and coding decisions
independent of each other, since the independently coded data can be sent along
the shortest paths to the sink. In a networked context, then, the only design
consideration for energy efficiency is to ensure that sources near the destination
are allocated higher rates [35].

9.3.3 Impact of compression

The gains due to in-network compression can be best demonstrated in the extreme
case where the data from any number of sources can be combined into a single
packet (e.g. duplicate suppression, when the sources generate identical data). In
this case, if there are k sources, all located close to each other and far from
the sink, then a route that combines their information close to the sources can
achieve a k-fold reduction in transmissions, as compared with each node send-
ing its information separately without compression. In general, the optimal joint
routing–compression structure for this case is a minimum Steiner tree construc-
tion problem, which is known to be NP-hard. However there exist polynomial
solutions for special cases where the sources are close to each other [109].

9.3.4 Network correlated data-gathering

Cristescu, Beferull–Lozano, and Vetterli [35] consider the case where all nodes
are sources but the level of correlation can vary. In this case, when the data
are completely uncorrelated then the shortest path tree provides the best solution

Data-gathering with compression 145

(in minimizing the total transmission cost). However, the general case is treated
by choosing a particular correlation model that preserves the complexity; in this
model, only nodes at the leaf of the tree need to provide R bits, but all other
interior nodes, which have side information from other nodes, need only generate
r bits of additional information. The quantity � = 1 − r

R
is referred to as the

correlation coefficient. Now, it can be shown that a travelling salesman path
(that visits all nodes exactly once) provides an arbitrarily more efficient solution
compared with shortest path trees as � increases. It is shown that this problem
is NP-hard for arbitrary � vlaues.

A good approximation solution for the problem is the following combination
of SPT and the travelling salesman paths. All nodes within some range of the
sink (larger the �, smaller this range) are connected through shortest path trees,
and beyond that each strand of the SPT is successively grown by adding nearby
nodes, an approximate way to construct the travelling salesman paths. Thus the
data from distant nodes are compressed sequentially up to a point, and then sent
to the sink using shortest paths.

9.3.5 Simultaneous optimization for concave costs

Goel and Estrin [64] treat the case when the exact reduction in data that can be
obtained by compressing k sources is not known. The only assumption that is
made is that the amount of compression is concave with respect to k. This is a
very reasonable assumption, as it essentially establishes a notion of monotonically
diminishing contributions to the total non-redundant information; it simply means
that the additional non-redundant information in the j + 1th source is smaller
than that of the jth source. A random tree construction is developed for this
problem that ensures that the expected cost is within a factor O�log k� of the
optimal, regardless of what the exact concave compression function is.

9.3.6 Scale-free aggregation

In practice the degree of spatial correlation is a function of distance, and better
approximations are possible by taking this into account. Nodes nearby are able
to provide higher compression than nodes at a greater distance. A model for the
spatial correlations that captures this notion is considered [45]. Each node in
a square grid of sensors is assumed to have information about the readings of
all nodes within a k-hop radius. Nodes can communicate with any of their four
cardinal neighbors. The aggregation/compression function considered is such
that any redundant readings are suppressed in the intermediate hops. This work

146 Data-centric networking

assumes a square grid network in which the source is located at the origin, on the
bottom-left corner. The routing technique proposed is a randomized one: a node
at location �x� y� forwards its data, after combining with any other preceding
sources sending data through it, with probability x/�x+y� to its left neighbor and
with probability y/x + y to its bottom neighbor. It is shown that this randomized
routing technique can provide a constant factor approximation in expectation to
the optimal solution.

9.3.7 Impact of spatial correlations on routing with compression

In [153], an empirically derived approximation is used to quantify spatial cor-
relation in terms of joint entropies. The total joint information generated by an
arbitrary set of nodes is obtained using an approximate incremental construction.
At each step of this construction, the next nearest node that is at a minimum
distance dmin to the current set of nodes is considered. This node contributes an
amount of uncorrelated data equal to dmin

c+dmin
· H1, where H1 is the entropy of a

single source and c a constant that characterizes the degree of spatial correlation.
In the simplest case when all nodes are located on a line with equal spacing of d,
this procedure yields the following expression for the joint entropy of n nodes:

Hn = H1 + �n − 1�
d

c + d
· H1 (9.1)

Consider first the two extremes: (i) when c = 0, Hn = nH1, the nodes are com-
pletely uncorrelated; (ii) when c →�, Hn =H1, the nodes are completely corre-
lated.

Under this model, it becomes easy to quantify the total transmission cost of
any tree structure where routing is combined with en route compression. An
example scenario is considered with a linear set of sources at one end of a
square grid communicating their data to a sink at the other end. An idealized
distributed source coding is used as a lower bound for the communication costs
in this setting. It is shown that at one extreme, when the data are completely
uncorrelated (c = 0), the best solution is that of shortest path routing (since there
is no possible benefit due to compression). At the other extreme, when data are
perfectly correlated (c →�), the best solution is that of routing the data among
the sources first so that they are all compressed, before sending the combined
information directly to the sink. For in-between scenarios, a clustering strategy is
advocated such that the data from s nearby sources are first compressed together,
then routed to the sink along the shortest path. It is shown that there is an optimal
cluster size corresponding to each value of the correlation parameter. The higher

Querying 147

the level of correlation, the larger the optimal cluster size. However, surprisingly,
it is also found that there exists a near-optimal cluster size that depends on the
topology and sink placement but is insensitive to the exact correlation level.

This result has a practical implication, because it suggests that a LEACH-like
clustering strategy combined with compression at the cluster-heads can provide an
efficient solution even in the case of heterogeneous or time-varying correlations.

9.3.8 Prediction-based compression

Another approach to combining routing and compression is to perform prediction-
based monitoring [63]. The essence of this idea is that the base station (or a
cluster-head for a region of the network) periodically gathers data from all nodes
in the network, and uses them to make a prediction for data to be generated until
the next period. In the simplest case, the prediction may simply be that the data do
not change. More sophisticated predictions may indicate how the data will change
over time (e.g. the predictions may be based on the expected movement trajectory
of a target node, or in the case of diffuse phenomena such as heat and chemical
plumes, these predictions may even be based on partial differential equations
with known or estimated parameters [176]). This prediction is then broadcast to
all nodes within the region. During the rest of the period, the component nodes
only transmit information to the base station if their measurements differ from
the predicted measurements.

9.3.9 Distributed regression

A closely related technique is the use of a distributed regression framework for
model-based compression [69]. In this approach, nodes collaboratively determine
the parameters of a globally parameterized function using local measurements. The
model used is a weighted sum of local basis functions (which could just be polyno-
mials, for example). Distributed kernel linear regression techniques are then used to
determine the parameters. Compression is achieved by transmitting only the model
parameters instead of the full data.

9.4 Querying

In basic data-gathering scenarios, such as those discussed above in connection
with compression, information from all nodes needs to be provided continuously
to the sink. In many other settings, the sink may not be interested in all the

148 Data-centric networking

information that is sensed within the network. In such cases, the nodes may store
the sensed information locally and only transmit it in response to a query issued
by the sink. Therefore the querying of sensors for desired information is a funda-
mental networking operation in WSN. Queries can be classified in many ways:

1. Continuous versus one-shot queries: depending on whether the queries are
requesting a long duration flow or a single datum.

2. Simple versus complex queries: complex queries are combinations that
consist of multiple simple sub-queries (e.g. queries for a single attribute
type); e.g. “What are the location and temperature readings in those nodes
in the network where (a) the light intensity is at least w and the humid-
ity level is between x and y OR (b) the light intensity is at least z.” Com-
plex queries may also be aggregate queries that require the aggregation
of information from several sources; e.g. “report the average temperature
reading from all nodes in region R1.”

3. Queries for replicated versus queries for unique data: depending on
whether the queries can be satisfied at multiple nodes in the network or only
at one such node.

4. Queries for historic versus current /future data: depending on whether the
data being queried for were obtained in the past and stored (either locally at
the same node or elsewhere in the network), or whether the query is for cur-
rent/future data. In the latter case data do not need to be retrieved from storage.

When the queries are for truly long-term continuous flows, the cost of the
initial querying may be relatively insignificant, even if that takes place through
naive flooding (as for instance, with the basic directed diffusion). However,
when they are for one-shot data, the costs and overheads of flooding can
be prohibitively expensive. Similarly, if the queries are for replicated data, a
flooding may return multiple responses when only one is necessary. Thus other
alternatives to flooding-based queries (FBQ) are clearly desirable.

9.4.1 Expanding ring search

One option is the use of an expanding ring search, illustrated in Figure 9.3.
An expanding ring search proceeds as a sequence of controlled floods, with the
radius of the flood (i.e. the maximum hop-count of the flooded packet) increasing
at each step if the query has not been resolved at the previous step. The choice
of the number of hops to search at each step is a design parameter that can be
optimized to minimize the expected search cost using a dynamic programming
technique [22].

Querying 149

1 Hop flood

2 Hop flood

3 Hop flood

A

Figure 9.3 Expanding ring search

However, in the absence of replicated/cached information in the network, for
arbitrarily located data, expanding ring searches do not provide useful gains over
flooding. This is demonstrated in [24], which shows that less than 10% energy
savings are obtained from expanding ring search compared with flooding when
there is no caching/replication of data in the network, while the delay increases
significantly. Intuitively, when there is replicated information, expanding ring
searches are more likely to offer significant improvements, because the likelihood
of resolving the query earlier would be higher. However, in this situation, other
approaches may potentially provide better improvements.

9.4.2 Information-driven sensor query routing (IDSQ)

The information-driven sensor querying approach (IDSQ) [28] suggests an incre-
mental approach to sensor tasking that is suitable for resource constrained,
dynamic environments. The problem of how to route the query to a node with the
maximum information gain is a core problem, that is addressed by the constrained
anisotropic diffusion routing (CADR) technique. CADR essentially routes the
query through a greedy search, making a sequence of local decisions at interme-
diate steps, based on sensor values of neighboring nodes. A composite objective
function that combines the information utility and communication costs is first
defined. These decisions can be made in different ways:

• by forwarding the query to the neighboring node with the highest objective
function;

• by forwarding the query to the neighboring node with the steepest (local)
gradient in the objective function;

150 Data-centric networking

• by forwarding the query to the neighboring node which maximizes a combination
of the local gradient of the objective function and the distance improvement
to the estimated optimum location (the information gain formulation used in
IDSQ allows an estimation of the geographic location of the query destination).

One advantage of this approach, which provides a greedy descent towards the query
destination, is that, if partial solutions are shipped back to the query-originating
node, it is provided with incrementally better information as the query moves
towards the global optimum. Further, depending on how the objective function is
designed, this technique can minimize the energy needed to route the query to the
destination by choosing the shortest path, or it can maximize the information gain
by taking an irregular walk with more steps.

A related work on multi-step information-driven querying [122] aims to pro-
vide a minimum hop path through the network that maximizes the accumulated
information gain. The following approach provides a solution: for each node i

assign all links going into that node a cost of L−ui, where L is a sufficiently large
number and ui the information utility at node i. Then find a shortest path from
the origin to destination using this link metric (e.g., using Dijkstra’s algorithm).
This choice of cost function minimizes the number of hops, because of the large
additive L terms. Among the minimum hop paths, the algorithm also maximizes
the accumulated utility, because of the −ui terms in the minimization expression.

9.4.3 Fingerprint gradients (RUGGED)

The technique of query routing using fingerprint gradients (RUGGED) proposed
by Faruque and Helmy [51] also makes use of sensor readings within the network
to send the query to the node with the highest reading, which is assumed to
be the node closest to an event source. RUGGED switches forwarding modes
depend on the information available: if no gradient information is available in a
region (i.e. far away from phenomena), then flooding is utilized; in the gradient
information region, a greedy forwarding approach is utilized whenever distance
improvement is possible, or else probabilistic forwarding is used to escape local
minima. The parameters of the probabilistic forwarding can be varied depending
on the sensor readings.

9.4.4 Trajectory-based forwarding (TBF)

In WSN where nodes in the network all have reasonably accurate location
information (either directly through GPS or through the implementation of a
network localization technique), a unique approach to efficient querying is the

Querying 151

use of pre-programmed paths embedded into the query packet. The geographic
trajectory-based forwarding (TBF) technique [148] provides this functionality.

The source encodes a trajectory for the query packet into the header. The tra-
jectory could be anything that can be represented in a parametric form �x�t�� y�t��

(though non-parametric representations are also possible in principle). For
instance a packet to be sent along a sinusoidal curve in a single direction would
have the trajectory encoding �x�t� = t� y�t� = A sin t�; and, to travel on a straight
line with slope �, it would have the encoding �x�t� = t cos ��y�t� = t sin ��.

During the course of the forwarding, the ith node that receives the packet with
the encoded trajectory determines the corresponding time ti as the value of t that
corresponds to the point of the curve closest to its location (if the curve passes
by the same location more than once, then additional information, such as the
parameter value chosen by the previous node in the forwarding, may be utilized
to determine ti). This node then examines its neighboring nodes to determine
which of them would be most suitable to forward the packet to, depending on
x�t�� y�t�, and ti. To make progress on the trajectory, the next hop neighbor must
have a parameter value ti+1 higher than ti.

The next hop can be determined in many ways depending on design con-
siderations, such as by (a) picking the neighbor offering the maximum dis-
tance improvement, (b) picking the neighbor that offers the minimum devia-
tion from the encoded trajectory, (c) picking the node closest to the centroid
of the candidate neighbors, and (d) picking the node with maximum energy.
Repeating this process at each step, the packet will follow a trajectory close
to that specified by the parametric expression in the packet. This is illustrated
in Figure 9.4. Good features of this technique are that the trajectory infor-
mation can often be represented quite compactly, a number of different types
of trajectories can be encoded, and the forwarding decisions at each step are
local and dynamic. The denser the network, the more accurately will the actual
trajectory match the desired trajectory.

While it has many possible applications, TBF is uniquely suited for propa-
gating queries within the network. When a set of possible locations must all be
visited, TBF provides an efficient way to guide the query.

9.4.5 Active query forwarding (ACQUIRE)

ACQUIRE [177, 178] is a querying technique involving active query forwarding.
The idea is to treat the query as an intelligent entity that moves through the
network searching for the desired response. If the query is a complex query, its
component sub-queries can be resolved partially en route. As shown in Figure 9.5,

152 Data-centric networking

Figure 9.4 Trajectory-based forwarding

Request for updates
within d-hops

if cache missed

Active query
forwarded if
unresolved

Figure 9.5 ACQUIRE

ACQUIRE progresses through the network as a repeated sequence of three parts:

1. Examine cache: When the query arrives at a node in the network (referred to
as an active node), the node first checks its existing cache to see if its cache
is valid/fresh enough to directly resolve the query (or parts of it). If the entire
query can be resolved from the active node’s cache, the response is returned
to the sink, else the process continues as follows.

2. Request updates: If the cache does not contain the information desired, the
active node issues a request for updates from nodes within a d-hop neigh-
borhood. The responses from the controlled flood are then gathered back and
used to see if the query can be resolved.

Querying 153

3. Forward: If it has not already been resolved, the query is then forwarded
to another active node (chosen either randomly or through some guided
mechanism such as TBF) by a sufficient number of hops so that the controlled
flood phases (described below) do not overlap significantly.

A key observation about ACQUIRE is that the look-ahead parameter offers a
tunable tradeoff between a trajectory-based query when d = 0 (which could be
either a random walk or a guided trajectory, depending on the implementation)
and a full flood when d =D, the diameter of the network. There is a tradeoff for
different values of the look-ahead parameter d; when the value of d is small, the
query needs to be forwarded more often, but there are fewer update messages at
each step. When d is large, fewer forwarding steps are involved, but there are
more update messages at each step.

The optimal choice of d in ACQUIRE depends most on sensor data dynamics,
which can be captured by the ratio of the rate at which data change in the network
to the rate at which queries are generated. When the data dynamics are low,
caches remain valid for a long time and therefore the cost of a large d flood can
be amortized over several queries; however, when the data dynamics are very
high, repeated flooding is required, and hence a small d is favored.

9.4.6 Rumor routing

The rumor routing technique [15] provides an efficient rendezvous mechanism
to combine push and pull approaches to obtain the desired information from the
network. In rumor routing, sinks desiring information send queries through the
network, while sources generating important events send notifications through
the network. These are both treated as mobile agents. The event notifications
leave a “sticky” trail of state information through the network. Then, a query
agent visiting a node where an event notification agent has already passed will
find pointer information on the location of the corresponding source. This is
shown in Figure 9.6.

Thus, it suffices for the queries to simply intersect with one of the event
notification trajectories, rather than have to locate the event node itself. An
additional optimization provided is the ability of event notification agents to
propagate information about other events based on the state encountered in
intermediate nodes, which can reduce the number of unique agents generated for
each event.

The trajectory followed by both the events and the queries can be either a
random walk (with some loop-prevention built in), or more directed, e.g. straight
lines generated using a TBF scheme. It is shown that substantial improvements

154 Data-centric networking

Source

Sink

Pointer to source
located!

Source event notification

Sink interest

Figure 9.6 Rumor routing

in the energy costs can be obtained by rumor routing compared with the two
extremes of query flooding (pull) and event flooding (push).

9.4.7 The comb-needle technique

The same approach as followed by rumor routing, of combining push and pull
by looking at intersections of queries and event notifications, is also the basis of
the comb-needle technique [124].

In the basic version of this technique, illustrated in Figure 9.7 the queries build
a horizontal comb-like routing structure, while events follow a vertical needle-
like trajectory to meet the “teeth” of the comb. A key tunable parameter in this
construction is spacing between branches of the comb and correspondingly the
length of the trajectory traversed by event notifications, which can be adjusted
depending on the frequency of queries as well as the frequency of events. To
minimize the average total cost per query, the comb inter-spacing as well as the
length of the event trajectories should be smaller when the event-to-query ratio
is higher (more pull, less push); however, when there the event-to-query ratio is
lower, the comb inter-spacing as well as the distance traversed by even notifica-
tions should be higher (less pull, more push).

In practice, the frequency of both queries and events is likely to fluctuate
over time. An adaptive version of the algorithm [124] handles this scenario. In
this adaptive technique, the inter-comb spacing and needle trajectory length are

Querying 155

Sink

Source

Source

Query comb

Event
needle

Figure 9.7 The comb–needle approach

calculated and adjusted dynamically in a distributed manner by the sources and
sinks by locally estimating data and query frequencies over several observations.

The basic comb structure, with the queries forming the horizontal comb and
events the vertical needles is a global-pull, local-push model, best suited for
conditions when the frequency of queries is less than the frequency of events.
When the frequency of queries is more than the frequency of events, and there
are multiple querying nodes, then a reverse-comb structure can be employed,
which would provide a global-push, local-pull structure. In the reverse-comb
structure, the events form the vertical comb, while queries take horizontal needle
trajectories to match with events.

9.4.8 Asymptotics of query strategies

An analytical study of various query strategies by Shakkottai [192] considers
three types of queries, all executed using random walks that time out on aver-
age after t time units: (i) the source-driven query, in which a random walk
from the source attempts to reach within some � region near the location of the
desired information, (ii) a replication strategy, where the information is repli-
cated regularly throughout the network, but the search is still source driven, and
(iii) a source–receiver “sticky” search, in which, as in the rumor routing and
the comb–needle strategies, both the source and destination initiate k random
walks and it suffices for any source-initiated walk to intersect with any receiver-
initiated walk. The walks are modeled as continuous Brownian motions on the
2D plane. All strategies are measured in terms of the following metric: the decay

156 Data-centric networking

of the probability that the query is unsuccessful with respect to t, the time dura-
tion of the query. Intuitively, the faster this decay rate, the more efficient the
query, as a small time duration will suffice to locate the desired information
with high probability. It is shown that the simple source-driven search decays
as �log�t��−1; with distributed replication, it decays as approximately t−1; while,
with the “sticky” search, the decay is given as t

−5k
8 . Thus the sticky search even

outperforms distributed replication, so long as the number of push/pull strands
is at least 2. Thus, this study provides analytical support for the rumor routing
and comb–needle approaches discussed above.

9.5 Data-centric storage and retrieval

Another approach to data-centric networking is to decouple the sensor data storage
location from the location where the data are generated. In this structured approach,
storage location is carefully chosen based on the type and value of the correspond-
ing data. Instead of blind querying, this enables more efficient retrieval of desired
information. It also avoids the overheads associated with pure push-based schemes,
where all the data are sent to the sink, regardless of whether they are needed.

9.5.1 Geographic hash tables (GHT)

The use of geographic hash tables [172] provides a simple way to combine data-
centric storage with geographic routing. It is quite simple in essence and works
as follows. Every unique event or data attribute name that can be queried for is
assigned a unique key k, and each data value v is stored jointly with the name
of the data as a key value pair �k� v�. Two high-level operations provided are
Put(k,v), and Get(k). A geographic hash function is used to hash each key to a
unique geographic location (x� y coordinate) within the sensor network coverage
region. The node in the network whose location is closest to this hashed location
(known as the home location for the key), is the intended storage point for the data.
When a sensor node generates a new value, the Put operation is invoked, which
uses the hash function to determine the corresponding unique location and uses
the GPSR geographic routing protocol to route the information to the home node.
When the sink(s) issue a Get(k) query, it is sent directly to the same location.

To ensure that the geographic routing consistently finds the same node for a
key, and to provide robustness to topology changes, a perimeter refresh protocol is
provided in GHT. To provide load balancing in large-scale networks, particularly
for high-rate events, GHT also provides a structured replication mode. In this

Data-centric storage and retrieval 157

mode, instead of a single location, for each unique key a number of symmetric
hierarchical mirror locations are chosen throughout the network. When a node
generates data corresponding to the key, it stores it at the closest mirror location,
while queries are propagated to all mirror locations in a hierarchical manner

9.5.2 Distributed index for multi-dimensional data (DIM)

DIM [119] is a storage and retrieval mechanism uniquely geared towards multi-
dimensional range queries. An example of a multi-dimensional query is “list
events such that the temperature value is between 20 and 30 degrees, and light
reading is between 100 and 120 units.” It comprises two key mappings:

1. All multi-dimensional values are mapped (many-to-one) to a k-bit binary
vector.

2. Each of the 2k possible binary codes is mapped to a unique zone in the
network area.

Assume that all values are normalized to be between 0 and 1. The k-bit vector
is generated by a simple round-robin technique. If the data are m-dimensional,
the first m bits indicate whether the corresponding values are below or above 0.5,
the second m bits whether the corresponding values are in the ranges [0–0.25,
0.5–0.75] or in the ranges [0.25–0.5, 0.75–1] (with disambiguation within the
ranges provided by the first set of bits), and so on. Consider two examples: let
k = 4�m = 2, the value (0.23, 0.15) is denoted by the binary vector 0000 (which
fits all values in the multi-dimensional range (0–0.25, 0–0.25); and the value
(0.35, 0.6) is denoted by 0110 (which fits all values in the multi-dimensional
range (0.25–0.5, 0.5–0.75).

The mapping of binary codes to zones in a rectangular 2D network area A is per-
formed by the following simple splitting construction: for each successive division,
split the region A into two equal-size rectangles, alternating between vertical and
horizontal splits. Each division corresponds to a successive bit. If the split-line is
vertical, by convention, a “0” codes for the left half, and if the split-line is horizontal,
a “0” codes for the top half. This construction, illustrated in Figure 9.8, uniquely
identifies a zone with each possible binary vector. In a manner similar to GHT, the
node closest to the centroid of the corresponding zone may be regarded as the home
node, and treated as the unique point for storage and retrieval.

9.5.3 Distributed index for features (DIFS)

DIFS [67] is a technique suitable for index-based storage and retrieval of infor-
mation in response to range queries (e.g. “did any sensors report readings of

158 Data-centric networking

000

0010

10

01

0100

0101

0011

110 111

Figure 9.8 Zone creation based on binary index for storing multi-dimensional range data

temperatures within 20–30 degrees?”). DIFS constructs a multiply rooted hierar-
chical index as follows. Nodes store information for a range of values in a given
geographic region. Nodes at low levels cover a wide range of values within a
small region, while nodes at the higher levels cover a small range of values
within a larger region. In DIFS, each parent has exactly four children, while each
child has k parents. Each parent holds information on 1/k of the values that a
child does, but covers four times its geographic range. A source node measuring
an event sends it first to the nearby local index node (determined by a suitable
hash function) with a small area coverage and largest range of values. This node
then propagates a histogram of observed values to the particular parent at the
next higher level with a smaller range of values covering that value, and so on.
The leaf index nodes at level 0 point directly to storage nodes, while nodes at
level 1 and higher each store four histograms pointing to each of the lower-level
index nodes covering smaller areas. DIFS searches may enter at any level of the
index structure (and often at multiple points), depending on the spatial extent
and value range requested in the query, and drill down to obtain events satisfying
the query. The histograms are also useful in resolving more sophisticated queries
involving distributions.

9.5.4 DIMENSIONS

A multi-resolution storage and retrieval functionality suitable for spatio-
temporally correlated data is provided by the DIMENSIONS architecture [59,
60]. DIMENSIONS incorporates three key components:

1. Multi-resolution hierarchical storage: In DIMENSIONS, the lowest levels
of the hierarchy store high-resolution information, while the highest levels
store lossy compressed coarse-grained information. Specifically, at the lowest

Database perspective on sensor networks 159

level of the hierarchy, individual nodes store time series data, possibly with
local lossless compression. At each progressively higher level, nodes receive
lossy compressed data from multiple children that they uncompress, combine
together, and compress to a higher lossy compression ratio, using wavelet
compression to send up to the node at the next level. Thus the nodes at higher
levels have information about the larger geographic range, but at a coarse
grain, while nodes at lower levels have information about smaller regions at
a finer granularity.

2. Drill-down querying: Over this hierarchical structure, queries are resolved in
a drill-down manner from the top. First responses at the coarsest grain are
used to determine which low-level branch is likely to resolve the query, and
this process is repeated until the query moves sufficiently down the structure
to be resolved.

3. Progressive aging: In practice, such a storage system will face the practical
limitation of finite storage. The design principle advocated for such storage
in DIMENSIONS is the concept of graceful aging. The more extensive
fine-grained data at the lowest levels of the earlier hierarchy age and are
replaced with incoming new data faster, while the coarse-grained compressed
information at higher layers is replaced more slowly. Thus, the farther back in
time the data being queried for, the more likely it is that they will be obtained
in a summarized form; queries for more recent data are answered with finer
granularity.

9.6 The database perspective on sensor networks

So far we have been focusing on a bottom–up networking-centric view of WSN,
with an emphasis on networking mechanisms such as routing and query for-
warding, albeit enhanced with data-centric notions of in-network processing,
data management, storage, and efficient retrieval of queried information. A com-
plementary, top–down perspective is to view sensor networks as a distributed
database system, and place the primary emphasis on the interface between the end
user (i.e., the human querying the system) and this system. Several researchers
have advocated this alternate perspective [13, 129, 233, 66].

9.6.1 Query language

It has been shown that a simple SQL-like declarative language with some
extensions can be quite powerful for phrasing a diverse set of queries relevant

160 Data-centric networking

to sensor networks. The canonical example of such a query approach is the
TinySQL/TinyDB implementation of a tiny aggregation service (TAG) [129].

In TinyDB/TAG, all nodes in the network are treated as forming a single
table, called sensors. The columns of the table are all the attributes defined
for the network and application (e.g. these may be metadata like nodeID, loca-
tionID, timeStamp, as well as data readings from the different sensors, such as
temperature, light, etc.).

Basic queries in TinySQL can be phrased in the following manner:

SELECT {aggregates, attributes} FROM sensors
[WHERE {selPreds}]
[GROUP BY {attributes}]
[HAVING {havingPreds}]
[EPOCH DURATION {duration}]

A simple example is:

SELECT max{temperature}, locationID FROM sensors
WHERE lightIntensity > 120
EPOCH DURATION 30s

The query thus formulated is then flooded through the network and the per-
tinent information is sent from the nodes that satisfy the relevant predicates.
Aggregation operations are applied within the network en route, as the data return
to the querying sink (more on this below).

The basic TinySQL language is already quite expressive, enabling users to
formulate a wide variety of useful queries. Further enhancements have been
proposed [78]. The first is the addition of an event-driven query mechanism,
allowing a construct like:

ON EVENT fire-detected
SELECT max{temperature}, locationID FROM sensors
...

The query is then activated only when the named event occurs. Another
enhancement is to allow for storage of buffered data locally within the network.
It is demonstrated that, with these slight changes, the expressive power of the
language is increased greatly. For example, an illustration given in [78] is a
simple high-level program consisting of less than 25 lines that tasks the whole
network to track a moving target with query handoffs (i.e. only nodes near the

Database perspective on sensor networks 161

target are activated and provide information on it as it moves). This suggests the
possibility of easy high-level programming of sensor networks using an SQL-like
language.

9.6.2 Aggregate queries

In TAG, the responses to queries are routed up a tree, with aggregation opera-
tors such as MAX, SUM, COUNT etc. applied at each step within the network.
Aggregates are implemented via three functions: a merging function f , an ini-
tializer i and an evaluator e; e.g., if f is AVERAGE, then given partial state
records PSR1 =< S1�C1 > and PSR2 =< S2�C2 > (S and C for sum and count
respectively), PSR3 = f�PSR1�PSR2� =< S1 + S2�C1 + C2 >. The initializer i

gives the partial state record for a single sensor reading; e.g., if the single sensor
value is x, then i�x� returns < x� 1 >. The evaluator e performs the computation
on a state record to return the final result; e.g. e�< S�C >� = S/C.

The communication savings due to aggregation within the network depend
very much on the type of aggregate used. Aggregates such as COUNT, MIN,
MAX, SUM, AVERAGE, MEDIAN, HISTOGRAM, etc. all have different
behaviors. A classification of these aggregates along multiple dimensions, such
as duplicate sensitivity and the size of partial state records, is given in [129] and
used to compare aggregation performance.

9.6.3 Other work

There are several other interesting works pertinent to the database perspective on
WSN. In GADT [50], a probabilistic abstract data type suitable for describing
and aggregating uncertain sensor information is defined. The temporal coherency
aware network aggregation (TiNA) technique [194] provides for additional com-
munication optimization by providing temporal aggregation – data values that
do not change from the previous value by more than a tolerance level � are not
communicated. Shrivastava et al. propose and analyze data aggregation schemes
suitable for medians and other more sophisticated aggregates, such as histogram
and range queries [197]. The problem of aggregation operators over lossy net-
works is addressed by Nath et al. [144], who provide an analysis of synopsis
diffusion techniques that provide robust order and duplicate insensitive aggrega-
tion that is decoupled from the underlying multi-path routing structure.

Yao and Gehrke [233] discuss taking into account available metadata about
the state of different parts of the network to provide an optimized query plan
distributed across query proxies on sensor nodes. The query plan describes both

162 Data-centric networking

the data flow within the network as well as the computational flow within the
node. Bonfils and Bonnet [12] address the problem of optimizing the placement
of query operators for long-standing queries autonomously within the network
through an exploratory search process.

9.7 Summary

Unlike traditional communication networks that must support a wide range of
applications (some not even known at design time), WSNs are much more
application specific in nature. Communication in a WSN is most often pertinent
to the information available at sensors or desired by an external user. A data-
centric approach, where the routing is based on named data rather than addresses,
can be advantageous for two reasons: (a) it eliminates the overhead associated
with name binding and (b) it allows for energy efficiency through in-network
processing, including compression and aggregation of information. The directed
diffusion routing mechanism is unique in routing based on named attributes
rather than traditional IP-style addressing.

Several studies, including the cluster-based LEACH protocol and many analyt-
ical studies, have examined the problem of routing with in-network compression
in sensor networks. The studies suggest that, while finding optimal joint routing–
compression routes may be difficult, good approximations are possible. It is
possible to achieve near-optimal energy performance for routing with compres-
sion with a simple LEACH-like clustering technique that is not correlation aware.

Besides end-to-end routing, data discovery and querying form an important
communication primitive in sensor networks. Alternatives to the high-overhead
naive flooding approach are desired. Several querying techniques have been
proposed and analyzed, including expanding ring search, IDSQ, and ACQUIRE.
Rumor routing and the comb–needle approach both advocate hybrid push–pull
rendezvous techniques, where query trajectories from sinks intersect with event
notification trajectories from sources, and show that they can offer significant
gains.

Data-centric storage techniques including GHT, DIM, and DIFS offer another
alternative by decoupling the location of data storage from the location where data
are generated. Data are indexed at locations that depend upon the named content,
which makes retrieval much easier with lower overheads than blind querying.
The DIMENSIONS technique advocates multi-resolution storage with graceful
aging so that more recent fresh information is available at a finer granularity
than older data.

Exercises 163

Finally, a complementary perspective to data-centric routing and storage in
sensor networks is to treat them as distributed databases. TinyDB is a key effort in
this direction, advocating the use of a simple-yet-powerful SQL-based declarative
query language and in-network processing of aggregate queries.

Exercises

9.1 Analysis of push versus pull: Consider a very simple mathematical model
to analyze push diffusion and pull diffusion routing. Time is divided into
multiple epochs. In each epoch, with probability pD there is one active
source in the network (unknown to the sinks) that generates data, and with
probability pI there is one active sink in the network (unknown to the
sources) that is interested in the data. In pull mode, the active sink floods
its interest to all n nodes, and, if there is an active source, it responds
directly with data along the shortest path to the active sink. In push mode,
the active source floods an event notification to all n nodes, and, if there is
an active sink, it responds with a reinforcement message down the shortest
path to the active source, which can then send data along this path to
the active sink. Assume the shortest path between an active source and
an active sink is always of length

√
n. Assume interest messages are of

size I , event notification messages are of size N , and data messages of
size D. Derive an expression for the condition under which push incurs
less overhead than pull, and explain it intuitively.

9.2 Expanding ring search: Consider an n × n grid of sensor nodes, where
each node communicates with only its four neighbors. Queries are issued
for a piece of information located at a random node in the network by a
node at the center through a hop-by-hop expanding ring search.

(a) Derive an expression for the expected number of steps until query
resolution.

(b) What is the expected number of steps when the information is located
at two random nodes (instead of one)? Comment.

9.3 Trajectory-based forwarding: How should a circle be represented in para-
metric �x�t�� y�t�� form? Simulate the deployment of a 100 node random
G�n�R� network with R = 0	2 in a unit area. Using any convenient for-
warding rule, show the nodes visited by a TBF query that aims to follow
the big in-circle centered in the middle of the area with radius 0.5.

164 Data-centric networking

9.4 Rumor routing: Simulate rumor routing on an arbitrary network of n nodes
using random walks as trajectories. Vary the number of source- and sink-
initiated walks and quantify the tradeoff between energy cost and latency
of query resolution with increasing numbers of walks.

9.5 DIM binary code mapping: Give the binary codes that correspond to the
following values if k = 8: (a) (0.23, 0.15), (b) (0.35, 0.6), (c) (0.83, 0.29).

9.6 DIM zone creation: In a square area, draw the regions that correspond to
the following codes: (a) 1010, (b) 1101, (c) 00001.

	5. Exchanging Messages Using UDP and TCP
	Quick Start: Basic Communications
	Configuring a Device for Network Communications
	Sending UDP Datagrams
	Receiving UDP Datagrams
	Exchanging Messages using TCP
	UDP and TCP from PC Applications

	In Depth: Inside UDP and TCP
	About Sockets and Ports
	UDP: Just the Basics

