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About this Book
“Few things in life are less efficient than a group of people trying to write 

a sentence. The advantage of this method is that you end up with 
something for which you will not be personally blamed.” 

Scott Adams

Being three authors, we divided Embedded Networking with CAN and CANopen into 
three parts so that each of us could focus on one of them.

Part One “Using CANopen” (Chapters 1 through 4) by Olaf Pfeiffer focuses on CAN-
open up to the system integrator level. Any technician or engineer that needs to be able 
to configure and/or maintain a CANopen network will find the required knowledge to 
do so in this part. The last chapter in this part contains a step-by-step example of a net-
work configuration and test cycle.

Part Two “CANopen Engineering” (Chapters 5 and 6) by Christian Keydel is for engi-
neers that either need to have a detailed knowledge of how CAN and CANopen work 
or that will be developing their own CANopen devices. Different implementation 
methods are introduced and compared with each other.

Part Three “CANopen Reference” (Appendices) by Andrew Ayre is a pure reference 
section for all CANopen users. Key elements of CANopen are summarized in a way 
that allows for quick look-up. The core of this part is an Object Dictionary reference list-
ing all Object Dictionary entries specified by [CiADS301] and [CiADS302].

In this book we will often use text boxes to provide the reader with additional personal 
opinions, recommendations, experiences, goals and objectives. Although not always 
critical to the topic under discussion these texts often provide additional insight that 
might help the reader better understand how or why something was specified or im-
plemented.

Be sure to visit the companion website, www.CANopenBook.com for additional re-
sources, examples, downloads and much more.





vii

Contributions and 
Acknowledgments

"Love and work are the cornerstones of our humanness."
Sigmund Freud

This project would not have been possible without the support of Cyndi, Irena, Leah 
and Katja.

Furthermore, the authors would like to thank the many persons and companies that 
helped with the realization of this book project. The companies Vector CANTech, 
Philips Semiconductors and Schneider Electric provided us with many CAN and 
CANopen related software and hardware products which enabled us to add several 
real-world examples where appropriate.

Valuable contributions came from Holger Zeltwanger, William Seitz and Thilo Schu-
mann from the CiA, the CAN in Automation user's and manufacturer's group. Special 
thanks to the CiA for providing the glossary of CANopen terms.

Michael B. Simmonds of Quantum Design kindly allowed us to use parts of his paper 
"Customizing CANopen for Use in an Automated Laboratory Instrument" for a real-
world customized CANopen implementation example.

Additional feedback was provided by Juergen Baumgartner, John Dammeyer, Juergen 
Klueser, Paul Lukowicz and Axel Wolf.

And finally we would like to thank Craig Choisser and all the others at The RTC Group 
for their help and drive to turn a long-term virtual project into a real book. As Yoda 
said: "Do, or do not. There is no ‘try’."

Andrew Ayre
Christian Keydel
Olaf Pfeiffer

November 2003



viii



ix

Contents

Preface xiii

History of CAN and CANopen xv

1 Understanding Embedded  
Networking Requirements 3
Embedded Networking for Beginners................................ 4
Code Requirements for Embedded Systems .................. 21
Communication Requirements for
Embedded Networking .................................................... 25
Introduction to CANopen from the Application Level....... 28

2 The CANopen Standard 39
Using Identifiers and Objects........................................... 40
The CANopen Object Dictionary ..................................... 42
The Electronic Data Sheets (EDS) 
and Device Configuration Files (DCF)............................. 56
Accessing the CANopen Object Dictionary 
(OD) with Service Data Objects (SDO) ........................... 61
Handling Process Data with Process
Data Objects (PDO) ........................................................ 65
Network Management (NMT) .......................................... 83
CANopen Example Configurations and Exercises .......... 88
Contents of CANopen Messages .................................... 93

3 CANopen Beyond DS301 113
Frameworks and Profiles Overview................................114



x

About Masters and Managers (DS302) ......................... 118
Device Profile for Encoder (DS406)............................... 149
Device Profile for Generic I/O (DS401).......................... 153
Safety-Relevant Communication  
(DSP304, DSP307)........................................................ 166

4 CANopen Configuration Example 175
Evaluating the System Requirements............................ 176
Choosing the Devices and Tools.................................... 178
Configuring Single Devices............................................ 180
Overall Network Configuration ....................................... 183
Network Simulation ........................................................ 189
Network Commissioning ................................................ 193
Advanced Features and Testing .................................... 197

5 Underlying Technology: CAN 203
CAN Overview ............................................................... 205
An Introduction to CAN .................................................. 206
Selecting a CAN Controller ............................................ 230
CAN Development Tools................................................ 240

6 Implementing CANopen 245
Communication Layout and Requirements.................... 246
Comparison of Implementation Methods ....................... 248
Simple Do-It-Yourself Implementation:
MicroCANopen............................................................... 252
Using CANopen Hardware Modules or Chips................ 279
Using CANopen Source Code ....................................... 282
CANopen Conformance Test ......................................... 289
Choosing an Implementation Path................................. 292
Implementing CANopen Compliant Bootloaders ........... 294
CANopen Implementation Example............................... 299
Example of an Entire Design Cycle ............................... 309



xi

A Frequently Asked Questions 315
General.......................................................................... 315
Implementation Issues................................................... 319
Performance.................................................................. 321
Physical Layer ............................................................... 323

B Physical Layer 327
Recommended Bit Timings ........................................... 327

C Data Types 329
Basic Data Types........................................................... 329
Extended Data Types .................................................... 332
Complex Data Types ..................................................... 336
Transfer Format............................................................. 339

D The Object Dictionary 343
Object Dictionary Organization...................................... 343
Data Type Definitions .................................................... 345
Communication Profile .................................................. 348
CANopen Managers and Programmable
CANopen Devices ......................................................... 427
Object Dictionary Access Sequences............................ 484

E Minimal Object Dictionaries 487
Standard Object Dictionary Entries................................ 487
Digital Input Entries ....................................................... 488
Digital Output Entries..................................................... 489
Analog Input Entries ...................................................... 489
Analog Output Entries ................................................... 490
Encoder Input Entries .................................................... 490
Support of Code Download ........................................... 491



xii

F Communication Object Identifiers (COB IDs) 493
Pre-defined Connection Set........................................... 493
Reserved COB IDs ........................................................ 495

G Emergency Objects 497
Emergency Object Error Codes ..................................... 497

H SDO Abort Messages 501
SDO Abort Codes .......................................................... 501

I Node States 505
Node State Functionality ................................................ 505

J References 507

K CANopen Glossary 513



xiii

Preface
by William E. Seitz

General Manager, CAN in Automation North America

The Controller Area Network, commonly known as CAN, was originally designed for 
use in automobiles. By virtue of its massive adoption by automakers worldwide, low-
cost microcontrollers with CAN controller interfaces are available from over twenty 
manufacturers, making CAN a mainstream network technology. Moreover, CAN has 
migrated into many non-automobile applications over the last ten years creating a re-
quirement for an open, standardized higher-layer protocol that provides a reliable 
message exchange system along with a means to detect, configure and operate nodes. 

Several higher-layer CAN protocols emerged such as SAE J1939, DeviceNet and CAN-
open. While each protocol has its own special purpose, CANopen is the most popular 
higher-layer protocol for embedded networking applications – those networks that are 
completely hidden within a machine or cell – and is found in over twenty vertical mar-
kets such as transportation, medical, industrial machinery, building automation and 
military, just to name a few.

Embedded Networking with CAN and CANopen is one of the most useful books embedded 
network designers can own – whether they are just starting out or have years of expe-
rience. Arranged in three easy-to-read parts, Embedded Networking with CAN and CAN-
open introduces the reader to CAN and characterizes its flexibility in over twenty 
vertical industries. Subsequent chapters take the reader through a stepwise description 
of CAN and CANopen standards from the perspective of the embedded systems engi-
neer. There are also sections devoted to a small set of mandatory functionality and a 
large set of optional functions that illustrate the extent of customization available in the 
CAN and CANopen standards.

Key topics include requirements for understanding embedded networking, code and 
communications, underlying CAN technology, selecting CAN controllers, confor-
mance testing and application specific examples of popular device profiles used to im-
plement designs. The last part of the book is devoted to reference information and 
frequently asked questions (FAQs) that facilitate quick reference to standards and 
methods outlined in the book.

Written by leading CAN and CANopen technology consultants, Embedded Networking 
with CAN and CANopen has been especially written for CANopen developers and inte-
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grators, providing them with the ability to see ahead and even implement functionality 
that is currently not available yet as CAN and CANopen standards. 

This book is a must for CAN laymen, developers and integrators who want to learn 
more about CAN and its wide range of applications in embedded control systems. 
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History of CAN and CANopen
by Holger Zeltwanger

Managing Director, CAN in Automation

In February of 1986, Robert Bosch introduced the CAN (Controller Area Network) se-
rial bus system at the SAE congress in Detroit. In mid-1987, Intel delivered the first 
stand-alone CAN controller chip, the 82526. Shortly thereafter, Philips Semiconductors 
introduced the 82C200. Today, almost every new passenger car manufactured in Eu-
rope is equipped with at least one CAN network. Also used in other types of vehicles, 
from trains to ships, as well as in industrial controls, CAN is one of the most dominat-
ing bus protocols. To date, chip manufacturers have produced and sold more than 500 
million CAN devices in total.

Although CAN was originally developed to be used in passenger cars, the first appli-
cations came from other market segments. Especially in northern Europe, CAN was al-
ready very popular even in its early days. At the beginning of 1992, users and 
manufacturers established the CAN in Automation (CiA) international users and man-
ufacturers association. One of the first tasks of the CiA was the specification of the 
CAN Application Layer (CAL). Although the CAL approach was academically correct 
and it was possible to use it in industrial applications, every user needed to design a 
new profile because CAL was a true application layer. Since 1993 and within the scope 
of the Esprit project ASPIC, a European consortium led by Bosch had been developing 
a prototype of what would become CANopen, the CAL-based profile for embedded 
networking in production cells. In 1995, CiA released the completely revised CANo-
pen communications profile. The CANopen profile family defines a framework for 
programmable systems as well as different device, interface and application profiles. 
This is an important reason why whole industry segments (e.g. printing machines, 
maritime applications, medical systems, etc.) decided to use CANopen during the late 
1990s.

In the early 1990s, engineers at the US mechanical engineering company Cincinnati Mi-
lacron started a joint venture together with Allen-Bradley and Honeywell Microswitch 
regarding a control and communications project based on CAN. However, after a short 
while important project members changed jobs and the joint venture fell apart. But Al-
len-Bradley and Honeywell continued the work separately. This led to the two higher 
layer protocols ‘DeviceNet’ and ‘Smart Distributed System’ (SDS), which are quite sim-
ilar, at least in the lower communication layers. In early 1994, Allen-Bradley turned the 
DeviceNet specification over to the Open DeviceNet Vendor Association (ODVA), 
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which boosted the popularity of DeviceNet. Honeywell failed to go a similar way with 
SDS, which makes SDS look more like an internal solution by Honeywell Microswitch. 
DeviceNet was developed especially for factory automation and therefore presents it-
self as a direct opponent to protocols like Profibus-DP and Interbus. Providing off-the-
shelf plug-and-play functionality, DeviceNet has become the leading bus system in 
this particular market segment in the US.

With DeviceNet and CANopen, two standardized (EN 50325) application layers are 
now available, addressing different markets. DeviceNet is optimized for factory auto-
mation and CANopen is especially well suited for embedded networks in all kinds of 
machine controls. This has made proprietary application layers obsolete; the necessity 
to define application-specific application layers is history (except, perhaps, for some 
specialized high-volume embedded systems).

Of course, the more than 50 semiconductor vendors who have implemented CAN 
modules into their micro-controllers and ASICs are mainly focused on the automotive 
industry. Since the mid-1990s, Infineon Technologies (formerly Siemens) and Motorola 
have shipped large quantities of CAN controllers to European passenger car manufac-
turers. As a next wave, Far Eastern semiconductor vendors have also offered CAN con-
trollers since the late 1990s. Since 1992, Mercedes-Benz has been using CAN in their 
high-end passenger cars. Now nearly all new European passenger cars are equipped 
with several networks, with some high-end cars implementing up to five CAN net-
works.
Although the CAN protocol is now 15 years old, it is still being enhanced. In the last 
two years an ISO task force defined a protocol for a time-triggered transmission of 
CAN messages. The TTCAN extension will add about five to ten years to the lifetime 
of CAN. Considering CAN is still at the beginning of a global market penetration, even 
conservative estimates show further growth for this bus system for the next ten to fif-
teen years. This is underlined by the fact that the US and Far Eastern car manufacturers 
are just starting to use CAN in the production of their vehicles. Furthermore, new po-
tentially high-volume applications are in the pipeline – not only in passenger cars but 
also entertainment, domestic appliances and automatic building doors, among many 
others.

Several enhancements regarding the approval for different safety-relevant and safety-
critical applications can be expected for the higher-layer protocols (HLP). The German 
professional association BIA and the German safety standards authority TÜV have al-
ready certified some of the proprietary CAN-based safety systems. CANopen-Safety 
and DeviceNet Safety are the first standardized CAN solutions to earn a tentative TÜV 
approval. Approval of the CANopen framework for maritime applications by one of 
the leading classification societies worldwide, Germanischer Lloyd, is in preparation. 
Among other things, this specification defines the automatic switchover from a CAN-
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open network to a redundant bus system.

In the future, CiA members will define several CANopen application profiles. An ap-
plication profile specifies all device interfaces used in a specific application. This in-
cludes direct communication between dedicated devices overcoming the master/slave 
PDO communication as usual in standard device profiles. The first CANopen applica-
tion profiles will be for automatic building doors, lift control systems, road construc-
tion machinery and light railways.





Part One: Using CANopen
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 1  Understanding Embedded 
Networking Requirements

“Everything should be as simple as it is, but not simpler.”
Albert Einstein

The intention of this first section is to lay a foundation of knowledge required to truly 
understand the terminology and issues typical to embedded systems and networked 
embedded systems. It was written with newcomers to embedded systems and embed-
ded networking in mind.

Readers with experience in this field should double check to see if all the terms 
explained in Section 1.1.3 are familiar to them.

For additional reading material, the reference section at the end of the book lists books 
about embedded systems; see in particular [Barr99], [Berger01], [Ganssle00] and 
[Ganssle03]. For additional information on process control see [Stenerson02].
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1.1 Embedded Networking for Beginners

1.1.1 What is “Embedded Networking”?

Since the introduction of the personal computer the semiconductor components 
receiving most of the attention by the media are the main processor (CPU) and the 
memory. One of the first things every computer user learns is that CPU performance 
and memory size continuously increase with time. Both improvements are based on 
technological changes and enhancements that allow chip manufacturers to pack more 
and more transistors into the same silicon area. So although chips are the same size 
and same price as in the past, greater performance becomes available.

Unfortunately, the effects these technological improvements have had on the other 
side of the scale receive far less attention, even though the consequences are reaching 
far into our everyday lives. On this other side of the scale chip manufacturers can 
build “low-performance” microcontrollers ever smaller and smaller. This not only 
makes them cheaper, but also brings down their power consumption.

As a consequence, intelligent electronics get embedded into more everyday products. 
Parents know that there are hardly any toys these days that do not have some elec-
tronics built in. Further examples of microcontrollers used in “embedded systems” 
are kitchen appliances, any sort of audio equipment, phones, and computer peripher-
als such as modems, printers, keyboards, etc.

Objective

In this chapter we describe the basic terms and technologies involved with 
“embedded networking” from a generic point of view, without getting into the 
details of how CANopen relates to them. If you have a lot of experience in both 
embedded systems and computer networks (preferably with real-time require-
ments), feel free to skip this chapter for now. If during further reading you 
detect knowledge gaps, come back to this chapter for a “memory refresh.”

Here we cover generic networking terms such as serial networks, master, 
slave, server, client, producer, consumer, point-to-point, multicast, broadcast, 
message triggering, time driven, event driven and change-of-state (COS). In 
addition, we will also look at terms and technologies used in embedded or 
industrial control systems, involving things like automation systems, field-
buses, real-time and performance requirements.
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The trend towards more affordable microcontrollers results in embedded systems 
which utilize several microcontrollers. Typically there is a need for a communication 
channel between those controllers embedded in a system, hence “embedded network-
ing.” Typical examples of such “multi-controller” embedded systems with communi-
cation requirements are cars and trucks, household appliances, lift/elevator systems 
and a whole array of industrial machinery.

1.1.2 Communication in the Automation Pyramid 

Industrial automation applications as used on factory floors contain most of the ele-
ments applicable to embedded systems and embedded networking. Looking at an 
embedded networking system from the industrial angle not only helps us to under-
stand basic communication requirements, but this model can also easily be adapted to 
a variety of embedded systems.

 

Figure 1.1 Communication in the Automation Pyramid
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Figure 1.1 shows a variation of the industrial automation pyramid. It symbolizes the 
hierarchy in an industrial automation system. At the bottom is the Sensor and Actua-
tor level with input and output elements that directly read switches and sensors like 
current speed of a conveyor belt, RPM values from anything rotating or a current tem-
perature. Typical actuators include hydraulic or pneumatic elements or electrical 
motors, which in industrial lingo are usually referred to as drives. Being at the bottom 
of the pyramid also symbolizes that in any installation these elements or modules are 
used in the highest quantity, compared to modules in the layers above.

Due to the higher quantity, these modules are often price sensitive, as the price-per-
module is multiplied by the large number of devices required. In the not-so-distant 
past of some 20 to 30 years ago, communication at this level was not computerized, 
meaning that every sensor or actuator was directly connected with its own set of 
wires to the next higher control level. Today, the trend is to equip more and more sen-
sors and actuators with a networking interface.

However, since single components on the lowest level are needed in large quantities, 
cost is still a major issue. Equipping simple sensors that just report a single or a few 
values with high-performance processors and high-end network adapters like Ether-
net is simply not an option. Other technologies typically based on serial buses have 
been used for years because they can be handled by some of the lowest performance 

The automation pyramid symbolizes the different control levels and number of 
computerized systems in a factory automation system. On top of the pyramid 
there are a few workstations handling the management of one or multiple 
plants, followed by levels with more workstations or PCs controlling specific 
sections of the manufacturing process.

The three lower levels are those implemented in a complex machine or produc-
tion / manufacturing cell. The Sensor and Actuator level contains simple sen-
sors (contact sensors, distance sensors, temperature sensors, etc.) and actuators 
(hydraulics, drives, etc.) used in the process. The Controller level implements 
direct control loops between sensors and actuators. For example, the sensor 
input from a rotary encoder could be used by a controller to calculate new out-
puts for the actuator; i.e. an electric motor / drive.

The Process Control level combines several systems from the Controller level. 
So a production machine typically has one Process Control system that has 
individual sub-systems on the Controller level. For example, such subsystems 
might first feed material into a machine, then work on/with the material and 
then pass the product on to the next step in the production process.
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(but most affordable) microcontrollers and microprocessors. CAN – the Controller 
Area Network – is just one of many contenders in the field of networking technologies 
that are suitable to reach into the lowest level of the automation pyramid.

The next layer up is the Controller level. In this level controllers are used to collect all 
the inputs, perform some sort of control algorithm and transmit the appropriate com-
mands back to the actuators, the outputs. 

The next layers of the automation pyramid are of only limited concern for embedded 
networking. With each level up in the pyramid the performance of systems needs to 
be higher, as it needs to handle multiple systems from the layer below. The communi-
cation requirements become more significant in the upper levels as more bandwidth 
is required to handle all the accumulated information coming from the multiple sys-
tems in the layers below. In these levels, interfaces to embedded networks are only 
used if a direct link to the lowest levels is required.

1.1.2.1 Placing embedded systems into the automation pyramid

Embedded systems using multiple microcontrollers and any sort of communication 
between them can often be directly compared to the lowest levels of the automation 
pyramid. There will be some sensors and actuators for the inputs and outputs and 
some sort of controller. Sometimes there might be truly distributed control (in which 
case the controller functionality is divided between modules) however the basic 
model and its consequences still applies. The closer a module is to the Sensor and 
Actuator level (or to the inputs and outputs), the more cost-sensitive it is and the more 
basic the communication requirements.

As an example of placing an embedded communication system into the auto-
mation pyramid let’s have a look at a fully automated shuttle train (as found at 
many airports) with a focus on the doors.

On the Sensor and Actuator level there is a whole array of signals. Sensors 
detect not only the current status of a door (is it open, closed or something in-
between), they also detect what happens around it. Is something “in” an open 
door or are passengers (too) close to the door?

The sensors report their findings to the controller level, probably one control 
module in each passenger car supervising all the doors of this car.
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1.1.3 Terminology used in Embedded Networking

The following is a collection of terms and their explanations that are frequently used 
in conjunction with computer networks, especially those related to industrial automa-
tion or to embedded systems.

1.1.3.1 Fieldbuses, Serial Buses 

The term “fieldbus” originates from bus systems used in the production field of a 
manufacturing or processing plant. By itself the term is generic, meaning that by sim-
ply referring to a “fieldbus” one cannot determine which exact type of fieldbus is 
used.

Unfortunately the “Foundation Fieldbus” is sometimes referred to as “Fieldbus” 
which can lead to confusion since the Foundation Fieldbus is simply one particular 
“brand” of fieldbus, comparable to DeviceNet, Profibus, Interbus, Modbus and oth-
ers.

Many fieldbuses are based on a serial bus, meaning that data is transmitted over the 
fieldbus on a bit-by-bit basis. 

1.1.3.2 Arbitration, Token-ring, Multi-master, CSMA/CD

Most computerized communication systems require a method for avoiding collisions. 
A collision occurs if two or more nodes transmit at the same time and thus destroy 
each other’s messages. In other words, when may a particular node transmit some-
thing, and for how long?

One method would be to pass a token (could be a specific message) from one node to 
another (forming a logical ring). Only nodes that currently have the token may trans-
mit something to the network. Once a node is done, it passes on the token and 
remains silent until it gets the token again.

The control modules of each car report up to the Process level – some sort of 
control module controlling the entire train.

Any communication to higher levels would go beyond “embedded network-
ing” as it would leave the “embedded system” of the automated train. At the 
Plant Control level there would probably be some wireless communication to a 
station where all the trains in the system are controlled.
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In a multi-master environment nodes may transmit at any time and collisions are 
resolved immediately upon detection. The method used by Ethernet is Carrier Sense 
Multiple Access with Collision Detection (CSMA/CD). In short it means that each 
node listens to the network (carrier sense) and may transmit at any time (multiple 
access). If a collision is detected in Ethernet, a jamming sequence is started which 
destroys the message for all nodes participating in the communication. After a ran-
dom time delay the transmitting nodes will re-try.

The problem with such a communication scheme is that the jamming sequence 
destroys bandwidth (no data can be transmitted during the jamming) and message 
delays are not deterministic, making the overall response or transmit times hard to 
predict.

CAN uses a modified version of CSMA/CD with Collision Avoidance (CA).  Instead 
of a jamming sequence, CAN resolves collisions by priority so that in a collision the 
message with the higher priority gets access to the network. This process is described 
in detail in Chapter 5, Section 5.2.8.

1.1.3.3 Input, Output

When looking at a single communication node, one could argue that there are inputs 
and outputs to both the application (sensors and actuators) and the network – an 
application input is transmitted “out” to the network, so it could be considered an 
output (to the network).

To avoid confusion, all control systems consider “input” and “output” as they relate 
to the application, not to the network. 

An input signal comes from the application, typically from a sensor and goes into the 
control system. If a network is used, the signal gets transferred via the network to 
another node, either a master or directly to another output node.

An output signal goes to the application, typically to an actuator, and comes from the 
control system. If a network is used, an output module receives the signal from either 
the master or another input module.
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Figure 1.2 Inputs and Outputs - Traditional

The traditional control system in Figure 1.2 has 2 input nodes (A and B) and 2 output 
nodes (C and D). As long as a master is involved the inputs and outputs are fairly 
clear - all the input nodes transmit their data to the master and the master transmits 
the calculated output data to the output nodes. 

Figure 1.3 Inputs and Outputs - Embedded
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shown in Figure 1.3. Often embedded networks use distributed control, meaning 
there is no master and each node has more intelligence to decide on its own what to 
do with the data. As a result the data flow is more flexible; an input node sends its 
data directly to an output node which by itself decides when and how to switch its 
outputs. What can be confusing to beginners in embedded networking is that at some 
point the message sent as a result of an input “mysteriously” becomes an output.
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As the same figure shows, when discussing embedded networks one should also 
avoid the terms “input node” or “output node” because many nodes (such as those 
illustrated by nodes B and D) might have both inputs and outputs.

In general, it is best to refer to the terms “inputs” and “outputs” only as long as these 
terms directly correspond to the inputs and outputs of the application, not of the net-
work. For any data in transition on the network simply refer generically to “network 
variables” or “process data variables.” In this book we will primarily use the term 
“process data variables” because in CANopen the term “network variables” has a spe-
cific meaning and should not be used in a general sense.

1.1.3.4 Master/Slave

Talking about masters and slaves in a network implies that the master has some sort 
of control function over the slaves. Typically this involves scanning the network and 
detecting the insertion or removal of slave nodes and the configuration of the nodes 
(informing them about communication channels and methods to use). Functionality 
may also include shutdown and/or reset of single nodes or the entire network.

Figure 1.4 The Master/Slave Communication Model

A master/slave communication method as shown in Figure 1.4 refers to master-driven 
communication. In such an environment the slaves cannot typically communicate by 
themselves or with each other. Only the master may initiate communication and 
slaves only respond when they receive such a request from the master.
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In comparison, Figure 1.5 shows a direct, master-less communication model, where 
all devices can directly exchange information without the requirement to route mes-
sages via a master. Obviously such a direct communication model is much more effi-
cient, as it has less communication overhead. A single message is sufficient to send 
data from one device to another. In a master/slave communication model two mes-
sages would be required – one from the input to the master and one back from the 
master to the output.

A “flying master” is a dormant master that can become active and take over “on-the-
fly” to be the new master. There are different methods for determining when and how 
such a dormant master can become active. One possibility is using a negotiation phase 
where a node on the network asks the existing master for permission to become the 
new master. Another method is that the dormant master monitors all communication 
on a network and recognizes when the existing master fails. In that case it automati-
cally becomes active and replaces the master that failed. 

Figure 1.5 Direct Communication Model
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service could be serving data access points (inputs and outputs) to the network. A cli-
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1.1.3.6 Producer, Consumer

A producer transmits data to the network and a consumer receives data from the net-
work. For a specific set of data there can only be one producer and there is at least one, 
but possibly multiple consumers for that data.

1.1.3.7 Point-to-point, Multicast, Broadcast

A computer network typically supports multiple communication channels and meth-
ods. A point-to-point communication involves just two nodes on the network commu-
nicating directly with each other. All other nodes on the network either do not see this 
channel or ignore it, so they are not affected by the communication going on between 
the other nodes.

A multicast is the transmission of one message to multiple nodes. Typically the mes-
sage is not duplicated to achieve a multicast, rather the consumers are configured to 
simultaneously receive the single message transmitted.

A broadcast is the transmission of one message to all nodes connected to the network. 
A master typically uses broadcasts to issue network-wide commands (commands 
affecting every node) or to signal an emergency.

1.1.3.8 Message Triggering: Polling, Time Driven, Event Driven, Change-of-State 
(COS) and Time Triggered 

The overall performance of a network in terms of achievable data bandwidth and 
latency times often depends on the message triggering method chosen. So when and 
how does a message with process data get transmitted? The following is just a sum-
mary of some of the basic methods. These methods are covered in more detail in later 
chapters, organized according to where they are used in a CANopen system.

The most traditional method coming from pure master/slave environments is polling. 
With this method a master polls the inputs as required by the control algorithm in the 
master. Because an additional polling message is required, the overhead is fairly 
large, decreasing available bandwidth.

In time driven communication, the producers transmit messages automatically on a 
fixed time basis, for example every 50 milliseconds. This method makes the band-
width requirements and worst-case delay times very predictable.

Time driven communication can be divided into methods using a local or a global 
timer. When local timers are used, each node has its own timer and individually trans-



Embedded Networking with CAN and CANopen

14

mits the message(s) upon timer expiration. Because the local timers are unsynchro-
nized, the timing relationship between nodes is unspecified. On the other hand, if a 
global timer is used all transmissions are synchronized since all nodes will be using 
the same timer reference.

Event driven on a change-of-state allows for the fastest possible reaction time, because 
data gets transmitted as soon as it changes. Bandwidth usage is optimized, because 
data does not need to be transmitted if there are no changes. Unfortunately, this 
method is the least predictable, since many input changes in a short time will create 
message bursts on the network.

Time triggered communication provides synchronization signals with time windows. 
A producer may transmit its message in a time window that starts a certain number of 
microseconds after the synchronization signal and has a specified length of several 
microseconds. This method allows for the reserving of bandwidth in the form of time 
slots for certain communication channels.

It should be noted that in CANopen all of these trigger mechanisms are available and 
combinable (except for time triggered communication). More detailed examples are 
described in Chapter 2, Section 2.5.

In cases where an input changes constantly, such a trigger method would cause 
continuous network traffic. To prevent this, CANopen defines an “inhibit 
time” during which a message may not be re-transmitted. When transmitting a 
message, a node needs to wait for the inhibit time to expire before it may re-
transmit the message with the same variables.

Let’s take a look at an example to help clarify the terminology covered so far. 
The network in Figure 1.6 has one master and three slaves. The slaves provide 
their configuration data as a service to the network. They implement server 
functionality to do so – they serve that data to the network. The master 
becomes a client and requests the “health” data from the clients using a point-
to-point communication channel.
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1.1.3.9 Real-time, Latency 

Many embedded control systems, especially those used in industrial automation 
applications, have real-time requirements. This means that data needs to be processed 
immediately, in real-time, within a specified time slot that may not exceed a pre-
defined limit. There is no general specification on how fast a control system needs to 
be to qualify as “real-time system” – it just needs to be fast enough to be able to han-
dle the requirements of the application.

If the real-time requirements are such that an input needs to influence an output 
within 10 milliseconds, then the control system must guarantee that a change to the 
input affects the output accordingly in 10 milliseconds or less.

If a network is involved, transmitting messages may involve latency times – the time a 
message can be delayed by not having immediate access to the network. This may be 

Figure 1.6 Sample Network Layout

The master uses a broadcast channel to inform all slaves with one message to 
switch into a specific operation state (run/operate or stop).

Node B is an input node that produces multicast messages of the input data on 
an event driven basis to the master and Node C – which in turn become con-
sumers.
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because there is another message currently in progress on the network that cannot be 
interrupted.

As an example, let’s see what individual times make up the total maximum 
time for an I/O cycle – that is, an input read being transmitted via a network 
and switching an output somewhere else on the network.

Input-scan cycle time:  
Any microcontroller implementing an input typically scans the inputs at a 
fixed rate, such as every 100 microseconds. The worst case would be that we 
just did a scan, the input changes, but it takes us the entire scan cycle time (100 
microseconds) to re-check the input and recognize the change.

Input filter/debounce time: 
In order to ensure that an input signal is stable and not just a disturbance on 
the input line, many systems require that an input signal is detected conti-
nously for a specified time period. This time period is application specific.

Software processing time of input module:  
The software in the input module reads the input signal and transfers it to the 
peripheral handling the network. Depending on other interrupts or tasks run-
ning on the microcontroller, the execution time for this piece of software can 
vary. In a real-time system it must be clearly determinable what the maximum 
runtime is.

Network latency:  
The network message that the input module is trying to send might not be 
immediately sent if other network traffic is currently ongoing. For real-time 
systems it must be clearly determinable what the maximum latency is.

Network transmit time: 
The time it actually takes to send the data via the network.

Software processing time of output module: 
The software in the output module detects the receipt of a network message 
containing new process data and transfers the data to the appropriate output. 
Depending on other interrupts or tasks running on the microcontroller, the 
execution time for this piece of software can vary. In a real-time system it must 
be clearly determinable what the maximum runtime is.



17

Chapter 1:  Understanding Embedded Networking Requirements            

1.1.3.10 Physical Stuff – Signals, Wires, Speeds and Network Layout

Before a communication channel between two or more computerized systems can be 
established, some basic physical decisions have to be made. What is the physical 
transmission media chosen? Wire, radio signals or something else? And if wire, what 
kind? And how will the physical signal look on it? And what will be the speed or the 
maximum bandwidth?

For embedded and industrial communications, wire is the first choice when it comes 
to the physical media. Most common is a “regular” wire, meaning no special 
demands on impedance, resistance or conductance are made. For noisy environments, 
with a lot of Electro Magnetic Interference (EMI), twisted and shielded wires are pref-
erable. Many embedded networks try to use readily available wiring like Ethernet 
cables, phone cables, or serial cables as used on PC COM ports.

The limiting speed factor for embedded networks is that all connected microcon-
trollers need to be able to deal with the speed used. A network running at 1Mbps can 
transmit one bit per microsecond. An 8-bit microcontroller that only executes one 
instruction per microsecond needs several instructions to transfer a byte from one 
location to another, and could just about keep up with the communication of a 1Mbps 
network. 

The network layout refers to the physical connection of the nodes to the networks. 
Common layouts are stars and buses. A star uses a central hub and all nodes con-
nected to the network are connected to that hub. A bus is a line and nodes may be con-

How much CPU performance is required to handle a network operating at the 
highest speed rates and 100% busload?

Just to give a quick example: “highest speed rates” means that the length of a 
single message is roughly between 50 and 150 microseconds. So the worst case 
for the receiver is that a message comes in and needs to be processed every 50 
microseconds. If the receiving microcontroller cannot keep up, messages might 
potentially get lost.

Later in Chapter 5, Section 5.3 we will see how sophisticated implementations 
of CAN interfaces help to keep down the workload for the microcontroller. By 
offering hardware filtering mechanisms these implementations can be config-
ured to ignore messages that are of no interest to the local microcontroller. The 
microcontroller only needs to react if a message comes in that is meant to be 
received by the local microcontroller.
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nected anywhere on that line. Some buses allow junctions or drop lines (lines splitting 
off from the bus), some do not. For more details on the physical layout, see Section 
5.2.6.

1.1.3.11 ISO 7-Layer Reference Model 

The standard network communication model is the ISO layer model that defines 7 
layers from the physical media up to the application interface [ISO7498]. Most on-chip 
communication interfaces usually only implement layer 1 (Physical Layer) functional-
ity. Some, like CAN, also offer partial layer 2 functionality (Data Link Layer). Func-
tionality from the layers above is usually implemented in software only. Protocol 
standards that implement these layers or parts thereof are referred to as “higher-layer 
protocols.”

It should be noted that not all layers are implemented for embedded networking 
applications. Just to give an example, it would not really make much sense to add 
overhead for long-distant routing of messages if the network does not have any “long 
distance” functions.

Also, traditional 7-layer implementations would require an interface between any two 
layers next to each other, resulting in an overhead that is unacceptable for embedded 
applications. That is why higher-layer CAN protocols only implement selected func-
tionality from the higher layers, to minimize the overhead.

Figure 1.7 The ISO 7-layer Reference Model
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The ISO 7-layer network reference model is used to classify the functionality provided 
by a communication network system. The model expects a clear separation between 
these layers with defined interfaces between them, to achieve interchangeability. For 
more information on this reference model see [Comer00].

As noted above, this type of implementation is not always suitable in embedded sys-
tems, as the overhead of all these interfaces would be too big to implement efficient 
communication systems for lower-end microcontrollers with limited resources.

With CAN, most parts of the physical and data link layers are implemented in hard-
ware and there is no common, standardized software interface. Some applications put 
their own application layer directly on top of the data link layer. However, with CAN-
open at least parts of the other layers are implemented.

1. Physical Layer:

• Describes the physical interconnection between network nodes 
(CANopen: specifies usage of ISO 11898, high-speed)

• Includes electrical characteristics of signals used 
(CANopen: chosen transceiver uses differential signal)

• Defines “bit-level” communication 
(CANopen: bit generation, synchronization)

2. Data Link Layer:

• Bits are combined into frames 
(CANopen: CAN data frames)

• Includes error detection via checksums 
(CANopen: provided by CAN)

• Defines set of acknowledgements to determine successful transmission 
(CANopen: provided by CAN)

• Enables successful point-to-point communication to the next bridge or gate-
way, but not beyond  
(CAN/CANopen: not provided)

3. Network Layer:
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• Includes concepts of destination addressing and routing (CANopen: SDO 
channels)

• Provides interaction functionality between a host and the network  
(CANopen: configuration via SDO)

• Uses fragmentation to allow transmission of messages larger than allowed 
with frames 
(CANopen: segmented/fragmented transfer supported)

• Able to detect and respond to network bandwidth limitations 
(CANopen: not provided)

4. Transport Layer:

• Provide end-to-end reliability: communication between source and destina-
tion hosts 
(CANopen: partially provided by NMT services, see Chapter 2, Section 2.6).

• Double-checks that no switch, bridge or gateway in between end-to-end 
communication has failures 
(CANopen: no long-distance routing supported)

5. Session Layer: 

• Allows different hosts on the network to begin and end communication ses-
sions 
(CANopen: not typically used)

• Token management: Only the side holding a token may perform critical 
functions like a write access to a shared data base record 
(CANopen: SDO channel management)

• Synchronization: Can be used for large data transfers – supports resume of 
an interrupted transfer 
(CANopen: SDO block transfer mode available with abort, but no resume)

6. Presentation Layer: 

• Handles data representation and encodes data in a standardized way 
(CANopen: Object Dictionary, defined data types)



21

Chapter 1:  Understanding Embedded Networking Requirements            

• Data compression 
(CANopen: not supported)

• Encrypting/Decrypting 
(CANopen: not supported)

7. Application Layer: 

• Application programs making use of the network

1.2 Code Requirements for Embedded Systems

The field of “embedded systems” can be divided into two main categories. On one 
hand we have the high-volume electronics typically used in many consumer products 
or other every-day products, as well as many products from the sensor and actuator 
level of the automation pyramid shown in the previous section. On the other hand we 

Objective

CANopen is mostly used in embedded systems. For those of you who come 
from a pure PC programming environment, we will point out a few things that 
you should be aware of when jumping into the programming of embedded 
systems. If on the other hand you don’t need to implement CANopen nodes 
yourself and you are just integrating or configuring CANopen networks, you 
may want to continue your reading with Section 1.4.

Those of you with multiple years of experience in the “embedded field” by 
either designing and/or programming microcontrollers might be tempted to 
skip this section. However, we would recommend that you at least glance at it, 
as we will specifically point out the impact that typical limitations of embed-
ded systems have on CANopen implementations.

We address topics such as limited resources (memory and CPU performance), 
limited debugging environments, typically available communication channels 
and real-time requirements.

If you are a newcomer to embedded systems, you should consider additional 
literature such as [Barr99], [Berger01] or [Ganssle00].
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have the lower-volume specialty electronics that run some very specific control tasks, 
often situated in the Controller or Process Control levels of the automation pyramid. 
In very rough terms, high-volume refers to systems used in quantities of hundreds of 
thousands whereas low-volume in this context indicates a maximum of a few thou-
sand.

If CANopen is used in embedded systems it is important to know which category it is 
in. In general, the low-volume applications tend to be less price sensitive and can 
afford to use microprocessors or microcontrollers with more horsepower and more 
memory, facilitating the implementation of CANopen. Commercial CANopen source 
code implementations can be purchased and integrated – typically without running 
into any performance or memory requirement issues.

However, on high-volume embedded systems price is a very important factor and 
there will be a certain limit on the resources (both in CPU processing time and mem-
ory usage) that can be made available to implement CANopen. Depending on the 
CANopen functionality required by an application, it might be impossible to imple-
ment full-blown CANopen on a lower-end 8-bit microcontroller.

The following is a list of resource constraints typical for embedded systems and a 
summary of how these constraints affect a desired CANopen implementation.

1.2.1 CPU/MCU Performance

CANopen is very flexible, so the amount of CPU processing time required for han-
dling the communication itself greatly depends on the CANopen functionality imple-
mented. CANopen can be handled by 8-bit microcontrollers running at speeds as 
slow as executing just one or a few assembly instructions per microsecond. However, 
there are typically some constraints one might run into. For example, the maximum 
bus speed supported might be slower than 1Mbps, or, if the 1Mbps rate is supported, 
it may be that a device cannot handle a maximum 100% busload.

In addition, Section 5.3 shows how different CAN controller implementations offered 
by different chip manufacturers impact the MCU performance required to handle the 
CANopen communication. Some CAN controllers have advanced filtering and/or 
buffering techniques, greatly reducing the burden on the MCU.

Systems using an 8-bit microcontroller unit would either need to be prepared to sacri-
fice a significant share of the MCU processing time for handling the CANopen com-
munication, or sacrifice CANopen performance. There might be bursts where some 
50% or more of the MCU time needs to be dedicated to the CANopen communication. 
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Obviously this would not leave enough resources remaining for a demanding appli-
cation such as a multi-phase motor control. However, it is more than adequate for 
simple sensors (such as temperature sensors).

1.2.2 Real-Time Requirements

Another performance factor to consider is the real-time behavior, defined as the guar-
anteed response time to an event. For example, can it be guaranteed that once a CAN 
message is received with new output data, that this data will actually be applied to 
the output pins within a certain time limit? Applications with high real-time demands 
may require that this time be a fraction of a millisecond.

8-bit microcontrollers that are based on commercial, portable CANopen source code 
might have a tough time guaranteeing such a value unless processor and possibly 
application-specific optimizations are made to the code. 

If an application has specific real-time demands it may be necessary to either use a 
more powerful microcontroller or to hand-optimize the CANopen code towards the 
application. The drawback is that after such optimization it is much tougher to port 
the code to different microcontroller architectures.

1.2.3 Code Memory Space

The code memory size required for a CANopen slave protocol stack varies greatly. 
Not only does C source code compile very differently on various microcontroller 
architectures, the code size varies even more depending on which CANopen features 
are enabled or disabled. Most commercial source codes allow code segments to be 
included or excluded from the program via C “#define” statements. If, for example, 
the optimized block transfer routines are not required, there is no need to actually 
include and implement the code for this function.

On an 80C51 microcontroller code sizes for CANopen can vary from 2kbyte for mini-
mal bootloader functionality (not truly implementing a full CANopen node) versus 
4kbyte-5kbyte of code for minimal CANopen implementations (like MicroCANopen, 
see Section 6.3) all the way up to 25kbyte-45kbyte for a full-blown CANopen slave 
node with all the bells and whistles.

CANopen masters or managers vary even more in functionality and may use consid-
erably more code memory.
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Although the overall situation is similar on 16-bit and 32-bit microcontrollers, they 
typically have more overall code space available so saving a few kilobytes of code is 
not as crucial as on an 8-bit device.

1.2.4 Data Memory Space

In general, the data memory requirements depend on factors similar to the code mem-
ory requirements. In keeping with the example from above, a correct implementation 
of the block transfer mode requires a RAM buffer for all the data received via the 
“block transfer.” Again the requirements have a wide range from 100-200 bytes for 
minimal implementations like MicroCANopen and some 500 bytes to 1kbyte for full-
blown CANopen implementations. This is without the process variables themselves – 
so all variables transmitted or received by a node typically need additional RAM 
space. Nodes that need to receive or monitor all process variables may need several 
hundred bytes of additional RAM.

1.2.5 Non-volatile Data Storage

If a CANopen node can be re-configured during operation and such configurations 
need to be stored or reloaded after start-up, non-volatile storage memory such as an 
EEPROM is required. Typically three sets of configuration data are required – two in 
EEPROM and one in RAM. The manufacturer default configuration and the last saved 
configuration are held in EEPROM, while the current configuration is held in RAM.
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1.3 Communication Requirements for Embedded 
Networking

1.3.1 Higher-Layer Protocol

While many communication/networking technologies are available on-chip with even 
the lowest-priced microcontrollers, they lack a dominant higher-layer protocol stan-
dard. All the serial interfaces typically provided on-chip with many microcontrollers 
only includes some sort of layer 2 (Data Link layer) interface. That means that some 
functionality is provided to transmit and receive data, but it is not defined when and 
how messages go over the network and what kind of data they contain. As soon as 
someone starts to specify things like data types (includes bit and byte order, for exam-
ple, to ensure that everybody knows if the hi-byte or low-byte comes first in a word) 
or message identifiers to be used for specific services (either to recognize specific vari-
ables or configuration settings), he/she defines a higher-layer protocol.

Many applications still use proprietary higher layer protocols. Typical pitfalls with 
proprietary protocols are:

• They must be very well documented, otherwise they are only usable by the 
people who invented them

• New team members have no other source for learning than the in-house 
documentation and possibly in-house cross training

• No third party, off-the-shelf development and test tools are available for the 
protocol; they must be developed in-house

• No access to plug-and-play modules of third parties

Objective

The previous section examined code requirements. In this section we will out-
line the basic communication requirements. 

A question often asked by novices is Why do we need anything besides TCP/IP 
anyway? That is the standard in networking, so why not use it in embedded systems, 
too? This chapter will answer these questions and outline the requirements 
desired by many embedded networking applications.
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For embedded networking applications a standardized higher-layer protocol is desir-
able to avoid the pitfalls listed above. However, one should pay careful attention 
when choosing a protocol for embedded networking to ensure the requirements 
detailed in the following sections are met.

1.3.2 Price, Performance, Resources

As outlined in the previous sections, many embedded applications are price-sensitive 
and thus cannot incorporate the hardware and software required to handle TCP/IP in 
every network node. There are indeed implementations of small embedded TCP/IP 
nodes such as embedded webservers, however, these still require a lot of resources, 
not only in CPU performance but also in memory for storing the data files actually 
“served” by the web server. 

As of today it is not yet imaginable that such implementations could become so 
affordable that we could put one in every light bulb. However, many long-life, low-
power lighting technologies already use microcontrollers today. So utilizing some 
other, more affordable networking technology will most likely happen first.

In addition to cost there are also technical considerations. TCP/IP is not very suitable 
for control purposes simply because it was not designed for that purpose. For exam-
ple, (and this becomes most visible in the actual message definitions) in Ethernet sin-
gle messages can have up to 1500 bytes of data and messages have an overhead of 
about 24 bytes (preamble, addresses, type info, checksum). The TCP/IP layers add 
additional overhead resulting in even more bytes wrapped around the data, poten-
tially allowing messages of up to 64kbytes. If a node only implements a simple analog 
sensor (such as temperature, pressure, speed, distance, or similar) it typically only has 
one variable of 8 or 16 bits to report. If the node used TCP/IP on Ethernet as the com-
munication network, every data word transmitted would result in some 50 or more 
bytes of overhead being transmitted with it. And this does not include any overhead 
one might have for establishing a communication channel between two nodes.

To summarize, a “usable” embedded networking technology must work on some of 
the lowest priced microcontrollers. These are typically 8-bit devices with just a few 
kbytes of code space and a few hundred bytes of RAM. The technology must use one 
of the existing communication channels available on-chip (like UART, I2C, CAN or 
others) and preferably the technology should not require a lot of code overhead for 
handling the communication. That overhead, however, depends on the higher-layer 
protocol being used.
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1.3.3 Definition of Data Types and Process Variables

A higher-layer protocol usable for embedded networking would need to specify ways 
to recognize variables. There must be some methods in place to define data types 
(such as signed and unsigned integers of different lengths) and identify the variables 
themselves. If a temperature sensor transmits a temperature, the receiving party or 
parties need to be able to recognize that this is the temperature value.

It would also be desirable to be able to directly request a specific variable using a 
monitoring or analysis tool. If a node has several variables (maybe an entire array of 
temperatures), it would be nice to be able to request a specific variable: “Please send 
the information for temperature sensor number 3 now.”

This should work in both directions - both read and write accesses to variables should 
be available to masters or monitoring/analysis tools.

1.3.4 Exchanging Process Variables

If a network technology is used that supports multi-master (any node can send a mes-
sage at any time, collisions are resolved) and multicast or broadcast (a message trans-
mitted is received simultaneously by a group of nodes or all nodes), then it should be 
possible to take advantage of these features.

CAN supports these features and thus it is possible to set nodes to individually decide 
when to transmit a message, for example by using change-of-state or event time trig-
ger mechanisms.

It should also be possible to directly link variables between devices instead of only 
offering the master-slave communication model. So if a process variable produced by 
one node is required by several other nodes, it should be possible to configure all the 
receiving nodes to directly consume that variable whenever transmitted over the net-
work. Without such a feature the interference or translation of a master is required.

1.3.5 Configuration of Network Devices

Preferably, network nodes are at least in part (re-)configurable via the network itself. 
A master or configuration tool should be able to read and/or set network parameters 
in individual nodes that define the communication behavior of that node.
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This could include things such as how often to send a heartbeat message or which 
process variables are transmitted from where, to where, in which messages and when 
(triggering mechanisms).

1.3.6 Off-the-Shelf, Plug-and-Play 

One of the bigger challenges is the demand for off-the-shelf, plug-and-play support. 
For a network technology this means that nodes (like I/O modules, sensors, actuators, 
etc.) are available from several providers and are interchangeable. 

System designers that build a network can use these components and integrate them 
along with their own network nodes. This way only nodes with specific requirements 
would need to be developed from scratch. Generic I/O nodes would not need to be 
(re-)developed, but could be acquired from third party providers instead.

1.4 Introduction to CANopen from the Application 
Level

1.4.1 The Object Dictionary Concept

The core of any CANopen node is the Object Dictionary (OD), a lookup table with a 
16-bit Index and an 8-bit Subindex. This allows for up to 256 Subentries at each Index. 

Objective

In the previous sections we have examined general requirements for embed-
ded networks. In this section we would like to introduce CANopen and point 
out how many of the embedded networking requirements are met by CANo-
pen.

This section is an introduction to the primary functionality provided by CANo-
pen and is intended to give students a quick start into the main ideas of CANo-
pen.

The chapters following this section will repeat some of the basic information 
presented here and add technical details that are missing in this first overview 
of CANopen functionality.
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Each entry can hold one variable of any type (including a complex structure) and 
length. In the following sections the terms Index, Subindex and Subentry will be used 
when describing such Object Dictionary entries.

All process and communication related information/data is stored as entries in pre-
defined locations of the Object Dictionary. Unused entries do not need to be imple-
mented.

The Object Dictionary not only provides a way to associate variables with an Index 
and Subindex value, it also specifies a data type definition table. The entries starting at 
Index 1 are exclusively used to specify data types. Table 1.1 shows the first seven 
entries in the Object Dictionary defining some commonly used data types. The com-
plete listing of pre-defined data types is given in Chapter 2, Section 2.2.3. In addition, 
CANopen also supports application specific data types that can be added to the list of 
supported data types.

It should be noted that the entries mentioned above are only used to define data 
types, not to store any variables. The Object Dictionary entries beyond 1000h are used 
for variable storage; if an entry is specified to be of type “UNSIGNED16” then an 
alternate description of the data type (for example, used in electronically readable 
specifications) is used to indicate it is of data type 6.

As specified, the Object Dictionary satisfies the basic networking requirement of 
being able to define data types and place variables into the network nodes. If a specifi-
cation says that a node must have a variable called "X-Position" which is located at 

Index Data Type

1 BOOLEAN

2 INTEGER8

3 INTEGER16

4 INTEGER32

5 UNSIGNED8

6 UNSIGNED16

7 UNSIGNED32

Table 1.1 Object Dictionary Entries Starting at Index 1 Define Data Types
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Index 2000h, Subindex 0 and its data type is 4, then according to the Object Dictionary 
the data type is INTEGER32, an integer value of 32 bits.

Figure 1.8 Mandatory Object Dictionary Entries Supported by all CANopen 
Nodes

Figure 1.8 lists the mandatory Object Dictionary entries that every CANopen node 
must implement to be CANopen compliant. Primarily, these provide the device type 
information that gives an indication of which device profile a device belongs to (if 
any), an error register, and an identifier record. The heartbeat is a low-priority status 
message sent by a node on a periodic basis. The heartbeat time is listed here because 
every node must support either the heartbeat or node guarding mechanism; today 
heartbeat is the recommended, preferred method.

1.4.2 Device Profiles

Although the Object Dictionary concept allows for structuring the data that needs to 
be communicated, there is still something missing: Which entry in the dictionary is 
used for what? The dictionary is far too big to allow the master to take “wild guesses” 
and simply try to access certain areas of the dictionary to see if they are supported.

The solution is simple. First of all, there are a few mandatory entries that all CANopen 
nodes must support. These include the identity object with which a node can identify 
itself, and an error object to report a potential error state. In addition, optional entries 
are specified by the CANopen specification. The Device profiles are add-on specifica-

1000h 0 UNSIGNED32 Device Type Information

1001h 0 UNSIGNED8 Error Register

0 UNSIGNED8 = 4 (Number of sub-index entries)
1 UNSIGNED32 Vendor ID

1018h Identity Object

2 UNSIGNED32 Product Code
3 UNSIGNED32 Revision Number
4 UNSIGNED32 Serial Number

Index SubIdx Type Description

1017h 0 UNSIGNED16 Heartbeat Time
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tions that describe all the communication parameters and Object Dictionary entries 
that are supported by a certain type of CANopen module. Such profiles are available 
for generic I/O modules, encoders and other devices.

A master or configuration tool can read-access the identity object of any slave node 
using a Service Data Object or SDO (a messaging protocol – more about this shortly). 
As a reply, it receives an SDO with the information about which device profile a mod-
ule conforms to. Assuming the master knows which object entries are defined for a 
particular device profile, it now knows which Object Dictionary entries are supported 
and can access them directly.

There may be instances where an application requires the implementation of non-
standardized, manufacturer-specific Object Dictionary entries. This is not a problem, 
because CANopen is truly "open." Additional entries that disable or enable a certain 
functionality that is not covered by one of the existing device profiles can be imple-
mented in any device, as long as they conform to the structural layout of the Object 
Dictionary.

1.4.3 Electronic Data Sheets

Electronic Data Sheets (EDS) offer a standardized way of specifying supported Object 
Dictionary entries. Any manufacturer of a CANopen module delivers such a file with 
the module, which in layout is similar to the “.ini” files used with Microsoft Windows 
operating systems. (Note: a future standard for EDS files based on XML is currently in 
development.) 

An example of an Object Dictionary entry in an EDS file is:

[1000]

ParameterName=DeviceType

ObjectType=0x07

DataType=0x0007

AccessType=ro

DefaultValue=0x00030191

PDOMapping=0

The example above shows the EDS definition of the Object Dictionary entry 
[1000h,00h]. The data type is 7 (UNSIGNED32, see Table 1.1).
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Figure 1.9 Electronic Data Sheets (EDS) Specify the Contents of Object 
Dictionaries

A CANopen master or configuration tool running on a PC with a CAN card can 
directly load the EDS into its set of recognized devices. Once a device is found on the 
network, the master or configuration tool will try to find the matching EDS. Once 
found, all supported Object Dictionary entries are known by the master/configuration 
tool.

Figure 1.9 shows the relationship between Device Profiles and Electronic Data Sheets. 
The Device Profile specifies the minimum entries that need to be supported by a 
device conforming to the profile. However, the EDS might only specify objects that 
are specific to a certain manufacturer or sub-type of module.

Device Profiles and Electronic Data Sheets are the basic functionality needed to meet 
the requirement for "off-the-shelf" availability of network devices. From the commu-
nication point of view, any two nodes that conform to the same EDS are interchange-
able - their Object Dictionaries are identical and they have the same communication 
behavior.
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Module
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1.4.4 Accessing the Object Dictionary: SDOs

The next requirement is that of a direct communication channel. A master or configu-
ration tool needs to be able to read and/or write the Object Dictionary entries of all the 
nodes connected to the network.

CANopen supports such a basic client/server communication method by implement-
ing a point-to-point communication mode that allows for the issuing of read or write 
requests to the node’s Object Dictionary. Messages that contain requests or answers to/
from the Object Dictionary are called Service Data Objects (SDO). 

It should be noted that by default only one node in the system has the right to actively 
initiate this SDO communication mode. Typically this is some sort of master/manager. 
However, there are ways for other nodes such as configuration or analysis tools to 
request the use of SDO communication channels.

The default SDO communication is a master-driven (client) request/response commu-
nication. The master/manager "owns" all the SDO communication channels and has 
one channel available to each node in the system. Only the node that owns a channel 
may send an SDO read or write request to the node (and Object Dictionary in it) and 
the node addressed must reply with an SDO response either confirming the write 
access or replying to the read-request (server, because the node “serves” its Object 
Dictionary data to the network).

It should also be noted that SDOs support something called "segmented transfer" that 
allows Object Dictionary entries of any size to be transmitted. If the content does not 
fit into a single message, it is automatically segmented and distributed via multiple 
messages.

The Service Data Object methodology allows master-driven read/write access to all 
Object Dictionary entries of all nodes connected to the network. Strictly speaking, this 
functionality by itself would already allow simple master-driven network systems. As 
both process and configuration data are part of the Object Dictionary, the process data 
could be updated using SDO transfers.

However, for a number of reasons this would not be a very efficient implementation. 
First, it only implements a polling scheme where the master must handle all inputs 
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and outputs. Second, it also adds a lot of message overhead. To get an input to an out-
put, four messages have to be transmitted via the network:

1. Master sends SDO read request to input node.

2. Input node replies with SDO response and the data.

3. Master sends SDO write request to output node.

4. Output node confirms with an SDO response.

Third, by definition SDOs always have a message length of 8 bytes, even if an SDO 
only contains one data byte or a simple acknowledgement without process data.

In summary, the Service Data Object ensures a basic access method to any entry in the 
entire Object Dictionary of any node. However, for pure process data communication 
a more efficient methodology is required.

Because the configuration data is available via SDO accesses, SDOs fulfill the require-
ment for "plug-and-play." A system integrator who needs a specific I/O node, such as 
a rotary encoder, can choose any product conforming to the Device Profile for encod-
ers. The system integrator or technician can then use CANopen configuration or mas-
ter software to configure the node to perform the communication actions as 
demanded by the specific application.

1.4.5 Increased Performance with PDOs

For most applications, the SDO communication is not efficient enough to handle the 
exchange of real process data; the overhead is just too big and the message triggering 
methods are too limited (master-driven polling only).

Because CAN supports the multi-master communication concept (any node can send 
a message at any time and collisions are resolved by message priority), a more direct 
communication method is required to allow for more efficient, higher-priority access 
to process data.

The Process Data Object (PDO) implements an optimized solution for placing multi-
ple process data variables from the Object Dictionary into a single CAN message of 
up to 8 bytes. 
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1.4.5.1 PDO Mapping

A PDO is like a “shortcut” to several process data variables in the Object Dictionary. 
Via a process called PDO mapping (all implemented through Object Dictionary 
entries), any dictionary entry can be mapped to data in a PDO, the only limit being 
that in total a PDO cannot contain more than 8 bytes.

Figure 1.10 Process Data Object (PDO) Mapping Example

Consider the PDO mapping example in Figure 1.10. A CANopen input node supports 
two digital inputs of 8 bits each and two analog inputs of 16 bits each. In conformance 
with the Device Profile for Generic I/O modules, Object Dictionary entries at Index 
6000h store the two digital inputs of 8 bits each, and entries at Index 6401h store the 
two analog inputs as two words.

The Object Dictionary entries at Index 1A00h specify the PDO mapping, indicating 
which bits of which Object Dictionary entries are used in the Transmit PDO 1 
(TPDO1), filling the TPDO bit-by-bit. Note that this mapping can really be done on a 

6000h
0 UNSIGNED8

Process data, digital inputs

1 UNSIGNED8 8-bit digital input
2 UNSIGNED8 8-bit digital input

= 2 (Number of sub-index entries)

1A00h
0 UNSIGNED8 = 4 (Number of used map entries)
1 UNSIGNED32 = 6000 01 08h (Idx 6000h, SubIdx 1, 8 bit)

1st Transmit PDO - Mapping

2 UNSIGNED32 = 6000 02 08h (Idx 6000h, SubIdx 2, 8 bit)

6401h
0 UNSIGNED8

Process data, analog inputs

1 UNSIGNED16 16-bit analog input
2 UNSIGNED16 16-bit analog input

= 2 (Number of sub-index entries)

3 UNSIGNED32 = 6401 01 10h (Idx 6401h, SubIdx 1, 16 bit)
4 UNSIGNED32 = 6401 02 10h (Idx 6401h, SubIdx 2, 16 bit)

D IN 2
Byte 2

TPDO1
A IN 1 A IN 2

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

UnusedD IN 1
Byte 1

Index SubIdx Type Description
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bit-level. Each entry starts using the first available free bit in the PDO and occupies as 
many bits as it requires. 

The second Subentry (Subindex 1) at Index 1A00h maps object 6000h, Subindex 1, 8 
bits to the first bits of the TPDO1. The next Subentry (Subindex 2) at Index 1A00h 
maps object 6000h, Subindex 2, 8 bits to the next free bits of the TPDO1, and so on. In 
this example the remaining bits of TPDO1 (data bytes 7-8) remain unmapped and 
unused.

Which PDOs are pre-defined for specific nodes along with their default mapping is 
specified in the Device Profile and the Electronic Data Sheet.

1.4.5.2 PDO Linking

When it comes to the communication partners involved, PDOs have a default 
arrangement similar to SDOs. The default state is that the master is the only node that 
receives Transmit Process Data Objects (TPDO), and only the master may send 
Receive Process Data Objects (RPDO) to the slaves. In other words, it ensures that a 
pre-defined connection is usable by default, since unique CAN message identifiers 
are assigned to each supported PDO – one unique ID for each TPDO and one for each 
RPDO. In CANopen terms, the COB ID is the Connection Object Identifier that con-
tains the CAN message ID and some additional configuration bits, such as a bit to 
enable and disable the PDO.

Figure 1.11 Default PDO Linking - Master/Slave Model
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During the initialization and configuration cycle, the PDO linking can be changed. A 
master could inform one or multiple output modules that they should directly listen 
to a specific TPDO of an input module. Again, a TPDO correlates to a unique COB ID, 
a CAN message identifier. So in short, a node is informed as to which message frames 
it should listen to and which ones it can ignore.

Figure 1.12 Optimized, Direct PDO Linking

Once these new linking settings are done and the network enters into the operational 
mode, the master would not need to get involved in the process data communication 
and could focus on other things like network management.

1.4.5.3 PDO Triggering

Now that a "shortcut" is available that allows several Object Dictionary entries to be 
packed into one message, what are the options for triggering a PDO? CANopen sup-
ports a total of four trigger modes:

1. Event driven: If the input device recognizes a change-of-state (COS) on any of 
its inputs, it updates the data in the Object Dictionary and the PDO and then 
transmits the PDO. This mode allows for some of the fastest response times.

2. Time driven: A PDO can be configured to be transmitted on a fixed time basis, 
for instance every 50 milliseconds. This mode helps to make the total busload 
more predictable.
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3. Individual Polling: Using a regular CAN feature, the remote request frame, a 
PDO is transmitted only if the data is specifically requested by another node.  
Note: Using this feature in new designs is not recommended, as the specific 
implementation of remote requests varies between different CAN controllers!

4. Synchronized: A special mode allowing for a synchronized polling as 
required by many motion control applications.

These trigger modes are explained in detail in Chapter 2, Section 2.5.

The PDOs allow for the implementation of very efficient and flexible communication 
models. Being able to put multiple variables into a single message and sending them 
directly from one node to another (or a group of others) is a network service that is 
rarely available in more traditional industrial automation networks.

1.4.6 Network Management (NMT)

CANopen allows for a Network Management Master to watch over all nodes to see if 
they are operating within their parameters. Upon failure of a node or the reception of 
certain alarm/emergency messages it can initiate the appropriate recovery or shut-
down procedures.

There are different options as to how this supervising of nodes is implemented. The 
latest version of CANopen recommends the usage of heartbeat messages. This allows 
nodes to supervise each other, even without a Network Management Master (if neces-
sary).

The idea is that each node emits a regular heartbeat message as long as it is alive and 
operating within its parameters. If all nodes produce such a heartbeat, every node can 
monitor all the heartbeats of its communication partners. This is especially helpful in 
COS (change-of-state) systems, where data messages can occur very sporadically and 
might not be transmitted for a long time. Using the heartbeat protocol, all nodes at 
least know that their communication partners are operational, even if they do not 
receive PDOs with new data from them.
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 2  The CANopen Standard

“The most important thing in a programming language is the name. 
A language will not succeed without a good name. 

I have recently invented a very good name 
and now I am looking for a suitable language.”

Donald Knuth

This chapter focuses on the technical side of CANopen as specified by CiA DS301 
V4.02 (CAN in Automation Draft Standard, www.can-cia.org) [CiADS301] and 
EN50325-4 (Cenelec European Committee for Electrotechnical Standardization) and 
also introduced by [Farsi99]. Besides DS301, there are many additional CANopen 
related standards published by the CiA. These include several frameworks, device 
profiles and application profiles. An overview of these standards follows in the next 
chapter.

CANopen is “open” in three ways: First, CANopen is “open” because the technology 
is laid open and by itself does not require payment of any license fees.

Second, CANopen enables a network designer to combine both CANopen compliant 
and proprietary CAN nodes into one network. It just needs to be ensured that the 
CANopen nodes and the proprietary CAN nodes do not interfere with the CAN mes-
sage identifiers used by each other.
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Third, CANopen can easily be extended or customized towards a specific application. 
CANopen consists of a small set of mandatory functionality and a huge set of optional 
functionality. Only the mandatory functionality must be implemented in each node to 
be CANopen compliant. The system designer may pick from the pool of optional 
functionality exactly those functions needed for a particular application. In addition, 
CANopen is expandable and tolerates future functionality, even allowing manufac-
turers to implement functionality that is not yet available in the CANopen drafts or 
standards.

2.1 Using Identifiers and Objects 

One of the challenges for newcomers to any network technology is to catch up on the 
terminology used and understand the different terms and abbreviations. In CANopen 
the most often used words are “identifiers” and “objects.” However, there are many 
kinds of identifiers and objects in CANopen, so it is extremely important to recognize 
the differences.

There are 3 different kinds of “identifiers” within CANopen: the Node ID, the Object 
Dictionary Indexes, and the COB ID or CAN ID.

When explaining network protocol standards, tutors and authors face the 
“structuring challenge.” Do we explain the protocol stack bottom-up (starting 
at lowest level working upwards) or top-down (starting at highest level work-
ing downwards)? The benefit of a top-down approach is that one starts directly 
at the level to which the application interfaces. So it is up to each individual 
student or reader to follow along to her/his desired level of detail. In general, 
we stay with the top-down approach and only deviate from it if we think it 
helps to better understand the concept under discussion.

Objective

Newcomers to CANopen easily confuse some of the terms used. Often this is 
due to the confusing and sometimes conflicting usage of the words “identifier” 
and “object.” 

This section is intended to make you aware of this, and to clarify usage.
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• The Node ID is used to identify a specific CANopen node. The allowed 
range for Node IDs is from 1 to 127.

• The Object Dictionary’s Index and Subindex (16-bit and 8-bit “identifier”) 
are used to identify a specific variable (which can be process data or config-
uration data) within a node. The Object Dictionary is described in detail in 
the next section.

• The COB ID is the “Connection Object ID” and primarily identifies a spe-
cific message on the network. This ID directly corresponds to the CAN mes-
sage ID. In a CANopen system, a COB ID is unique and used for one 
specific communication channel (from one node to one or more other 
nodes). In addition, the COB ID may include control bits, such as an enable/
disable bit.

CANopen also uses multiple definitions involving the term “object.” There are objects 
such as Object Dictionaries (OD), Process Data Objects (PDO), Service Data Objects 
(SDO) and Connection Objects (COB), among others.

• The Object Dictionary’s primary function is to store variables and constants, 
both process data and configuration data, in some sort of look-up table. The 
Object Dictionary is described in detail in the next section.

• Process Data Objects are messages (or frames) that contain process data.

• Service Data Objects are messages (or frames) that contain service/configu-
ration data.

• COB IDs are used whenever a message (or frame) needs to be assigned to 
implement a service. For example, each SDO requires the assignment of two 
COB IDs: one for the client sending requests to the server and one for the 
server sending responses back to the client.
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2.2 The CANopen Object Dictionary

2.2.1 What is the Object Dictionary?

The Object Dictionary (called “OD” for short) is like a table that holds all network-
accessible data, and each CANopen node must implement its own Object Dictionary.

The Object Dictionary contains a description of the CANopen configuration and func-
tionality of the node it is stored in, and may be read and written to by other CANopen 
nodes. In addition, the Object Dictionary is used for storing application specific infor-
mation that is used by the node in which it is stored. This information can also be 
used by other nodes on the network.

By writing data to the entries in the Object Dictionary of a node (and sometimes by 
reading from them), the node can be instructed to perform an operation of some kind, 
for example sampling current temperature or G-forces and making the sampled data 
present in the Object Dictionary to be read by others.

By reading the entries in the Object Dictionary of a node, other nodes may find out 
some information about what the node does and how it operates. Whether complete 
descriptive information or only minimal information about the node is present in the 
Object Dictionary can vary from application to application depending on the require-
ments of the network design. However, some information in the Object Dictionary is 
mandatory and must be present. Which information is mandatory often depends on 
which CANopen features are implemented by the node.

Objective

This section introduces one of the core aspects of CANopen, the Object Diction-
ary.

The Object Dictionary was briefly discussed in Chapter 1, however this section 
will provide in depth information on how the Object Dictionary is organized, 
how to read the Object Dictionary entries in the CANopen specifications, the 
various types of entries, what the Object Dictionary contains and how to make 
accessing the Object Dictionary easy.
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2.2.2 Object Dictionary Organization and Contents

The Object Dictionary is organized as a collection of entries, rather like a table. Each 
entry has a number called an Index, which is used to access the entry. The Index is 16 
bits in size giving a maximum of 65,536 entries. Each entry in the Object Dictionary 
may have up to 256 Subentries, referenced using an 8-bit value called the Subindex. 
Each entry has at least one Subentry.

Not all entries in the Object Dictionary are implemented or used, creating gaps in the 
table. For example, the entries with Indexes 0000h - 09FFh are often not implemented, 
but the entry with Index 1000h is always implemented.

It is common practice to use hexadecimal (base 16) when referring to Object Diction-
ary Indexes and Subindexes. The CANopen specifications use hexadecimal notation 
for these values.

Object Dictionary Example

Suppose a CANopen network implements a system that precisely controls 
motors or some other type of precision actuator (perhaps for a robot arm) and 
that the performance of the motors varies with temperature.

In implementing the CANopen network a node may be responsible for control-
ling the motors or actuators. The Object Dictionary of that node can contain the 
current position of each of the motors, allowing it to be read by any other node 
on the network. In addition, other nodes on the network are able to write new 
positions to the Object Dictionary of the node, thereby causing the node to 
make the motors move as required.

A second node on the network contains a temperature sensor and knowledge 
of how temperature affects the motors. During power-up of the network, a net-
work master stores initial calibration data in the node by writing to the node’s 
Object Dictionary. This calibration data is then made available to other nodes 
on the network by reading the Object Dictionary. As the temperature changes, 
the node modifies the calibration data stored in it, and therefore the data avail-
able to other nodes reading the Object Dictionary.
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For entries that store only one value, there is only one Subentry at Subindex 00h. 
Entries that store more than one value must have a Subentry for each value, and store 
the number of the highest Subentry at Subindex 00h.

When referring to an Object Dictionary entry with only one Subindex the Subindex is 
omitted from the description. For example, consider the phrase “reading Index 
1000h.” The lack of a Subindex implies that the entry has only one Subindex, num-
bered 00h.

The Object Dictionary contains several different types of data. The data may be stored 
in standardized and custom data types (integers, strings, etc.) and the descriptions of 
the data types used are also stored in the Object Dictionary. In addition, the Object 
Dictionary stores the configuration information for the CANopen communications 
used by the node, any manufacturer specific information, and various data for device 
profiles.

The 65,536 possible Indexes are divided up into sections structuring the Object Dic-
tionary.

Object Dictionary Examples

Index 2000h stores a single 8-bit value:

Index 2000h, Subindex 00h = 8-bit value

Index 2001h stores two 8-bit values:

Index 2001h, Subindex 00h = 2 
Index 2001h, Subindex 01h = first 8-bit value 
Index 2001h, Subindex 02h = second 8-bit value

Index Range Description
0000h Reserved

0001h – 0FFFh Data Types

1000h – 1FFFh Communication Entries

2000h – 5FFFh Manufacturer Specific

Table 2.1  Object Dictionary Organization
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2.2.3 Data Types

The Object Dictionary may store both standard/pre-defined and manufacturer 
defined data types. In addition, the CANopen specification defines two basic classes 
of data types, Standard and Complex. To organize the range of Indexes used for defin-
ing the data types, the data types section of the Object Dictionary is further divided 
into the sections shown in Table 2.2.

The Multiple Device Modules data types stores both standard and complex data types 
when more than one device profile is used.

6000h – 9FFFh Device Profile Parameters

A000h – FFFFh Reserved

The Object Dictionary entries in the data type section (0001h to 0FFFh) do not 
store any variables; they are only used for the definition of data types. If physi-
cally implemented in a node, reading these entries returns the data size of that 
data type in bytes, or an error if the data type is not used in the node. This 
mechanism allows a configuration tool to read the data types section to deter-
mine which data types are actually used in the node.

Index Range Description
0001h – 001Fh Standard Data Types

0020h – 0023h Pre-defined Complex Data Types

0024h – 003Fh Reserved

0040h – 005Fh Manufacturer Complex Data Types

0060h – 007Fh Device Profile Standard Data Types

0080h – 009Fh Device Profile Complex Data Types

00A0h – 025Fh Multiple Device Modules Data Types

0260h – 0FFFh Reserved

Table 2.2 Data Type Storage in the Object Dictionary

Index Range Description

Table 2.1  (Continued) Object Dictionary Organization
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When implementing a CANopen node it is possible to define custom complex data 
types in the Manufacturer Complex Data Types section of the Object Dictionary.

2.2.3.1 Standard Data Types

Table 2.3 lists the Standard Data Types, their descriptions and the Object Dictionary 
locations where they are defined.

Standard Data Type Description
Stored in 
OD Index

BOOLEAN Single bit value 0 or 1 indicating false or 
true 0001h

INTEGER8 8-bit signed integer 0002h

INTEGER16 16-bit signed integer 0003h

INTEGER24 24-bit signed integer 0010h

INTEGER32 32-bit signed integer 0004h

INTEGER40 40-bit signed integer 0012h

INTEGER48 48-bit signed integer 0013h

INTEGER56 56-bit signed integer 0014h

INTEGER64 64-bit signed integer 0015h

UNSIGNED8 8-bit unsigned integer 0005h

UNSIGNED16 16-bit unsigned integer 0006h

UNSIGNED24 24-bit unsigned integer 0016h

UNSIGNED32 32-bit unsigned integer 0007h

UNSIGNED40 40-bit unsigned integer 0018h

UNSIGNED48 48-bit unsigned integer 0019h

UNSIGNED56 56-bit unsigned integer 001Ah

UNSIGNED64 64-bit unsigned integer 001Bh

REAL32 32-bit single precision floating point 
number 0008h

REAL64 64-bit double precision floating point 
number 0011h

Table 2.3  Standard Data Types
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Each Subindex in the Object Dictionary uses one of the Standard Data Types listed in 
this section.

Often a shorthand notation is used to refer generically to some of the data types:

The DOMAIN type is a block of application specific data that can be any length 
desired. This provides an open-ended and flexible data type that is often used for var-
ious purposes, from chunks of configuration data to node firmware. Detailed descrip-
tions of the other data types may be found in the CANopen specification [CiADS301].

Data types consisting of multiple bytes are transferred using little-endian format, 
which specifies that the least significant byte of the value is stored or transferred first, 
and the most significant byte is stored or transferred last.

VISIBLE_STRING A text string containing printable ASCII 
characters 0009h

OCTET_STRING An array of 8-bit unsigned integers 000Ah

UNICODE_STRING An array of 16-bit unsigned integers 000Bh

TIME_OF_DAY
48-bit value representing days since 
January 1, 1984 and milliseconds since 
midnight

000Ch

TIME_DIFFERENCE 48-bit value representing a number of 
days and milliseconds since midnight 000Dh

DOMAIN Block of data 000Fh

INTEGERx a signed integer stored using x bits

REALx a floating point value stored using x bits

UNSIGNEDx an unsigned integer stored using x bits

VISIBLE_STRINGx a string containing x characters

OCTET_STRINGx a string containing x bytes

Table 2.4 Data Type Shorthand Notation

Standard Data Type Description
Stored in 
OD Index

Table 2.3  (Continued) Standard Data Types
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A CANopen node can also allow the reading of the Object Dictionary entries that 
define the standard data types. When read, they return the bit size of the type. For 
example, the type UNSIGNED16 is defined at Object Dictionary entry 0006h. When 
entry 0006h is read it can return the value 16.

2.2.3.2 Complex Data Types

Complex Data Types are types that contain one or more of the standard data types 
grouped together, allowing sets of data to be constructed. This is analogous to struc-
tures in the C programming language.

Complex Data Types are really a shorthand or simplification for describing Object 
Dictionary entries that use different types for each of their Subentries, and are useful 
when a specific collection of data types are to be used frequently.

Standard Data Type Example

Suppose we wish to store a current temperature value in the Object Dictionary. 
We could do this by using a REAL32 at Object Dictionary entry 2000h. Recall 
that each Object Dictionary entry must have at least one Subentry that uses 
Subindex 00h. Therefore at Index 2000h, Subindex 00h the data type will be 
REAL32.

Complex Data Type Example

Let’s suppose we want to store the details of an error message. We would need 
to know the error number and the text for the error message. To do this we 
could define a complex data type called ERROR_MESSAGE defined as:

UNSIGNED16 - Error Number 
VISIBLE_STRING - Error Text

Once the type is defined we could use it in the Object Dictionary. For example, 
we could say that Object Dictionary entries 2000h – 200Fh have the type 
ERROR_MESSAGE in order to create a place to store 16 error messages. Taking 
a closer look at Object Dictionary Entry 2000h, it would look like the following:

Index 2000h: 
Subindex 00h - stores the value 2 indicating highest Subindex of 2 
Subindex 01h - has the type UNSIGNED16 
Subindex 02h - has the type VISIBLE_STRING
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There are four pre-defined complex data types defined in the CANopen specification. 
The types are shown in Table 2.5.

Taking a closer look at the PDO_COMMUNICATION_PARAMETER complex data 
type in the CANopen specification reveals it is defined as follows:

The type is made up of a collection of 8-bit, 16-bit and 32-bit values. Note that Subin-
dex 00h always has the type UNSIGNED8 when there is more than one Subindex.

Data Type Description
Stored in 
OD Index

PDO_COMMUNICATION_
PARAMETER

Record to hold the communication 
parameters used for a PDO 0020h

PDO_MAPPING Record to hold the mapping parame-
ters used for a PDO 0021h

SDO_PARAMETER Record to hold the communiucation 
parameters used for a SDO 0022h

IDENTITY Record to hold identity information, 
such as vendor ID and product ID 0023h

Table 2.5  Predefined Complex Data Types

Index Subindex Name Type

0020h

00h Number of highest Subindex UNSIGNED8

01h COB ID UNSIGNED32

02h Transmission Type UNSIGNED8

03h Inhibit Time UNSIGNED16

04h Reserved UNSIGNED8

05h Event Timer UNSIGNED16

Table 2.6 Complex Data Type Example
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A CANopen node can allow the reading of the Object Dictionary entries that define 
the complex data types. When read, they return the Object Dictionary Index for the 
data type encoded as an UNSIGNED8.

2.2.4 Communication Entries

The communication entries in the Object Dictionary describe most of the aspects of 
the CANopen communications used by the node. Many of the entries are or can be 
made writeable, allowing configuration of a node by other nodes on the network. The 
entries occupy the Index range 1000h – 1FFFh in the Object Dictionary.

Table 2.7 gives an overview of all the communication entries. Following the table, the 
mandatory entries are described to give some examples for available entries. Manda-
tory entries are those that must be implemented in a node in order to be CANopen 
compliant. An additional listing can be found in the reference section and in the CAN-
open standard [CiADS301].

Reading Complex Data Type Example

Suppose the Error Message type given earlier was defined in the manufacturer 
specific complex data type area at Index 0040h. Reading each of the three Sub-
indexes would return the following values:

Index 0040h: 
Subindex 00h - returns 2 for highest number of Subindex 
Subindex 01h - returns 06h for UNSIGNED16 
Subindex 02h - returns 09h for VISIBLE_STRING

Index Name
1000h Device Type

1001h Error Register

1002h Manufacturer Status Register

1003h Pre-defined Error Field

1005h COB ID SYNC

1006h Communication Cycle Period

1007h Synchronous Window Length

Table 2.7  Communication Entry Overview
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2.2.5 Mandatory Entries

2.2.5.1 Device Type (1000h) 

The Device Type is a 32-bit value that describes in a limited way some of the capabili-
ties of the node. For example, it can describe if the node is a digital input/output mod-
ule, and if so, whether inputs and/or outputs are implemented.

1008h Manufacturer Device Name

1009h Manufacturer Hardware Version

100Ah Manufacturer Software Version

100Ch Guard Time

100Dh Life Time Factor

1010h Store Parameters

1011h Restore Default Parameters

1012h COB ID Time

1013h High Resolution Time Stamp

1014h COB ID EMCY

1015h Inhibit Time EMCY

1016h Consumer Heartbeat Time

1017h Producer Heartbeat Time

1018h Identity Object

1200h – 127Fh Server SDO Parameters

1280h – 12FFh Client SDO Parameters

1400h – 15FFh RxPDO Communication Parameters

1600h – 17FFh RxPDO Mapping Parameters

1800h – 19FFh TxPDO Communication Parameters

1A00h – 1BFFh TxPDO Mapping Parameters

Index Name

Table 2.7  (Continued) Communication Entry Overview
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2.2.5.2 Error Register (1001h) 

The Error Register is an 8-bit value that can indicate if various generic errors have 
occurred in the node, for example, current error, temperature error, communication 
error, etc. The only bit that must be implemented is the generic error bit. There is a 
manufacturer specific bit available to indicate an application specific error. This byte 
is also transmitted in Emergency Objects.

2.2.5.3 Guard Time (100Ch) 

Nodes must support either heartbeats or node guarding. Both mechanisms are dis-
cussed later in this chapter. To summarize, these mechanisms allow nodes to deter-
mine if a specific node is alive and well and able to communicate to the network, 
along with the node’s current state. The Guard Time is a 16-bit value that specifies 
how frequently the node guarding request is transmitted by the master or must be 
received by the node. This entry must be implemented if heartbeats are not used.

2.2.5.4 Life Time Factor (100Dh) 

The Life Time Factor is an 8-bit value that works with the Guard Time. It specifies 
how many multiples of the Guard Time must pass without transmission from the 
master or reception of a response from a slave before an error condition is generated. 
This entry must be implemented if heartbeats are not used.

2.2.5.5 Producer Heartbeat Time (1017h) 

If the node is not using node guarding then it must implement heartbeats. This entry 
specifies how often the node should transmit heartbeat messages. It can be set to zero, 
however, to disable heartbeat transmission. This entry must be implemented if node 
guarding is not used.

2.2.5.6 Identity Object (1018h) 

The Identity Object provides identifying information about the node. It must contain 
at a minimum the CAN In Automation assigned Vendor ID, which is unique to a par-
ticular vendor. It may also contain a product code to identify the product the node is 
in, a revision number and a serial number.
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2.2.6 Manufacturer Specific Entries

This section of the Object Dictionary, using Indexes from 2000h to 5FFFh is left com-
pletely open by the CANopen specification for application specific use. Whenever the 
application requires storage of data or configuration of operations that are outside of 
any CANopen standard (including frameworks, device profiles and other standards), 
they are located in this section of the Object Dictionary.

2.2.7 Device Profile Parameters

The CANopen specification [CiADS301] provides a variety of communication ser-
vices. Once a specific node is implemented, the designer of the node (or the network 
where it will be used) has to specify which of these communication services are used 
and how. A Device Profile specifies the process data variables a node knows and the 
default configuration and communication settings. There are proprietary profiles, as 
well as CiA standardized Device Profiles and Application Profiles. For more informa-
tion on these, see Chapter 3.

CiA Device Profiles standardize specific types of nodes, for example a generic Input/
Output module. Specifications are published for various device types and, in order to 

Manufacturer Specific Entry Example

Suppose our node featured a real time clock. We might want to make the cur-
rent time available in an Object Dictionary entry so other nodes on the network 
can read it. We could achieve this by defining the following Object Dictionary 
entry in the Manufacturer Specific section:

Index 2000h: 
Subindex 00h - 3 (UNSIGNED8) 
Subindex 01h - Hours (UNSIGNED16) 
Subindex 02h - Minutes (UNSIGNED8) 
Subindex 03h - Seconds (UNSIGNED8)
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implement them, they use Object Dictionary entries located in the Device Profile 
Parameters section.

2.2.8 Reading the CANopen Specification

The following headings are used in the specifications to describe Object Dictionary 
entries. Their names are sometimes used inconsistently so both versions (where appli-
cable) are listed below.

 The bullets after the table describe each of the headings further.

Device Profile Example

In the Device Profile CiA DS 401 Generic I/O [CiADS401] the Object Dictionary 
entry 6000h allows up to 2032 digital inputs to be read, 8-bits at a time.

Index 6000h: 
Subindex 00h - 1 – 254(UNSIGNED8) 
Subindex 01h - Read inputs 1 – 8(UNSIGNED8) 
Subindex 02h - Read inputs 9 – 16(UNSIGNED8) 
-- 
--

The CANopen specification [CiADS301] can be hard to follow but, like most 
things, once you have stared at it for long enough it starts to make sense.  This 
is especially true if you figure out which of the many standards, frameworks 
and device profiles available are relevant for your application.

This section aims to give you a jump-start on understanding the Object Dic-
tionary descriptions contained in the specification.

Heading Description
Index the Object Dictionary Index

Object or Object Code the Object type

Name the name of the entry

Type or Data Type the data type

Table 2.8  Specification Headings
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• Index has been covered previously.

• The Object or Object Code is used to indicate the type of the object as a 
whole.

• The Object Codes are not stored in the Object Dictionary, and therefore can-
not be read from the Object Dictionary. By reading the number of Subin-
dexes and knowing the type of each Subindex (which is necessary for using 
the data read), along with the Index of the entry (is it a data type declaration 
or not?), the Object Code information is largely redundant and can be 
ignored. Note, however, that it is present in the Electronic Data Sheets and 
Device Configuration Files which are explained in the following section.

• Name and Data type have been covered previously.

Acc. or Access 
Attributes read and write attributes

M/O or Category indicates if the entry is mandatory or 
optional

Object Code Description
NULL No data fields

DOMAIN A large variable amount of data

DEFTYPE Defines a standard data type

DEFSTRUCT Defines a complex data type

VAR A single value

ARRAY An entry with more than one Subindex, with each Subindex 
(except 00h) having the same data type

RECORD An entry with more than one Subindex, with each Subindex 
(except 00h) having differing data types

Table 2.9 Object Codes

Heading Description

Table 2.8  (Continued) Specification Headings
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• The access attributes are straightforward and indicate whether an entry can 
be read, written or both.

• The M/O or Category sections indicate if a specific entry or Subindex needs 
to be implemented or not for CANopen conformance.

2.3 The Electronic Data Sheets (EDS) and Device 
Configuration Files (DCF)  

In order to provide CANopen software tools such as monitors, analyzers and configu-
ration tools with a way to recognize which Object Dictionary entries are available in 
CANopen nodes, an electronically readable file format is required. CANopen speci-

Attribute Description
RW Read and write access

WO Write only

RO Read only

CONST Read only, Data is constant

Table 2.10  Access Attributes

Category Description
Mandatory Must be implemented

Optional May be implemented if desired

Conditional Must be implemented if certain other entries or features are 
implemented

Table 2.11 Categories

Objective

EDS and DCF file formats are used in CANopen to describe the Object Diction-
ary implemented in a specific node. In this section we point out how these files 
are generated, maintained and used.
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fies such a format called Electronic Data Sheet (EDS). An EDS is the electronically 
readable version of an Object Dictionary specification.

2.3.1 EDS Format and Editing

The format of the EDS is specified in [CiADSP306]. It is similar to that of Microsoft 
Windows “.ini” files and a regular ASCII-editor could be used to read and/or modify 
it. However, in order to be compliant with the standard, entries must not only have 
the appropriate parameters but several entries must also be cross-referenced. Thus 
trying to edit and maintain an EDS with an ASCII-editor, although possible, is not 
really practical. 

Excerpts from a typical EDS file:

[1018]

ParameterName=Identity object

ObjectType=0x9

SubNumber=3

[1018sub0]

ParameterName=Number of entries

ObjectType=0x7

DataType=0x0005

AccessType=ro

DefaultValue=3

PDOMapping=0

LowLimit=1

HighLimit=4

[1018sub1]

ParameterName=Vender ID

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=0x0400005A

PDOMapping=0

[1018sub2]

ParameterName=Product code

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=0x03

PDOMapping=0

[1018sub3]

ParameterName=Revision number
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ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=0x0000002F

PDOMapping=0

There are several commercial software tools available that support the generation and 
maintenance of EDS files. These tools take adding or removing dictionary entries to 
the drag & drop level; all standard Object Dictionary entries are pre-defined and can 
be added to a new EDS with a few mouse clicks. As an example, Figure 2.1 shows 
how such an editor displays the Identity Object entry (1018h).

Figure 2.1 Screen Shot of Vector's CANeds Editor
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2.3.2 EDS Usage

There are several tools available that can work with EDS files. High-end CAN moni-
tors and analyzers or CANopen configuration tools can extract symbolic information 
from these files and use them in their displays. A monitor or analyzer with this fea-
ture can listen to CANopen traffic on the network and associate the symbols of these 
files with the messages seen on the network. So if there is a process data variable 
defined in an EDS that is called “Boiler Temperature” and that value is transmitted 
over the CANopen network, these tools can directly make the symbolic link and dis-
play the text “Boiler Temperature” along with the current value transmitted.

Other tools that work with EDS files are high-end CANopen masters. Such a CANo-
pen master is typically used in a system to receive all inputs, run some control algo-
rithm and then transmit all outputs. A CANopen master that can read EDS files can 
use the symbolic names from the EDS file in the control algorithm. So in the case of 
the example above a variable called “Boiler Temperature” is available to be used by 
the control algorithm.

Another tool which utilizes the EDS file is the CANopen Conformance Test. The 
CANopen Conformance Test is available through National Instruments and is used 
by the CiA to test if a CANopen device is CANopen compliant. This test not only 
checks for CANopen conformance in general, it also tests if a node implements all the 
Object Dictionary entries specified in its EDS file.

For those of you who would still like to use an ASCII editor we recommend 
starting with one of the examples published at www.CANopen.us. When edit-
ing EDS files “manually” with an ASCII editor you might want to double-
check after any changes to see if it still conforms to the standard. The web page 
listed above also has a link to a free EDS checker tool offered by Vector. This 
tool checks to see if an EDS conforms to the standard [CiADSP306] and dis-
plays appropriate error messages if not.
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2.3.3 DCF Format and Usage

The format of the Device Configuration File is almost identical to the EDS. However, 
the usage is very different and justifies giving it a separate name and not just referring 
to it as some sort of “EDS variant.”

The EDS defines the format of an Object Dictionary that may apply to multiple nodes. 
The idea of a DCF is to store the configuration parameters of a specific node.This can 
include minimum, maximum and default values for each entry. The DCF stores a spe-
cific setting, the current value that an Object Dictionary entry has or should have. The 
idea is that a CANopen configuration tool or master can use the EDS to find out 
which entries are accessible in a node, and they can use a DCF to store (or retrieve) the 
values that a node has in these Object Dictionary entries. Thus it becomes possible to 
save and restore all settings of a node: to save current settings a tool/master would 
read all Object Dictionary entries of a node and store the values read in a DCF. A 

Engineers working on applications that do not require 100% CANopen confor-
mance might be tempted to skip writing an EDS file for their node(s). As con-
sultants with practical experience in the field, we strongly recommend that you 
create EDS files even in those cases where CANopen compliance is not 
required. 

Any CANopen network design will eventually reach the state where two or 
more nodes will communicate with each other. On that first contact, there is a 
good chance that the communication will not happen precisely as the system 
designer(s) had in mind. So then the next question is: Which of all the nodes con-
nected is the one that is doing something wrong?

If the only basis for each node’s implementation is a written specification, the 
debugging process to follow will always be locked to “manual” mode; read the 
specification for all nodes suspected of ill behavior, interpret it (and there is 
always room for interpretation) and double-check what the nodes are actually 
doing.

However, if EDS files are used, the debugging process can eventually be auto-
mated. There is only minimal room for “interpretation variance” and there are 
several tools (as listed above) that directly work with EDS files to simplify the 
debugging process. Even the CANopen conformance test can be useful for this 
scenario: it can be used to confirm that the features that should be CANopen 
compliant are indeed CANopen compliant.
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restore of a node can be performed by reading the values from the DCF for the node 
and writing them to the Object Dictionary entries.

2.4 Accessing the CANopen Object Dictionary (OD) 
with Service Data Objects (SDO) 

2.4.1 Client and Server 

Each CANopen node not only implements its own Object Dictionary, it also imple-
ments a server that handles read and write requests to its Object Dictionary. So a mas-
ter or configuration tool acts as a client to that server and can send read or write 
requests to it. As an example, a configuration tool could send a request: "Node Num-
ber 5, I need to know what you have at Index 1000h, Subindex 00h." Node 5 would 
recognize the request and reply with a response: "Whoever requested it, here is the 
data that I have in my Object Dictionary at Index 1000h, Subindex 00h.”

2.4.2 Message Identifiers Used for SDOs

As discussed earlier, CANopen uses unique message identifiers – one message ID is 
only used for one purpose in an entire CANopen network (this is a requirement of the 
CAN arbitration feature that is explained in Section 5.2.8). There are some exceptions 
to this rule that are primarily used for specific configuration services during initializa-
tion, test or debugging.

As an example, a system could feature several digital I/O modules that are all 
implemented in accordance with an EDS for “generic I/O.” However, during 
operation some of these nodes might be configured to be exclusively inputs 
and others to be exclusively outputs. The specific configuration of each individ-
ual node is stored in its own Device Configuration File (DCF).

Objective

Now that we have a method for defining the data in a node (the Object Diction-
ary) that can be shared via the network, we need a method to access it. This sec-
tion explains the Service Data Objects (SDO) – the method used to implement 
generic access to the Object Dictionary of a node by using request and response 
messages.
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In order to implement a point-to-point communication channel two such message 
identifiers need to be reserved; one to send requests to a specific node and one for 
responses sent by that node. Figure 2.2 shows the message identifiers that are used by 
default. The message identifier that is used to send a request to a specific node is cal-
culated by adding the Node ID of that node (1-127) to a base address of 600h. Thus 
addresses 601h to 67Fh are used to provide 127 channels from one client to up to 127 
servers. The message identifier that is used to send a response from each node back to 
the client who sent the request is calculated by adding the Node ID of the node (1-127) 
to a base address of 580h. Thus addresses 581h to 5FFh are used to provide 127 chan-
nels from as many as 127 servers back to the client.

Figure 2.2 Default Message IDs for SDO Communication

It should be noted that the default scheme used for assigning the message identifiers 
only allows one client to be on the network. Because message IDs must be unique, no 
two devices have the right to send SDO requests to the same node at the same time. 
The entire SDO communication was designed around the idea that only one node in 
the system needs the power to access each and every Object Dictionary entry in each 
and every node. This is either a configuration tool or some sort of master responsible 
for configuration.

NMT Master
(client)

Sends SDO
requests to each

node by using
message ID:

600h + Node ID

Expects reply
in message ID:
580h + Node ID

Node 3 (server)
Tx SDO: 583h
Rx SDO: 603h

Node 2 (server)
Tx SDO: 582h
Rx SDO: 602h

Node 1 (server)
Tx SDO: 581h
Rx SDO: 601h
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2.4.3 SDO Message Contents

Every SDO request and response message contains 8 bytes of data of which the first 
byte is a so-called “specifier.” The bits in it primarily specify whether this message 
contains a read, write or abort (error indication). Other bits are used to indicate if this 
is an “expedited transfer” where all data exchanged is part of this message, or a “seg-
mented transfer” where the data does not fit into one message and multiple messages 
are used. The optional "block transfer" is optimized for the transfer of large data 
blocks and is described in Section 2.8.5.

Typically bytes 2 to 4 contain the “multiplexor” – the combination of 16-bit Index and 
8-bit Subindex identifying the Object Dictionary entry that is accessed with this SDO. 
The byte order for the multiplexor is as follows: low byte of 16-bit Index, high byte of 
16-bit Index and 8-bit Subindex.

The remaining bytes (5 to 8) are used to transmit data where applicable. If the data 
transferred is 4 bytes or less it is typically part of the message (expedited), otherwise it 
follows in additional messages (segmented).

Advanced Features

Where required, CANopen optionally allows the implementation of either a 
method to perform SDO channel sharing or a method that provides additional 
SDO channels. The latter allows a single node to implement multiple SDO 
servers. So besides using just one message identifier pair to reserve a request 
and a response channel for the SDO, such nodes would reserve additional mes-
sage identifier pairs for each additional SDO server implemented. A node with 
two servers could provide both a master and a configuration tool access to its 
Object Dictionary at the same time. There is no default scheme regarding 
which message identifiers should be used for such additional channels.

The other method for allowing multiple clients is to implement SDO channel 
sharing. Instead of having the servers implement multiple SDO channels the 
clients implement a method of sharing the existing channels. This is imple-
mented via a so called SDO Manager that is responsible for all SDO channels 
and by default is the only client that may use any of the channels. Other clients 
that would like to use a specific SDO channel (such as a configuration tool only 
connected to the network for maintenance) have to request the channel from 
the SDO Manager and may only use it after the SDO Manager assigns it to 
them. This method is described in detail in [CiADS302].
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In the case of expedited transfers the number of bytes used for data is indicated by 
additional bits in the specifier.

In the case of a segmented transfer the first SDO request and SDO response do not 
contain data, but an indication of how many bytes will need to be transferred in total. 
Each segment transmitted after that also contains the specifier byte and up to 7 data 
bytes. The specifier contains bits that specify if this is the last segment and if it is, how 
many of bytes in the current message are data bytes that belong to the transfer.

At any time during a transfer, any of the two communication partners may abort the 
communication by sending an SDO Abort message.

The detailed message contents of all SDO messages is explained in Section 2.8.

2.4.4 SDO Download vs. Upload 

Per [CiADS301] an “SDO Download” implements a write access to the Object Diction-
ary of a node and an “SDO Upload” implements a read access.

In the authors’ experience these terms are easily confused, and they are only listed 
here for completeness. In the following we will use the terms “SDO Read Access” and 
“SDO Write Access.” These are easily understandable, especially as they correspond 
to the access type field available for all Object Dictionary entries, where possible val-
ues include read-only, read-write and write-only.

2.4.5 SDO Usage Limitation

The SDO Read Access and SDO Write Access as explained in this section provide a 
mechanism for generic read and write access to the Object Dictionary of each node on 
the network. Because all configuration and process data of a node is part of its Object 
Dictionary, the SDO transfers can be used to access the process data and it would be 
possible to implement a communication system entirely based on SDO communica-
tion. However, that was never the intention of the SDO communication (recall that SD 
stands for “Service Data”) and thus this communication mode is not very efficient.

For real-world implementations a leaner, more efficient communication method is 
desirable in order to minimize the communication overhead and to make best usage 
of the available bandwidth. In CANopen, this lean and efficient communication 
method is provided by the Process Data Objects (PDOs). 
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2.5 Handling Process Data with Process Data 
Objects (PDO) 

CANopen is primarily intended to run on CAN; a message oriented communication 
system capable of transmitting up to 8 bytes in a single message – in other words, it is 
optimized for CAN. It should be noted that although optimized for CAN it can still run 
on other, completely different network technologies such as I2C or Ethernet.

The obvious demands resulting from the CAN functionality are that it must be possi-
ble for nodes to transmit their data whenever they want to (and not be required to 
wait for another node to poll them) and to place multiple process data variables into a 
single CAN message. 

All these demands are fulfilled by CANopen’s Process Data Objects, or PDOs. 

In CANopen we distinguish between Transmit Process Data Objects (TPDOs) and 
Receive Process Data Objects (RPDOs). When looking at single nodes this terminol-
ogy indicates if a PDO is produced or consumed by this node. So for each PDO in a 
system there is exactly one node producing it, and for that node this PDO is a TPDO. 
There is also at least one node (but perhaps multiple nodes) that receive and consume 
the PDO. For all nodes consuming it, the PDO is an RPDO. This is illustrated in 
Figure 2.3.

Objective

So far we have established communication channels that allow a master or con-
figuration tool to get access to all the Object Dictionary entries in a node. How-
ever, this is not an efficient communication model for sending process data.

The PDOs provide a far more sophisticated service for process data. The PDO 
communication services are explained in this section.



Embedded Networking with CAN and CANopen

66

Figure 2.3 PDO: TPDO and RPDO

There are two sets of configuration parameters for a PDO. The communication param-
eters (indicating which CAN message is used for the PDO and how is it triggered) 
and the mapping parameters (indicating which Object Dictionary entries are con-
tained in the PDO). 

For each TPDO and RPDO that are transmitted and received by a node, the Object 
Dictionary of that node contains one set of configuration parameters called the PDO 
communication parameters.

The communication parameters for a TPDO differ slightly from those for an RPDO, as 
more parameters are required for transmitting a message than for receiving a mes-
sage. Transmit trigger options, for example, determine when to send the message 
with the PDO.

Node A

Node B Node C

PDO

For the producer 
it is configured 

as TPDO

For the consumers it is 
configured as a RPDO

On the network, a 
PDO corresponds 

to a single message 
with process data

For the consumers it is 
configured as a RPDO
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2.5.1 TPDO Transmit Trigger Options

There are four major transmit trigger methods supported by CANopen:

• Event driven (COS, Change-Of-State)

• Time driven

• Individual polling

• Synchronized, group polling

Which of these is used by a specific PDO is selected by the PDO communication 
parameter “transmission type” which is explained further in the individual communi-
cation parameter sections below.

One of the advanced features of CANopen is that it supports all generally 
known transmission and communication methods used in communication net-
works. CANopen nodes can not only transmit their data individually (either 
event or time driven) they can also be polled individually or synchronized in 
groups. In addition, any of these methods can be combined.

Integration Tip: 
All these different communication methods contribute to a lengthy test pro-
cess, especially if combinations of these methods are allowed in a system. 
When integrating a CANopen network the communication method used 
should be chosen as early as possible and adopted by all nodes in the system. 
That allows developers to focus all test procedures on the chosen method, 
avoiding the additional test procedures required if multiple communication 
methods are mixed in one network.

Implementation Tip: 
If you develop your own CANopen node and it is for a specific system that 
only supports a chosen set of communication methods, you do not need to 
implement the unused communication methods. This will reduce your code 
size, and will also contribute to shorter test cycles. In terms of code and data 
memory sizes, a strictly time driven implementation typically has the fewest 
requirements.
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2.5.1.1 Event driven

The event driven or change-of-state transmission method simply transmits a TPDO 
message if the process data in it changes. What exactly is defined as an “event” is typ-
ically specified by the Device Profile. It could be any change to the data as well as spe-
cific change to the data (like reaching a certain limit or reaching a minimum 
difference).

If a TPDO contains a set of digital inputs and the event is “any” change then the 
TPDO gets transmitted as soon as the data in it changes. If there is no change in the 
data there will be no transmission until the data actually changes.

There is one worst-case scenario for event driven communication that needs to be 
handled properly: if one of the inputs changes constantly the TPDO would be trans-
mitted back-to-back (as soon as a TPDO is transmitted the data will have changed 
again). Such a behavior would occupy 100% of the available bandwidth as illustrated 
in the top portion of Figure 2.4.

Figure 2.4 Inhibit Timer

CANopen handles this worst-case scenario by introducing the “Inhibit Timer.” This is 
a configurable timeout in multiples of hundreds of microseconds. After starting the 
transmission of the TPDO the Inhibit Timer must expire before the TPDO may be 

time
PDO PDO PDO PDO

time

PDO PDO

Without an inhibit timer a node with a 
COS TPDO could transmit it back to back

With an inhibit timer a node may not send the 
same TPDO again until the inhibit time expired

Inhibit timer
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transmitted again. So the maximum frequency with which a TPDO could occur is 
directly specified by the Inhibit Time.

The Inhibit Timer always affects the entire TPDO and all process variables contained 
in it. So if the TPDO is transmitted because one process variable in it changed, the 
Inhibit Time applies even if another process variable in the TPDO changes.

Whenever a TPDO is inhibited from transmission it means that potentially some pro-
cess data is lost. If the process data actually changes several times while the timer is 
running not all of these changes will be transmitted.

In some instances what exactly constitutes an event change may vary. The Device Pro-
file for Generic I/O [CiADS401] introduces an extended event detection mechanism 
for analog values. Some analog values such as a temperature value might only be 
needed if they either changed “considerably” or reached a certain minima or maxima. 
CiA specification [CiADS401] supports both configurable delta detection (the system 
only recognizes an event change if the analog value changes by a user-defined delta) 
and minima and maxima detection.

In general, a TPDO can contain multiple process variables and potentially also a mix-
ture of digital and analog data. This makes the event change detection a complex pro-
cess since it can be different for every single process variable contained in a TPDO. 
Some CANopen nodes try to simplify this by either not allowing the mixing of analog 
and digital data in one TPDO, or by only implementing simple event change detection 
(values changed) without the extended detection mechanisms of [CiADS401].

2.5.1.2 Time driven

In the time driven communication method a TPDO is transmitted on a fixed time 
basis, the Event Timer. The Event Timer for a TPDO is specified in milliseconds. If, for 
example, the Event Timer is specified to be 50 milliseconds, the TPDO will be trans-
mitted every 50 milliseconds. 

One problem with any event driven communication is the indeterminism: it is 
very hard to predict the worst-case scenarios of how often messages will get 
transmitted. By using the Inhibit Timer the worst-case becomes predictable 
again as the worst-case is directly determined by the Inhibit Time. If it is set to 
10 milliseconds the worst-case is that the message will be transmitted every 10 
milliseconds.
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The Event Timer is a local timer on each CANopen node. Per default these timers are 
not synchronized. If multiple nodes use an Event Timer of 20 milliseconds the actual 
occurrence of these TPDOs on the network may all be within the same millisecond as 
well as randomly distributed in a 20 millisecond time window.

On one hand the time driven communication method simplifies performance, band-
width and latency calculations. On the other, it produces more overhead than the 
event driven communication since data will get transmitted even if it did not change 
at all.

2.5.1.3 Individual polling

Although it is possible to use individual polling in CANopen, it is recommend that 
this communication method not be used. 

Individual polling is implemented via a CAN feature called “Remote Request.” 
Unfortunately Remote Request has certain disadvantages, including the fact that not 
all chip manufacturers implement it the same way in their CAN controllers. In other 
words, it could be that nodes implemented with different CAN controllers are not 
compatible when using Remote Request.

If an application requires the implementation of a polling mechanism (a message is 
used to trigger a node to actually transmit its TPDO), the synchronized communica-
tion method described below should be used.

2.5.1.4 Synchronized or grouped polling

The main idea behind the synchronized communication mode is to provide motion 
oriented systems such as robots with “parallelized” inputs and outputs. To avoid jitter 
effects and ensure smooth movements it is necessary to get all inputs at the same 
moment in time and to apply all outputs at the same time. 

In CANopen a synchronized communication method is implemented using a SYNC 
signal. The SYNC signal is a specific message without any data that is used only for 
synchronization purposes. Figure 2.5 below illustrates how sensor data (for example 
from encoders measuring the positioning of a moving robot arm) is synchronized. 
Because the SYNC signal is typically produced on a fixed time basis, this triggering 
mode can also be regarded as using a global timer for triggering instead of the event 
time local to each node.
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Figure 2.5 SYNC – Synchronized Communication for Sensors

The sensors constantly read their input data and keep a current copy in the message 
transmit buffer. Upon reception of the SYNC message, all sensors stop updating the 
buffer and start transmitting the data. Although all messages are transmitted serially 
via CANopen, once the data arrives in the main processing unit all these inputs will 
be from the same moment in time, i.e. the time the SYNC signal was transmitted.

The synchronization of outputs works similarly, as illustrated by Figure 2.6.

Figure 2.6 SYNC – Synchronized Communication for Actuators

Once the processing unit has new values for the outputs or actuators it transmits the 
data serially via the network. The actuators receiving the messages keep the received 
data in their receive buffers without applying the data to their outputs. They wait for the 
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next SYNC signal and only upon reception of the SYNC signal will they actually 
apply their outputs in parallel.

2.5.1.5 How good is the synchronization?

The quality of the synchronization is measured by the maximum time variance that 
can still occur between the different nodes.

As an example consider a network running at 250kbps. The bit time on such a net-
work is 4 microseconds. Without going into the message details of CAN (see Section 
5.2.7 for more details) assume the length of a single message varies between 200 
microseconds and 450 microseconds.

If no synchronization method is used and all inputs use their local Event Timer for 
TPDO triggering, the time variance for the inputs depends pretty much on the Event 
Timer. If all nodes transmit their data every 50 milliseconds then the worst-case time 
variance is 50 milliseconds. This means that two outputs that should be applied “in 
parallel” might actually be applied with a difference of 50 milliseconds.

If synchronization is used, the only delay in each individual node is the time it takes 
the node to process the receipt of the SYNC signal until either sending the TPDO (for 
sensors) or applying the data from the RPDO (for actuators). This time is highly 
dependent on the code quality and microcontroller used in implementing the individ-
ual CANopen nodes. However, with proper implementation these times should be 
less than 100 microseconds. This means that two outputs that should be applied “in 
parallel” might actually be applied with a difference of 100 microseconds.

Another delay not yet accounted for is that of the SYNC signal itself. In some applica-
tions it might not matter if the SYNC signal itself is delayed, because all I/Os are 
affected the same way and individual delays are relative to the SYNC. However, some 
applications might require some sort of absolute timing in which case the potential 
delay of the SYNC itself might be a problem. The typical worst-case delay of the 
SYNC message itself is the time the longest message can occupy the bus. In the exam-
ple above this was assumed to be some 450 microseconds. So suddenly the total vari-
ance adds up to more than half a millisecond.

Depending on how much more effort is put into the system correcting these variances 
(they can be measured and corrected), much higher accuracies can be achieved. The 
paper “High Precision Drive Synchronisation with CANopen” [Rostan02] describes a 
method that achieves a one microsecond accuracy using internal re-calculations.
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Applications that require a very high-resolution synchronization signal typically pro-
vide an extra line on the network cable in order to be able to send synchronization 
pulses directly (and not via the network). With such a mechanism it is possible to 
bring the variance down to a microsecond or less. However, its implementation is 
“manufacturer specific” meaning there is currently no CANopen standard covering 
this type of high-resolution synchronization mechanism.

2.5.2 SYNC Terminology

There are a few terms associated with the synchronization communication method 
that need to be known in order to configure a system to use the synchronization fea-
ture.

2.5.2.1 SYNC COB ID

This is a configurable parameter (OD entry [1005h,00h]) in all nodes that supports 
synchronized communication. The connection object ID specifies which CAN mes-
sage identifier is used as the SYNC signal, with the default at 80h. This parameter is 
individually configurable in each node; thus it is possible to have multiple SYNC sig-
nals in a system. This allows developers to group nodes together, with some working 
with one SYNC signal and others working with another SYNC signal.

2.5.2.2 SYNC Producer

There is only one node that produces the SYNC signal. Although it could be the NMT 
Master producing the SYNC, it does not need to be. Any node can be a SYNC pro-
ducer, but only one node can be the producer of a specific SYNC in a system.

2.5.2.3 Communication Cycle Period

This is the time period in microseconds with which the SYNC signal occurs. Nodes 
supporting synchronized communication have this value available in the OD entry 
[1006h,00h].

2.5.2.4 Synchronous Window Length

This is the time window in microseconds in which all communication triggered by a 
SYNC signal must occur. Nodes supporting synchronized communication may have 
this optional value available in the OD entry [1007h,00h].
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2.5.3 Combining Transmit Trigger Options

In general, CANopen allows any of the communication methods specified to be com-
bined. As an example, a TPDO could be transmitted synchronized with change-of-
state. This results in a TPDO that is only transmitted in response to a SYNC signal if 
any of the data in it changed since the last transmission.

The possible combinations are not part of the CANopen specification itself and they 
are usually implemented using the transmission type “manufacturer specific.” How-
ever, in some cases a device profile might request a specific combination in which case 
the transmission type “device profile specific” is used.

A frequently used combination is that of event driven and time driven. In an event 
driven system, there might be long periods of “silence” if data does not change. This 
might have side effects in cases such as:

• A new node is added to the system and it does not know the “last data 
transmitted.”

• In the rare case of an erroneous message periodic re-transmissions ensure 
that erroneous data is not valid for an extensive period of time.

Through the combination of event driven and time driven it is possible to specify a 
time window within which a TPDO is re-transmitted. If the data changes frequently, 
the TPDO will be re-transmitted within the time period specified by the Inhibit Timer. 
If it does not change at all, it will still be transmitted at least every Event Time. If the 
Inhibit Time is 50 (in multiples of 100 microseconds, so 5 milliseconds) and the Event 
Time is 250 (in multiples of milliseconds, so 250 milliseconds) the TPDO will be at 
least transmitted every 250 milliseconds but never more frequently than every 5 milli-
seconds.

2.5.4 PDO Linking and Pre-defined Connection Set

From the network perspective a PDO is nothing more than a message with a message 
identifier and up to 8 data bytes. In CANopen almost everything is configurable and 
this includes which message identifier (COB ID) is used for each PDO.

In order to establish a common ground a default usage of the message identifiers is 
typically implemented. It is called the “pre-defined connection set” and determines 
which COB IDs should be used by which node by default.
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Table 2.12 below shows the identifier ranges assigned for the PDOs.

As an example, consider a node (call it node 5) which has the following pre-defined 
COB IDs for its PDOs:

CAN ID
From To Communication Objects Comment

0h -- NMT Service From NMT Master

80h -- SYNC Message From SYNC Producer

81h FFh Emergency Message From nodes 1 to 127

100h -- Time Stamp Message From timestamp producer

181h 1FFh 1st Transmit PDO From nodes 1 to 127

201h 27Fh 1st Receive PDO For nodes 1 to 127

281h 2FFh 2nd Transmit PDO From nodes 1 to 127

301h 37Fh 2nd Receive PDO For nodes 1 to 127

381h 3FFh 3rd Transmit PDO From nodes 1 to 127

401h 47Fh 3rd Receive PDO For nodes 1 to 127

481h 4FFh 4th Transmit PDO From nodes 1 to 127

501h 57Fh 4th Receive PDO For nodes 1 to 127

581h 5FFh Transmit SDO From nodes 1 to 127

601h 67Fh Receive SDO For nodes 1 to 127

701h 77Fh NMT Error Control From nodes 1 to 127

Table 2.12 The Pre-defined Connection Set

PDO COB ID
TPDO1 185h

RPDO1 205h

TPDO2 285h

RPDO2 305h

TPDO3 385h
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This default connection has no “over-lapping” of any TPDOs and RPDOs specified. 
This means that by default no RPDO specified uses the same identifier as any TPDO 
specified, and thus no PDO is directly “linked.” (A link is where the COB ID of a 
TPDO from one node is identical to the COB ID of an RPDO of any other node). Only 
the NMT Master would be able to listen to all the TPDOs and only a master would be 
able to generate the RPDOs received by the nodes.

However, because the COB IDs used for the TPDOs and RPDOs are configurable, 
direct links can be established, for example by changing the COB ID for an RPDO to 
the same used by another TPDO (also see Section 1.4.5).

2.5.5 RPDO Communication Parameters

In the Object Dictionary the Index area from 1400h to 15FFh is reserved for the RPDO 
communication parameters. The Index range of 512 (200h) ensures that a maximum of 
512 RPDOs can be configured in the Object Dictionary of a single CANopen node. The 
parameters for the first RPDO (RPDO1) are located at Index 1400h, the parameters for 
the second at 1401h (RPDO2), for the third at 1402h (RPDO3) and so on.

RPDO3 405h

TPDO4 485h

RPDO4 505h

What if an application requires that more than four TPDOs and four RPDOs be 
used for specific nodes?

There are several solutions to this problem. In general the pre-defined connec-
tion set is just that – a pre-defined default that can be reconfigured at any time. 
Another approach can be to simply modify the pre-defined connection set for a 
specific application. An example for such an approach is described in Section 
6.9.4.

PDO COB ID
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The parameters for each RPDO are accessible via the Subindex. The table below 
shows the parameters that are available for every RPDO.

The "Number of Entries" for a RPDO can be 5 if the Event Timer is supported. The 
most popular configuration of RPDOs does not use the Event Timer and therefore the 
Number of Entries is 2.

The "COB ID" is the connection object identifier which is the CAN message identifier 
used for this RPDO. This parameter determines which CAN message is received and 
interpreted as the RPDO belonging to this set of parameters.

The "Transmission Type" determines if this RPDO is to be processed immediately 
upon reception or if a node needs to wait for a synchronization signal (SYNC), before 
it may process the data received.

The "Inhibit Time" is not used for RPDOs and if implemented should have the value 
zero.

The "Reserved" parameter is a legacy value from previous CANopen versions and 
must not be implemented in nodes conforming to the current standard [CiADS302].

Subindex Name Data type
0 Number of entries UNSIGNED8

1 COB ID UNSIGNED32

2 Transmission type UNSIGNED8

3 Inhibit Time UNSIGNED16

4 Reserved UNSIGNED8

5 Event Timer UNSIGNED16

Table 2.13  RPDO Communication Parameters
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The "Event Timer" may be used to generate an emergency if this RPDO is not received 
before the event timer expires. The event timer is reset upon reception of the RPDO. 
Implementation of the Event Timer for RPDOs is not very common.

2.5.6 TPDO Communication Parameters

In the Object Dictionary the Index area from 1800h to 19FFh is reserved for the TPDO 
communication parameters. As with the RPDOs, the Index range ensures that a maxi-
mum of 512 TPDOs can be configured for a single CANopen node. The parameters for 
the first TPDO (TPDO1) are located at Index 1800h, the parameters for the second at 
1801h (TPDO2), for the third at 1802h (TPDO3) and so on.

The parameters for each TPDO are accessible via the Subindex. The table below 
shows the parameters that are available for every TPDO.

Although it is possible to have a single node receive up to 512 different RPDOs 
such a setup is the exception. Many CANopen slave nodes only support a lim-
ited number of RPDOs. Just imagine a simple temperature sensor - if it only 
has a temperature to report it will not need more than 1 TPDO and no RPDOs 
at all.

A typical number for more generic I/O nodes is up to four RPDOs, as the so-
called pre-defined connection set of CANopen (also see section 1.4.5) pre-
defines the COB IDs used for the first four RPDOs in a CANopen slave node.

Subindex Name Data type
0 Number of entries UNSIGNED8

1 COB ID UNSIGNED32

2 Transmission type UNSIGNED8

3 Inhibit Time UNSIGNED16

4 Reserved UNSIGNED8

5 Event Time UNSIGNED16

Table 2.14 TPDO Communication Parameters
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The “Number of entries” for a TPDO is 5, as five parameters are available for the con-
figuration of each TPDO. Only entries zero through two are mandatory, three and five 
are optional.

As with the RPDO, the COB ID specifies the CAN message identifier used when 
transmitting this TPDO. The transmission type selects the TPDO trigger behavior. 
When is the message transmitted? Upon a change-of-state (COS) of any of the process 
data variables contained in the TPDO? Or is the transmission strictly time driven, 
occurring every so many milliseconds? An additional listing of all the available values 
can be found in the Object Dictionary Reference section for the entries [14xxh,02h].

For change-of-state transmission the Inhibit Time specifies a timeout period that must 
pass before this TPDO can be re-transmitted again. This minimum timeout between 
two transmissions of a TPDO are specified in multiples of 100 microseconds.

The “Reserved” parameter is a legacy value from previous CANopen versions and 
must not be implemented in nodes conforming to the current standard [CiADS302].

For event time driven TPDOs the Event Time specifies the time period used for this 
TPDO. The Event Time is specified in multiples of milliseconds. If it is set to 100 the 
TPDO is transmitted every 100 milliseconds.

Using a combination of both Inhibit Time and Event Time creates a time window for 
the transmission of the TPDO. It will be transmitted at least every “Event Time” but 
not more often then defined by the “Inhibit Time.”

2.5.7 PDO Mapping Parameters

As discussed earlier, a PDO can contain data from several Object Dictionary entries in 
order to be able to exchange multiple process data variables with one message.

The PDO mapping parameters determine which Object Dictionary entries are con-
tained in a PDO. Single Object Dictionary entries are “mapped” or “placed into” a 
PDO.

The maximum number of data bits available in a PDO is 64. Because the mapping pro-
cess works on the bit-level a total of 64 Object Dictionary entries can be mapped into a 
PDO, if each entry is just one bit long. No matter what the length of an individual 
Object Dictionary entry is, if all the lengths of the mapped entries are added up, the 
total cannot exceed 64 bits.
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A single mapping parameter identifies one specific Object Dictionary entry with its 
parameters Index, Subindex and length (in bits). These three parameters get coded 
into one 32-bit value as shown in the table below.

The PDO mapping consists of an array of such single mapping parameters. The 64 
bits available in a PDO are filled entry-by-entry with the data from the Object Diction-
ary entries specified in the single mapping parameters. The table below shows the for-
mat of a PDO mapping record.

The “Number of entries” value indicates how many single mapping entries are avail-
able in this record (0-64). What follows is an array of single mapping entries that is as 
long as specified by the “Number of entries” value.

2.5.7.1 PDO Mapping OD Index Ranges

In the Object Dictionary the Index area from 1600h to 17FFh is reserved for the RPDO 
mapping parameters, and the area from 1A00h to 1BFFh is reserved for the TPDO 
mapping parameters. The Index range sizes are the same as used by the PDO commu-
nication parameters and directly correlate to each other. For example, the RPDO1 
communication parameters are at Index 1400h and the mapping parameters at Index 

Index Subindex Length (bits)
Bits 31 .. 16 Bits 15 .. 8 Bits 7 .. 0

Table 2.15 Content of a 32-bit Mapping Parameter

Subindex Name Data type
0 Number of entries UNSIGNED8

1 1st OD entry mapped UNSIGNED32

2 2nd OD entry mapped UNSIGNED32

3 3rd OD entry mapped UNSIGNED32

4 4th OD entry mapped UNSIGNED32

-- -- --

64 64th OD entry mapped UNSIGNED32

Table 2.16  PDO Mapping Parameters
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1600h, the TPDO3 communication parameters are at Index 1802h and the mapping 
parameters at Index 1A02h.

Figure 2.7 PDO Mapping Example

Figure 2.7 illustrates an example that maps a total of four manufacturer specific vari-
ables into TPDO3. The device in this example has four variables named status, temp, 
speed and rpm located in the Object Dictionary at [2010h,00h-04h]. The mapping 
entries for TPDO3 are at location [1A02h] and the four entries at that location map 
those 4 variables one-by-one into the TPDO3.

2.5.7.2 Dynamic Mapping vs. Static Mapping

The PDO mapping of CANopen is a powerful feature, as it allows the content of sin-
gle messages to be customized. It makes CANopen very flexible, especially if 
“Dynamic Mapping” is implemented – meaning the PDO mapping of a node can be 
re-configured by a configuration tool or master.

However, in many deeply embedded applications this sort of flexibility might not be 
needed – or it might even be seen as a safety risk factor since in theory “something” 
could change what is contained in a message. That’s why several embedded applica-
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temp
Byte 2

TPDO3
speed rpm

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Unusedstatus
Byte 1

Index SubIdx Type Description



Embedded Networking with CAN and CANopen

82

tions use “Static Mapping.” In this case the PDO mapping is hard-coded into the soft-
ware of a CANopen node and it cannot be re-configured.

Some systems further distinguish between Dynamic Mapping and Variable Mapping. 
Systems with Variable Mapping can only be configured while they are in the so-called 
“pre-operational” state which means the network is not currently transmitting PDOs 
with process data. In contrast, Dynamic Mapping allows a re-configuration while a 
node is “operational,” meaning it is actively transmitting and receiving PDOs with 
process data.

Another benefit of Static Mapping is that fewer resources (code and data memory, 
CPU process time) are required for its implementation. Readers with embedded pro-
gramming experience will recognize that the resources required to implement 
Dynamic Mapping on an 8-bit microcontroller are substantial.

2.5.7.3 PDO Mapping Practice

The PDO mapping is designed to work on the single bit level. Object Dictionary (OD) 
entries with single bits could be mapped individually. Theoretically one could create a 
PDO containing 2 single bit OD entries followed by an 8-bit OD entry, followed by a 
single bit OD entry followed by a 16-bit OD entry.

Obviously this kind of “bit-juggling” is not very microcontroller oriented where the 
straight-forward approach would be to use data widths of 8, 16 or 32 bits. In order to 
keep things simple and manageable many CANopen implementations limit them-
selves to an 8-bit-oriented PDO mapping, meaning that the length of any Object Dic-
tionary entry that can be mapped to a PDO must be a multiple of 8 bits.

2.5.7.4 TPDO vs. RPDO Mapping and Dummy Entries

It should be pointed out that the mapping for a PDO is typically different on the 
TPDO and the RPDO side. In general, the transmitting node maps Object Dictionary 
entries into the TPDO which are “inputs” – process data coming into the node that 
needs to be communicated to others. The receiver looks at this message as an RPDO 
and will have its own usage for the data in it. Some of the data might directly be used 
as “output” to an actuator or it might get stored locally for further processing, result-
ing in a completely different set of PDO mappings on the receiver side.

The receiver might not even have a use for all the data contained in an RPDO. It could 
very well be that there are multiple process data variables available in an RPDO, but 
the local receiver only needs one of those process data variables. In that case the 
“unwanted” process data variables must still be mapped. CANopen supports multi-
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ple “dummy” entries that can be used for mapping such “unwanted” data in RPDOs. 
The Object Dictionary entries used for such dummy mapping are those from Index 1 
to 7 which are also used to specify some basic data types (see Section 2.2.3).

2.6 Network Management (NMT)

2.6.1 NMT Slave State Diagram

Every CANopen slave node must implement an NMT state machine that allows the 
slave to be in different operating states. The diagram in Figure 2.8 illustrates the major 
states a slave node can be in. It should be noted that some of these state transitions can 
be made automatically (by the slave themselves) where others can only be made upon 
receiving the corresponding NMT Master message. The NMT Master message can be 
directed at either individual nodes or at all nodes simultaneously. It contains the new 
state that the addressed node(s) should switch to.

Objective

This section explains the Network Management services available in CANo-
pen. These include the NMT Master message to start/stop nodes, node guard-
ing, heartbeat and emergencies.

We will also show which NMT services must be implemented on every CANo-
pen slave. This includes the NMT slave state machine.
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Figure 2.8 The Network Management States of a Slave

Upon power-up a CANopen slave node comes out of “Power-On Reset” and goes into 
Initialization. It initializes the entire application and the CAN/CANopen interfaces 
and communication. At the end of the initialization the node tries to transmit its boot-
up message. As soon as it is transmitted successfully, the node switches to the Pre-
operational state.

Using the NMT Master message, an NMT Master can switch individual nodes or all 
nodes back and forth between the three major states: Pre-operational, Operational and 
Stopped. In addition, the NMT Master has the option to request two different reset 
actions. Upon receiving the “Reset Communication” command, a CANopen slave 
node will reset the CAN/CANopen communication interfaces. A “Reset Node” com-
mand, however, results in a reset of the entire node with all peripherals and all soft-
ware. Both reset states result in a new boot-up message being transmitted by the node 
and the node reverting back to the Pre-operational state, where it will wait for further 
NMT message commands.

Operational

Pre-Operational

Initialization Reset
Communication

Reset
Node

Power-On
Reset

Stopped

Transmit     Boot-up
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2.6.1.1 CANopen Messages Produced and Consumed

The main difference between the various NMT states is that not all types of CANopen 
communication are actively used in each state. Table 2.17 shows which communica-
tion a node may perform when it is in a particular NMT state.

In the Initializing state a node may only produce the boot-up message and it does not 
consume any messages.

In the Pre-operational state a node actively participates in all communication related 
to SDOs, Emergencies (if used by the node), Timestamps (if used by the node) and 
Heartbeat/Node Guarding.

There is only one difference between the Pre-operational state and the Operational 
state. The operational state adds PDO communication, allowing the node to exchange 

Additional States

The NMT state diagram introduced by the DS301 CANopen standard only 
covers the basic requirements that apply to all CANopen nodes. This standard 
state machine is sufficient to achieve CANopen conformance. However, some 
of the frameworks or device profiles published today require additional states 
to be implemented to allow services like a Node ID claiming procedure (which 
is executed before a node can “boot-up”).

 Initializing
Pre-
operational Operational Stopped

Boot-Up

SDO

Emergency

SYNC/TIME

Heartbeat/
Nodeguard

PDO

Table 2.17 NMT State Dependent Communication
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and work with process data. Only in Operational mode does a CANopen node truly 
run, meaning it executes all the input and output functions that it was designed to do.

In the Stopped state a node literally stops all communication, except for the minimal 
NMT services.

2.6.2 Heartbeat or Node Guarding

In order to be CANopen compliant, every CANopen slave node must implement 
either the Heartbeat or the Node Guarding services. Today, the recommendation is to 
use heartbeat instead of node guarding as heartbeat consumes less bandwidth, is 
more flexible and is safer.

With node guarding it is the NMT Master’s responsibility to poll (“guard”) all slaves 
for their current NMT state information. If a node does not respond within a specified 
time, the NMT Master may assume that this node was lost and can take appropriate 
action (for example re-initialize or shut-down the system). In addition, individual 
nodes can also monitor the guarding messages from the NMT Master and take the 
absence of the poll message (exceeding a configurable time limit) as an indication that 
the connection to the master was lost.

The DS301 CANopen specification does not provide any means for a node to 
autostart, which means there is no way for a node to switch into Operational 
without waiting for a message from the NMT Master.

However, many deeply embedded CANopen networks do not have an NMT 
Master and two work-a-rounds were common in the past. One was to imple-
ment a “minimal” NMT Master – one of the slave nodes would simply transmit 
the NMT “go to operational” message for everybody. Alternatively, some 
applications ignored the standard and just allowed the nodes to autostart – 
after switching to Pre-operational they would go straight into Operational by 
themselves.

Because this was a common problem to NMT Master-less systems, a solution 
was standardized with DSP302: CiA Draft Standard Proposal – the Framework 
for CANopen Managers and Programmable CANopen Devices. Now Object 
Dictionary entry 1F80 NMT Start-up offers a bit to allow autostart of nodes.

In other words, autostart is now in accordance with the standard but only if the 
Object Dictionary entry 1F80 is implemented to report that the node is auto-
starting.
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The monitoring options become more flexible when using heartbeat. With the heart-
beat method, each slave node by itself transmits a heartbeat, consisting of a 1-byte 
CAN message containing the current NMT state a node is in. The heartbeat producer 
time is configurable (entry [1017h,00h], UNSIGNED16, in milliseconds). Figure 2.9 
illustrates two heartbeat messages repeatedly produced by two individual nodes at 
individual heartbeat times.

Figure 2.9 Heartbeat

One obvious benefit of the heartbeat method versus the node guarding is that the 
bandwidth used for the monitoring is cut by half (no polling required). In addition, 
each node can decide by itself which heartbeats it would like to monitor. A common 
practice is to monitor all the heartbeats from the direct communication partners. This 
would allow a node transmitting a PDO to listen to the heartbeat of all the consumers 
of that PDO to ensure that they are still “alive” and operational.

Another aspect is that of safety (see the following chapter for more details on “safety-
related” systems). One first step towards a “safer” system is that no single node 
should be essential to the system. Using node guarding the NMT Master becomes 
essential; if it fails, all nodes will be affected. However, with the heartbeat method, no 
single node is essential for the heartbeat mechanism. Failure of a single node does not 
necessarily result in the failure of all nodes.

2.6.3 Emergencies (EMCY)

Each CANopen slave node is assigned one emergency message, sometimes simply 
referred to as EMCY. The CAN identifier used for these is 80h plus the CANopen 

time

Slave1         Slave1       Slave1         Slave1       Slave1 

Slave2       Slave2     Slave2      Slave2     Slave2

Heartbeat-Time Slave 2

Heartbeat-Time Slave 1
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Node ID. So node number 5 uses the CAN identifier 85h for transmitting emergency 
messages.

An emergency message always contains 8 data bytes out of which the first 2 bytes are 
used for a CANopen error code (see the Reference Section for the list of all CANopen 
error codes defined). The third byte contains a copy of the error register (same value 
as at OD entry [1001h,00h]). The remaining 5 bytes are available for manufacturer spe-
cific error codes.

In general, emergencies are only reported once. The reported emergency is consid-
ered to “still be there” until the node uses another emergency message to clear/reset 
that specific emergency.

If, for example, a node reports a temperature emergency (measured temperature 
exceeds the limits) it will only report it once. Only when the temperature has returned 
within limits will the node transmit another emergency message, this time clearing/
resetting the temperature emergency.

If the high-byte of the CANopen error code is 00h the message is not an emergency 
but a reset of an emergency.

For a listing of the defined error codes, see the Appendices in the Reference Section.

2.7 CANopen Example Configurations and Exercises

2.7.1 Heartbeat Producer and Consumer Configuration Example

Summary of Object Dictionary entries controlling the heartbeat mechanism:

[1016h,00h] Consumer Heartbeat Time, number of elements in array 
[1016h,xxh] Single 32-bit entries for each heartbeat monitored 
Bit 0-15: Heartbeat time 

Objective

In this section we would like to give the reader a few configuration examples 
and exercises. Although the focus is on the TPDO and RPDO configuration, we 
will also cover configuration of a heartbeat producer and consumer.
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Bit 16-23: Node ID monitored 
Bit 24-31: Reserved

[1017h,00h] Producer Heartbeat Time, in milliseconds

2.7.1.1 Exercise
What entries need to be made to the Object Dictionary of node number 5 if that node 
needs to:

1. produce a heartbeat of 250ms and

2. monitor the heartbeat of node 7 (produced every 500ms) and

3. monitor the heartbeat of node 9 (produced every 1,000ms)?

2.7.1.2 Solution

1. Write the value 250d into OD entry [1017h,00h] of node 5.

2. To monitor the heartbeat of a node, the consumer’s time (which is a time-out, 
meaning a heartbeat is considered ‘lost’ if it does not appear within that time) 
must be set to higher value than the producer’s time. A reasonable value is 
some 1.5 to 2 times the producer’s time. 

Write the value 750d (500 times 1.5) into OD entry [1016h,01h] of node 5 (first 
heartbeat consumer entry). 

Write the value 1 into OD entry [1016h,00h] to indicate that one heartbeat is mon-
itored.

3. Write the value 1,500d (1,000 times 1.5) into OD entry [1016h,02h] of node 5 
(second heartbeat consumer entry). Write the value 2 into OD entry 
[1016h,00h] to indicate that two heartbeats are monitored.

2.7.2 PDO Linking Example

Summary of Object Dictionary entries controlling the PDO linking (indicating which 
CAN identifier is used for each RPDO and TPDO):

[1400h,01h] COB ID of RPDO1 (default is 200h + Node ID) 
[1401h,01h] COB ID of RPDO2 (default is 300h + Node ID) 
[1402h,01h] COB ID of RPDO3 (default is 400h + Node ID) 
[1403h,01h] COB ID of RPDO4 (default is 500h + Node ID)
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[1800h,01h] COB ID of TPDO1 (default is 180h + Node ID) 
[1801h,01h] COB ID of TPDO2 (default is 280h + Node ID) 
[1802h,01h] COB ID of TPDO3 (default is 380h + Node ID) 
[1803h,01h] COB ID of TPDO4 (default is 480h + Node ID)

2.7.2.1 Exercise

1. Node 5 needs to be configured to directly listen for the default TPDO1 trans-
mitted by node number 6. RPDO1 of node 5 should be used to receive TPDO1 
of node 6 (for illustration see Figure 2.10).

Figure 2.10 PDO Linking Exercise

2.7.2.2 Solution

1. The default CAN identifier used by node 6 for TPDO1 is 186h (180h base 
address plus 6 for Node ID 6). 

Write the value 186h (390d) into OD entry [1400h,01h] of node 5.

2.7.3 PDO Linking and Mapping  Example

Summary of Object Dictionary entries controlling the PDO mapping (indicating 
which OD entries are used for each PDO):

TPDO_1RPDO_1

Node 5 Node 6

Node 6 uses its default TPDO_1: 
the CAN identifier used is the one 

determined by the pre-defined 
connection set

The default RPDO_1 of Node 5 is 
not set to receive TPDO_1

EXERCISE: Change it to receive 
TPDO_1 of node 6
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[1600h,00h] RPDO1 Mapping, number of entries mapped 
[1600h,xxh] Index, Subindex and length (in bits) of a single entry mapped 
[1601h,00h] RPDO2 Mapping, number of entries mapped 
[1601h,xxh] Index, Subindex and length (in bits) of a single entry mapped

[1A00h,00h] TPDO1 Mapping, number of entries mapped 
[1A00h,xxh] Index, Subindex and length (in bits) of a single entry mapped 
[1A01h,00h] TPDO2 Mapping, number of entries mapped 
[1A01h,xxh] Index, Subindex and length (in bits) of a single entry mapped

2.7.3.1 Exercise
Node 2Ah transmits two 16-bit analog values in its TPDO2 (two UNSIGNED16 values 
mapped into TPDO2 of node 2Ah) using the default CAN identifier.

Node 2Dh transmits two 16-bit analog values in its TPDO3 (two UNSIGNED16 values 
mapped into TPDO3 of node 2Dh) using the default CAN identifier.

1. Node 1Fh should be configured to receive in its RPDO2 the TPDO2 from node 
2Ah and in RPDO3 the TPDO3 of node 2Dh.

2. Node 1Fh has an array of 4 UNSIGNED16 values at [6411h,01h-04h]. Config-
ure the mapping of RPDO2 and RPDO3 so that the values from RPDO2 go 
into [6411h,01h-02h] and the values from RPDO3 into [6411h,03h-04h].

Figure 2.11 PDO Linking and Mapping Exercise
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2.7.3.2 Solution

Note: In order to change PDO parameters, a PDO typically needs to be disabled. This 
can be achieved by setting bit 31 in the COB ID.

1. The default CAN identifier used for TPDO2 of node 2Ah is 2AAh. The default 
CAN identifier used for TPDO3 of node 2Dh is 3ADh.

To configure node 1Fh to receive these: Write the value 2AAh into OD entry 
[1401h,01h] of node 1Fh. Write the value 3ADh into OD entry [1402h,01h] of node 
1Fh.

2. To configure the mapping:

Write the value '0' into OD entry [1601h,00h] of node 1Fh (informs node that map-
ping will be changed).

Write the value 64110110h into OD entry [1601h,01h] of node 1Fh (first mapping 
entry for RPDO2, Index 6411h, Subindex 01h, length 10h).

Write the value 64110210h into OD entry [1601h,02h] of node 1Fh (second map-
ping, Index 6411h, Subindex 02h, length 10h).

Write the value ‘2’ into OD entry [1601h,00h] of node 1Fh (total number of entries 
mapped is 2).

Write the value '0' into OD entry [1602h,00h] of node 1Fh (informs node that map-
ping will be changed).

Write the value 64110310h into OD entry [1602h,01h] of node 1Fh (first mapping 
entry for RPDO3, Index 6411h, Subindex 03h, length 10h).

Write the value 64110410h into OD entry [1602h,02h] of node 1Fh (second map-
ping, Index 6411h, Subindex 04h, length 10h).

Write the value ‘2’ into OD entry [1602h,00h] of node 1Fh (total number of entries 
mapped is 2).
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2.8 Contents of CANopen Messages

2.8.1 Endianess

All numerical data types consisting of multiple bytes are transferred in CANopen 
(whether in SDO or PDO) in the “Little Endian” format. Bytes are ordered by signifi-
cance and the lower significant bytes come first.

For example, a 2-byte word would be transmitted low-byte first, followed by the high-
byte. A 4-byte word is transmitted with the least significant byte first, followed by the 
bytes of next higher significance and the most significant byte transmitted last.

Objective

This section is only for those readers who need to have an understanding of 
CANopen on the individual message basis. Do you need to be able to interpret 
individual CAN messages for their CANopen content? Well, this section is for 
you!

If you do not need to know this level of detail, feel free to skip this section and 
proceed to the next chapter.

When implementing CANopen software on a specific microcontroller, devel-
opers must pay attention to the byte ordering.

With 8-bit architectures the byte ordering is determined by the compiler alone 
and not the architecture. Some compilers for 8-bit architectures are able to sup-
port both Little and Big Endian formats, so in these cases a simple compiler 
switch might select the correct implementation.

If a 16-bit architecture based on Big Endian is used, however, an appropriate 
byte swapping must be implemented. Most commercial CANopen stacks can 
automatically activate byte swapping via a #define statement that enables an 
appropriate byte swapping macro.
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2.8.2 SDO Communication

When using SDO communication, one needs to differentiate between two major com-
munication modes, typically referred to as “expedited transfer” and “segmented 
transfer.”  A third, optional mode is the "block transfer", an optimized method to 
transfer large data amounts. Section 2.8.5 explains the messages used for block trans-
fer.

An expedited transfer consists of one SDO request and one SDO response.

A segmented transfer consists of an SDO initiation request and response and then one 
pair of request and response for each 7-byte segment.

With expedited transfer up to four bytes of data can be directly embedded in an SDO 
request or response, suitable for accesses to Object Dictionary entries that are up to 4-
bytes long. The segmented transfer allows for transmission of data bigger than 4-
bytes and is required to access Object Dictionary entries that are longer than 4-bytes.

2.8.2.1 The Initiate SDO Download – Request

The client (typically the node trying to configure a CANopen slave) sends this request 
to a SDO server (implemented within a CANopen slave) by using the CAN identifier 
600h plus the Node ID of the CANopen slave addressed. The download request is a 
request to write to a specific Object Dictionary entry.

When implementing CANopen on microcontrollers with “limited resources” it 
is desirable to only implement expedited transfer and to omit the segmented 
transfer. Some of the latest CiA drafts actually take that into account; for exam-
ple, the device profile (CiADSP418) for batteries (such as those used in electri-
cal vehicles). The only Object Dictionary entries that would exceed the 4-byte 
limit would be extended identification strings with up to 20 characters.

In order to utilize “expedited transfer only” for battery implementations these 
entries have to be divided into several Subentries of 4 bytes each. So at Subin-
dex 1, one would find the first 4 characters of the string, at Subindex 2 the next 
4 characters and so on.
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Figure 2.12 Initiate SDO Download – Request

Message contents:

• ccs: Client Command Specifier = 1
• e: set to 1 for expedited transfer (data is in bytes 4-7)
• s: set to 1 if data size is indicated
• n: if e=s=1, number of data bytes in Byte 4..7 that do not contain data
• x: reserved
• The Multiplexor contains the Index and Subindex of the OD entry this write 

access should go to

2.8.2.2 The Initiate SDO Download – Response

This is the response sent back from the SDO server to the client indicating that the 
previously received download (write) request was processed successfully. The default 
CAN identifier used for this message is 580h plus the Node ID of the node imple-
menting the SDO server.

Figure 2.13 Initiate SDO Download - Response

Message contents:

Client Server

Bit 7..5
ccs = 1

Bit 4
x = 0

Bit 3..2
n

Bit 1
e

Bit 0
s

3-Byte Multiplexor
Index, Subindex

Expedited data
or reserved
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Client Server

Bit 7..5
scs = 3

Bit 4..0
x = 0

3-Byte Multiplexor
Index, Subindex Reserved

Byte 0 Byte 1..3 Byte 4..7
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• scs: Server Command Specifier = 3
• x: reserved
• The Multiplexor contains the Index and Subindex of the OD entry that 

received the write access

2.8.2.3 The Download SDO Segment – Request

If in the initiation sequence a segmented transfer was negotiated, this message is used 
to transmit the next segment (of up to 7 bytes) from client to SDO server.

Figure 2.14 Download SDO Segment - Request

Message contents:

• ccs: Client Command Specifier = 0
• c: set to 1 if this is the last segment/fragment
• n: number of data bytes in Byte 1..7 that do not contain data
• t: toggle bit – set to 0 in first segment, toggled with each subsequent request

2.8.2.4 The Download SDO Segment – Response

This is the response sent back from the SDO server to the client indicating that the 
previously received download (write) segment request was processed successfully.

Client Server

Bit 7..5
ccs = 0

Bit 4
t

Bit 3..1
n

Bit 0
c Data segment

Byte 0 Byte 1..7



97

Chapter 2: The CANopen Standard          

Figure 2.15 Download SDO Segment - Response

Message contents:

• scs: Server Command Specifier = 1
• x: reserved
• t: toggle bit – set to 0 in first segment response, toggled with each subse-

quent response

2.8.2.5 The Initiate SDO Upload – Request

The client (typically the node trying to configure a CANopen slave) sends this request 
to an SDO server (implemented within a CANopen slave) by using the CAN identifier 
600h plus the Node ID of the CANopen slave addressed. The upload request is a 
request to read from a specific Object Dictionary entry.

Figure 2.16 Initiate SDO Upload – Request

Message contents:

• ccs: Client Command Specifier = 2
• x: reserved

Client Server

Bit 7..5
scs = 1

Bit 3..0
x Reserved

Byte 0 Byte 1..7
Bit 4

t 

Client Server

Bit 7..5
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Bit 4..0
x = 0

3-Byte Multiplexor
Index, Subindex Reserved

Byte 0 Byte 1..3 Byte 4..7
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• The Multiplexor contains the Index and Subindex of the OD entry that the 
client wants to read

2.8.2.6 The Initiate SDO Upload – Response

This is the response sent back from the SDO server to the client indicating that the 
previously received upload (read) request can be processed. If expedited transfer is 
used, the data read from the Object Dictionary is part of the response, otherwise addi-
tional segmented transfers are used. The default CAN identifier used for this message 
is 580h plus the Node ID of the node implementing the SDO server.

Figure 2.17 Initiate SDO Upload – Response

Message contents:

• scs: Server Command Specifier = 2
• e: set to 1 for expedited transfer (data is in bytes 4-7)
• s: set to 1 if data size is indicated
• n: if e=s=1, number of data bytes in Byte 4..7 that do not contain data
• x: reserved
• The Multiplexor contains the Index and Subindex of the OD entry this write 

access should go to

2.8.2.7 The Upload SDO Segment – Request

If in the initiation sequence a segmented transfer was negotiated, this message is used 
to request that the next segment (of up to 7 bytes) be transmitted from SDO server to 
client.

Client Server

Bit 7..5
scs = 2

Bit 4
x = 0

Bit 3..2
n

Bit 1
e

Bit 0
s

3-Byte Multiplexor
Index, Subindex

Expedited data
or reserved

Byte 0 Byte 1..3 Byte 4..7



99

Chapter 2: The CANopen Standard          

Figure 2.18 Upload SDO Segment – Request

Message contents:

• ccs: Client Command Specifier = 3
• x: reserved
• t: toggle bit – set to 0 in first segment request, toggled with each subsequent 

request

2.8.2.8 The Upload SDO Segment – Response

This is the response sent back from the SDO server to the client indicating that the 
previously received upload (read) segment request was processed successfully. The 
data segment is part of this message.

Figure 2.19 Upload SDO Segment - Response

Message contents:

• scs: Server Command Specifier = 0
• c: set to 1 if this is the last segment/fragment
• n: number of data bytes in Byte 1..7 that do not contain data
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• t: toggle bit – set to 0 in first segment, toggled with each subsequent 
response

2.8.2.9 The Abort SDO Transfer

At any time the client or server may abort an SDO transmission. The error code gives 
an indication as to why the transfer was aborted. Typical errors are that a desired 
Object Dictionary entry is not implemented by the SDO server or that the entry is of a 
different length (for example writing a 2-byte value to a 4-byte entry). For a listing of 
the possible error codes see the Reference Section.

Figure 2.20 Abort SDO Transfer

Message contents:

• cs: Command Specifier = 4
• x: reserved
• The Multiplexor contains the Index and Subindex of the OD entry that was 

affected
• The Error Code gives an indication of what went wrong

2.8.3 Network Management (NMT) Communication

2.8.3.1 The NMT Master Message

The NMT Master message has the CAN message identifier 0 (zero) and contains 2 
bytes. All CANopen slave nodes must be able to receive this message and act upon its 
content.

Client Server

Bit 7..5
cs = 4

Bit 4..0
x = 0

3-Byte Multiplexor
Index, Subindex Error Code

Byte 0 Byte 1..3 Byte 4..7
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Figure 2.21 NMT Master Message

Message contents:

• cmd: One of the following commands to switch into the specified NMT 
state: 1 = Operational, 2 = Stopped, 128 = Pre-operational, 129 = Reset Node, 
130 = Reset Communication

• Node ID: zero if addressed at all nodes, or the specific Node ID of the single 
node addressed with this message

2.8.3.2 The Heartbeat

The heartbeat message sent by an individual node has the CAN message identifier 
700h plus the Node ID. It only contains one byte showing the current NMT state of 
that node.

Figure 2.22 Heartbeat

Message contents:

• NMT State: Reports the current NMT state the node is in: 0 = Boot-up, 4 = 
Stopped, 5 = Operational, 127 = Pre-operational
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• r: reserved

2.8.4 Emergency Communication

The emergency message sent by an individual node has a CAN identifier of 80h plus 
the Node ID.

Figure 2.23 Emergency

Message contents:

• Error Code: 2-byte error code – see Table 2.18
• Error Register: copy of the 1-byte error register at [1001h,00h]
• Manufacturer Specific Error Field: Up to 5 bytes for manufacturer specific 

error codes

Error Code Decsription
00xx Error Reset or No Error

10xx Generic Error

20xx Current

21xx Current, device input side

22xx Current inside the device

23xx Current, device output side

30xx Voltage

Table 2.18  Emergency Error Codes

Error
Register Manufacturer Specific Error Field

Byte 0..1 Byte 3 Byte 4..7

Error Code

Emergency 
Producer

Emergency 
Consumer(s)

Error
Register Manufacturer Specific Error Field

Byte 0..1 Byte 2 Byte 3..7

Error Code

Emergency 
Producer

Emergency 
Consumer(s)
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31xx Mains Voltage

32xx Voltage inside the device

33xx Output Voltage

40xx Temperature

41xx Ambient Temperature

42xx Device Temperature

50xx Device Hardware

60xx Device Software

61xx Internal Software

62xx User Software

63xx Data Set

70xx Additional Modules

80xx Monitoring

81xx Communication

8110 CAN Overrun (Objects Lost)

8120 CAN in Passive Error Mode

8130 Life Guard Error or Heartbeat Error

8140 Recovered from Bus Off

8150 Transmit COB ID Collision

82xx Protocol Error

8210 PDO not processed due to length of error

8220 PDO length exceeded

90xx External Error

F0xx Additional Functions

FFxx Device Specific

Error Code Decsription

Table 2.18  (Continued) Emergency Error Codes
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2.8.5 SDO Block Transfer

The block transfer mode is an optimized transfer mode for Object Dictionary entries 
that contain large amounts of data. In this transfer mode, up to 889 bytes (segmented 
into 127 messages with each 7 bytes) are combined into one data block and are trans-
mitted using back-to-back messages.

The block transfer mode is optional and can only be used if both client and server sup-
port this communication mode. If one of the nodes does not support block transfer, 
the segmented or expedited transfer has to be used.

A download is divided into the following communication stages:

• Initiate Block Download - Client requests from Server to use block transfer 
mode for a download.

• Download Blocks - Client sends data blocks to Server and expects one 
response per block. Each block contains up to 127 segments.

• End of Download Block - Client and Server confirm that the transmission is 
now complete.

At any stage, any of the two communication partners may abort the transfer by send-
ing an abort SDO transfer message.

2.8.5.1 Initiate Block Download

To initiate a block download the client sends the request shown in Figure 2.24 to the 
server to which the server sends a response, also shown in Figure 2.24.
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Figure 2.24 Initiate Block Download

Message contents of the request:

• ccs: Client Command Specifier = 6
• x: Reserved
• cc: Client CRC support, set to 1 if client supports CRC
• s: Size indicator, set if size of data to transmit is indicated
• cs: Client subcommand = 0
• The Multiplexor contains the Index and Subindex of the OD entry that the 

client wants to write to
• size: Contains the size of the data block in bytes, if s is set

Message contents of the response:

• scs: Server Command Specifier = 5
• x: Reserved
• sc: Server CRC support, set to 1 if server supports CRC
• ss: Server Subcommand = 0
• The Multiplexor contains the Index and Subindex of the OD entry that the 

client wants to write to
• blksize: The number of segments per block (1-127)
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2.8.5.2 Download Blocks

After successful initiation, the client starts transmitting the blocks. Each block consists 
of as many segments as specified by "blksize" during initiation. At the end of a block, 
the client expects the server to send a response.

Figure 2.25 Download Blocks

Message contents of the request:

• c: Set to 1 if this is the last segment of the block
• seqno: Sequence counter from 1 to blksize (see initiation)

Message contents of the response:

• scs: Server Command Specifier = 5
• x: Reserved
• ss: Server Subcommand = 2
• ackseq: Number of segments acknowledged (received correctly) - the Client 

must re-transmit those that are not acknowledged
• blksize: The number of segments per block (1-127) that the Client must use 

for the next block

2.8.5.3 End of Download Block

After the client transmitted all blocks and the server acknowledged all blocks, the cli-
ent and server confirm to each other if the transmission was successful.

Bit 8
c

Bit 7..1
seqno Segment Data

Byte 0 Byte 1..7

Bit 8
c

Bit 7..1
seqno Segment DataBit 7

c
Bit 6..0
seqno Segment Data

Client Server

Bit 7..5
scs = 5

Bit 4..2
x = 0

Bit 1..0
ss = 2 ackseq Reserved

Byte 0 Byte 1 Byte 3..7

blksize

Byte 2
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Figure 2.26 End of Download Block

Message contents of the request:

• ccs: Client Command Specifier = 6
• n: Number of bytes in last segment that do not contain data
• x: Reserved
• cs: Client subcommand = 1
• crc: Cyclic Redundancy Checksum of the transferred data, leave at zero if 

CRC is not used (details about CRC generation are at the end of this chap-
ter)

Message contents of the response:

• scs: Server Command Specifier = 5
• x: Reserved
• ss: Server Subcommand = 1

An upload is divided into the following communication stages:

• Initiate Block Upload - Client requests from Server to use block transfer 
mode for an upload.

• Upload Blocks - Client receives data blocks from Server and returns one 
response per block. Each block contains up to 127 segments.
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ccs = 6

Bit 4..2
n

Bit 1
x = 0
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cs = 1 CRC Reserved
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Client Server
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x = 0
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ss = 1 Reserved
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• End of Download Block - Client and Server confirm that transmission is 
now complete.

At any stage, any of the two communication partners may abort the transfer by send-
ing an abort SDO transfer message.

2.8.5.4 Initiate Block Upload

To initiate a block upload a total of three messages are exchanged as shown in 
Figure 2.27.

Figure 2.27 Initiate Block Upload

Message contents of the first request:

• ccs: Client Command Specifier = 5
• x: Reserved
• cc: Client CRC support, set to 1 if client supports CRC
• cs: Client subcommand = 0
• The Multiplexor contains the Index and Subindex of the OD entry that the 

client wants to read from
• blksize: The number of segments per block (1-127)
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• pst: If set to a non-zero value, the server may switch back to the regular seg-
mented SDO transfer if the total data to be transmitted is less than or equal 
to the number of bytes defined by pst

Message contents of the response:

• scs: Server Command Specifier = 6
• x: Reserved
• sc: Server CRC support, set to 1 if server supports CRC
• s: Size indicator, set if total size of data transfer is indicated
• ss: Server Subcommand = 0
• The Multiplexor contains the Index and Subindex of the OD entry that the 

client wants to read from
• size: The total number of bytes that need to be transmitted (possibly using 

multiple blocks)

Message contents of the second request:

• ccs: Client Command Specifier = 5
• x: Reserved
• cs: Client subcommand = 3

2.8.5.5 Upload Blocks

After successful initiation, the server starts transmitting the blocks. Each block con-
sists of as many segments as specified by "blksize" during initiation. At the end of 
each block, the server expects the client to send a response.
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Figure 2.28 Upload Blocks

Message contents of the block segments:

• c: Set to 1 if this is the last segment of the block
• seqno: Sequence counter from 1 to blksize (see initiation)

Message contents of the acknowledge:

• ccs: Client Command Specifier = 5
• x: Reserved
• cs: Client Subcommand = 2
• ackseq: Number of segments acknowledged (received correctly) - the Server 

must re-transmit those that are not acknowledged
• blksize: The number of segments per block (1-127) that the Server must use 

for the next block

2.8.5.6 End of Upload Block

After the server transmits all blocks and the client acknowledges all blocks, the client 
and server confirm to each other if the transmission was successful.
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Figure 2.29 End of Upload Block

Message contents of the server's confirmation:

• scs: Server Command Specifier = 6
• n: Number of bytes in last segment that do not contain data
• ss: Server subcommand = 1
• crc: Cyclic Redundancy Checksum of the transferred data, leave at zero if 

CRC is not used

Message contents of the client's confirmation:

• ccs: Client Command Specifier = 5
• x: Reserved
• cs: Client Subcommand = 1

2.8.5.7 CRC Calculation

The Cyclic Redundancy Checksum used for the block transfer has 16 bits and is calcu-
lated over the entire data range of each block. The polynomial used for the calculation 
is:
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 3 CANopen Beyond DS301

“Get your facts first and then you can distort 
them as much as you wish.”

Mark Twain

The part of the CANopen standard that was covered in the previous chapter 
[CiADS301] lays down the foundation that any CANopen application builds upon. It 
describes the basic communication, data structuring, and network management meth-
ods used in the network.

However, one of the advantages of CANopen is its “openness” which enables it to 
incorporate additional specifications and standards which cover application or 
device-specific aspects of a CANopen implementation. To avoid the need to further 
modify or enhance existing standards, the approach is to include all enhancements in 
additional documents, especially if they are device or application-specific. These can 
be maintained by the CiA, but there are also proprietary profiles that specify how 
CANopen is used in one specific product.

Although the creation of proprietary profiles is acceptable for many deeply embed-
ded networks, one of the main reasons for using a standard is to avoid re-inventing 
the wheel. So it is highly recommended that developers get all the facts about existing 
profiles and frameworks first (to see which elements can be adapted) before inventing 
a new proprietary profile from scratch.
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3.1 Frameworks and Profiles Overview

One of the huge advantages of a higher-layer protocol is the guarantee of interchange-
ability between the same type of off-the-shelf devices from different manufacturers. 
This ensures interoperability between all devices that comply with this networking 
standard, thus simplifying the task of system integration. The documents that consti-
tute the CANopen Device Profiles describe, in detail, how to use CANopen for a par-
ticular type of device, what communication parameters are available, and how the 
Object Dictionary is set up.

Objective

In this section we want to make the reader familiar with the various types of 
documents that together make up the CANopen standard. We’ll also explain 
what the documents are for and how they are numbered.

Because many new profiles are in the process of being developed, this can only 
be a “snap shot” of current developments. With time, documents that are cur-
rently considered “proposals” will become “standards” and new proposals 
will be available. 

Device Profile Title
DS401 CANopen device profile for generic I/O modules

DSP402 CANopen device profile for drives and motion control

DS404 CANopen device profile for measuring devices and closed loop 
controllers

DS405 CANopen interface and device profile for IEC 61131-3 program-
mable devices

DS406 CANopen device profile for encoders

DSP408 CANopen device profile for fluid power technology proportional 
valves and hydrostatic transmissions

DSP410 CANopen device profile for inclinometers

DSP413 CANopen device profiles for truck gateways

Table 3.1  List of Selected Device Profiles
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Taking this thought one step further, a networking standard can also describe the 
communication aspect of a complete application, including not only the individual 
devices that are part of this application, but all interfaces between them as well. In 
CANopen, the documents describing this are called Application Profiles.

There are many instances where CANopen devices or applications require more 
mechanisms for configuration, data access or transport than what is covered by the 
Communication Profile DS301. Some of these will actually change what is seen trans-
mitted on the CAN bus. These “extensions” to CANopen are called Frameworks. 
Some Device Profiles, but not all, build on top of them, whereas all Application Pro-
files so far refer to at least one Framework.

The Frameworks, although targeted at the communication requirements of particular 
applications, are nevertheless “open” to use in other applications. For instance, an 
application that requires safety-relevant communication could utilize either of the 
very different methods that the Framework for Safety-relevant Communication 
DSP304 or the Framework for Maritime Electronics DSP307 describes. More details 
will be covered in Section 3.5. 

DSP414 CANopen device profiles for weaving machines

DSP418 CANopen device profile for battery modules

DSP419 CANopen device profile for battery chargers

DSP420 CANopen profiles for extruder downstream devices

Application 
Profile Title
DSP407 Application Profile for Passenger Information

WD416 Application Profile for Building Door Control

DSP417 Application Profile for Lift Control Systems

Table 3.2 List of Application Profiles

Device Profile Title

Table 3.1  (Continued) List of Selected Device Profiles
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Figure 3.1 The CANopen Standard Documents

Figure 3.1 illustrates how the different standard documents build on or complement 
each other. While the Device and Application Profiles carry 4xx numbers, the Frame-
works use 3xx to indicate that they are on about the same level as the Communication 
Profile. The CAN bus as the underlying technology is described in CiA standard doc-
uments DS-1xx and 2xx as well as several EN and ISO standards.

Framework Title

DSP302 CANopen Framework for CANopen Managers and Programma-
ble CANopen Devices

DSP304 CANopen Framework for Safety-relevant Communication

DSP305 CANopen Layer Setting Services and Protocols (LSS)

DSP307 CANopen Framework for Maritime Electronics

Table 3.3 List of CANopen Frameworks

CAN Standards – Data Link & Physical Layer

DS-301 Communication Profile DS-3xx Frameworks

DS-4xx Application Profiles

DS-4xx Device Profiles
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What does the “DS” in “DS301” stand for?

When browsing the CANopen standard documents you will notice that some 
of the documents start with “DS”, but there are other initials used as well. The 
following are all the acronyms that have been used so far:

• DS - Draft Specification
• DSP - Draft Standard Proposal
• WD - Working Draft or Work Draft Proposal
• TR - Technical Report
• DR - Draft Recommendation

A Draft Specification describes an essentially fixed standard that presumably 
will not undergo major changes in the future.

Draft Standard Proposals are released standard documents as well, but they may 
be simplified or expanded to accommodate changed requirements in the 
future. Officially still considered draft documents, you will nevertheless find 
many implementations in the CANopen world that comply with these “best 
possible standards.”

The Working Draft or Work Draft Proposal documents describe parts of the CAN-
open standard that are still very much “in the works.” They often carry 0.xx 
version numbers, may change a great deal before being released, and are not 
recommended at all for actual implementations. They are for informational 
purposes only and in most cases document the work of SIGs, the Special-Inter-
est Groups within the CiA.

A Technical Report will give definitions and guidelines, for example on the 
implementation and testing aspect of the network.

Draft Recommendations describe a “best recommended practice” for hardware 
aspects of a CANopen implementation such as connectors, cabling, and indica-
tor LEDs.
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3.2 About Masters and Managers (DS302)

Unlike other fieldbus systems, CANopen does not require a single master that com-
bines all “intelligence” in the network. Instead, there are several different functional-
ities that provide application-supporting services.

The following sections summarize and clarify some of the terms described in DSP302, 
the Framework for CANopen Managers and Programmable CANopen Devices.

 

Figure 3.2 Application-supporting Functionalities in CANopen

Objective

This section explains the different master and manager services available in 
CANopen. Terms covered include the NMT Master, the SDO Manager, the 
Configuration Manager and the CANopen Manager as described in 
[CiADS302].

Flying Masters are also introduced. For details on Flying Master operation, see 
[CiADS302].
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As illustrated by Figure 3.2, the manager functionality specified by DS301 is the NMT 
Master, which is primarily responsible for starting and stopping the network. There 
are additional message producing functions that are often executed by a master, but 
can also be executed by another node. These functions are the time stamp production 
and the SYNC signal production. The only requirement for each of these functions is 
that they must be executed exclusively on one node for one SYNC or time stamp. A 
particular time stamp or SYNC message may only be produced by one node in an 
entire network.

In addition to the NMT Master, DS302 defines the functionality provided by an SDO 
Manager and a Configuration Manager. A CANopen Manager is simply the term 
specified for a device that provides the NMT Master function and at least one of the 
management functions for configuration or SDO management.

The LSS (Layer Setting Services) Master is only listed for completeness. The layer set-
ting services allow the assignment of Node IDs and selection of the bit rate used.

Another related term is the “Flying Master.” In any CANopen network, there may be 
only one active NMT Master or CANopen Manager at any time. If a backup is 
required in the event of a failing NMT Master or CANopen Manager, Flying Masters 
can be used. Flying Masters are NMT Masters or CANopen Managers that monitor 
each other and ensure that only one of them is active at any time. Upon failure or dis-
connection of the currently active Flying Master, the dormant Flying Master automat-
ically wakes up and takes over.

3.2.1 The NMT Master

DS301 defines the NMT Master as a service to provide mechanisms that control and 
monitor the state of nodes and their behavior in the network. The primary command 
message used is the “NMT Master Message” that can either address an individual 
node or address all nodes at once. The commands that can be issued with the NMT 
Master messages are requests to change the NMT state of a node as explained in Sec-
tion 2.6.1 and shown in Figure 2.9.

There is only one active NMT Master allowed in a CANopen network, but since there 
may be more than one device capable of performing the NMT service, DSP302 defines 
Object Dictionary entries to make it configurable. In addition to enabling/disabling 
the NMT service, these configuration entries contain the Network List that tells the 
NMT Master what types of nodes are in the network, how they are to be treated dur-
ing boot-up and when there is an Error Control Event for a particular node.
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If another node wants to generate an NMT command on the network, it can ask the 
NMT Master to generate it by writing to its Object Dictionary, see Figure 3.3.

Figure 3.3 Request NMT Function

The NMT Master recognizes the request (for example issued by a configuration tool) 
and then sends the requested NMT command.

Although this is the recommended procedure, not all NMT Masters support this func-
tionality. Because of this, most CANopen configuration tools directly generate the 
desired NMT message themselves. It is up to the user of these tools to ensure that an 
existing NMT Master does not interfere with the messages generated by the configu-
ration tool. 

The following is a description of the primary Object Dictionary entries used to config-
ure the NMT Master.

3.2.1.1 [1F80h]: NMT Startup

Contains an UNSIGNED32 value to control the NMT behavior of a slave node or the 
NMT Master.

NMT Requesting Device
(e.g. Configuration Tool)

SlaveNRD

NMT Master

Request NMT
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NMT command to all 
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The bits specified for this entry are:

For NMT slaves, only bit 2 of 1F80h is of interest. All other bits should be imple-
mented read-only and set to zero. NMT slaves that always autostart will have bit 2 set 

Bit Description

0
If 0 the device is not the NMT Master.
If 1 the device is the NMT Master.

1
If 0 then start only explicitly assigned nodes.
If 1 then start all nodes.
If bit 3 is 1 then this bit is ignored.

2
If 0 then automatically enter the Operational state on boot-up.
If 1 then do not automatically enter the Operational state on boot-up.
NMT Slave: may be read-write or read-only with fixed value.

3

If 0 then the NMT Master may automatically start nodes. The behavior is 
configured using bit 1.
If 1 then the NMT Master may not automatically start nodes. Bit 1 is 
ignored.

4

If 0 then when a node fails to respond to node guarding or heartbeat, then 
reset only that node.
If 1 then when a node fails to respond to node guarding or heartbeat, 
reset all nodes.
If bit 6 is 1 then this bit is ignored.

5
If 0 then the NMT Master will not participate in the Flying Master process.
If 1 then the NMT Master will participate in the Flying Master process.

6
If 0 then use the configuration specified by bit 4.
If 1 then ignore bit 4 and if a node fails to response to node guarding or 
heartbeat, stop all nodes.

7 – 31 Reserved. Always zero.

Table 3.4  Control Bits for NMT Startup
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and implemented as read-only. NMT slaves that can be configured to either autostart 
or not autostart need to have bit 2 implemented as read-write.

3.2.1.2 [1F81h,xxh]: Slave Assignment

For each node of the network, these entries specify which management or master 
functions have to be executed on them. Are they mandatory for the network opera-
tion? Do they have to be of a specific type (vendor ID and/or product ID match)? 
What are their configuration and startup options?

The Subindex range representing the individual nodes on the network is 01h to 7fh. 
The Subindex directly corresponds to the Node ID.

Each slave assignment entry in [1F81h,xxh] is of type UNSIGNED32. The individual 
bits give the following information about the node the entry refers to.

Index 1F80h
Name NMT Startup

Mandatory No, recommended for NMT Masters

Subindex 00h
Name NMT Startup

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Table 3.5 Object Dictionary Entry NMT Startup

Bit Description

0
0 if the node is not a slave for this NMT Master.
1 if the node is a slave for this NMT Master.

1 Reserved.

Table 3.6  Control Bits for Slave Assignment
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When node guarding is used and a node guarding request is not answered by a node, 
then the master will re-send the guarding request (Retry Factor -1) times. The time 
interval between the re-tries is Guard Time.

2

0 if the node should not be automatically configured and started when a 
boot-up message is detected being transmitted from the node.
1 if the node should be automatically configured and started when a 
boot-up message is detected being transmitted from the node.

3

0 if the node is an optional slave. The network may be started if this 
node can not be contacted.
1 if the node is a mandatory slave. Do not start the network if this node 
can not be contacted.

4
0 if the node may be reset regardless of the current state of the node.
1 if the node may only be reset if the node is currently not operational.

5
0 if application software version verification is not required for the node.
1 if application software version verification is required for the node.

6
0 if automatic software update of the node is not allowed.
1 if automatic software update of the node is allowed.

7 Reserved.

8 – 15 Retry Factor, if node guarding is used.

16 – 31 Guard Time in milliseconds, if node guarding is used.

Index 1F81h
Name Slave Assignment

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Table 3.7  Object Dictionary Entry Slave Assignment

Bit Description

Table 3.6  (Continued) Control Bits for Slave Assignment
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3.2.1.3 [1F82h,xxh]: Request NMT

Writing an NMT command to this entry is a request to the NMT Master to send its 
NMT Master message to the select node(s). The Subindex directly corresponds to the 
Node ID number to be addressed with the NMT Master message. Subindex 80h repre-
sents “all nodes” meaning the NMT message will be sent to all nodes.

The values written to these Object Dictionary entries are the same command values as 
used by the NMT Master message:

• 04h: Enter Stopped state
• 05h: Enter Operational state
• 06h: Reset Application
• 07h: Reset Communication
• 7Fh: Enter Pre-operational state

Reading one of the entries returns the last reported state of the selected node 
(reported by the heartbeat or node guarding message). Because that information is 
available on the network anyway it is redundant to have a copy in the NMT Master. 
However, it gives an indication about what the NMT Master thinks the current state 
of a node is. The possible values are:

Access Read Only

Mandatory No

Map to PDO No

Subindex 01h – 7Fh
Name Slave Assigment Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Table 3.7  (Continued) Object Dictionary Entry Slave Assignment
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• 00h: Unknown state
• 01h: Node missing
• 04h: Stopped
• 05h: Operational
• 7fh: Pre-operational

Index 1F82h
Name Request NMT

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 80h

Access Read Only

Mandatory Yes if 1F82h entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Request NMT for Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if 1F82h is implemented

Map to PDO No

Subindex 80h
Name Request NMT for All Nodes

Type UNSIGNED8

Default Value Node defined

Access Write Only

Table 3.8  Object Dictionary Entry Request NMT
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3.2.1.4 [1F84h,xxh] to [1F88h,xxh]: Network List

The network list allows the NMT Master to keep a local copy of the Device Type 
[1000h] and the Identity Object [1018h,xxh] values of each node. The Subindex used in 
the Network List directly corresponds to the Node ID number of the node for which 
ID information has been stored in the Network List.

These entries are useful if the NMT Master needs to check if all nodes are in place 
with the correct Node ID and to verify that no nodes have been exchanged. If a value 
in the network list is set to zero, then a “don’t care” is assumed for that node and it 
does not matter what value the node reports.

Depending on the level of detail required, an NMT Master could only implement 
parts of the Network List. If only the device type information needs to be confirmed, 
the implementation of [1F84h,xxh] is sufficient. If the level of detail required goes all 
the way down to the serial number, then the entire network list must be implemented.

Mandatory Yes if 1F82h is implemented

Map to PDO No

Index 1F84h
Name Device Type Identification

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh

Table 3.9  Object Dictionary Entry Network List: Device Type

Table 3.8  (Continued) Object Dictionary Entry Request NMT
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Name Device Type Identification for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F85h
Name Vendor Identification

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Vendor Identification for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Table 3.10 Object Dictionary Entry Network List: Vendor ID

Table 3.9  (Continued) Object Dictionary Entry Network List: Device Type
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Index 1F86h
Name Product Code

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Product Code for Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Table 3.11  Object Dictionary Entry Network List: Product Code

Index 1F87h
Name Revision Number

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Table 3.12  Object Dictionary Entry Network List: Revision Number
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Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Revision Number for Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F88h
Name Serial Number

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Serial Number for Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Table 3.13  Object Dictionary Entry Network List: Serial Number

Table 3.12  (Continued) Object Dictionary Entry Network List: Revision 
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3.2.1.5 [1F89h]: BootTime

The time in milliseconds a NMT Master waits after sending a Reset Command for all 
mandatory nodes to start-up. If this time expires and one of the mandatory nodes was 
not found, the NMT Master will go into an error state.

3.2.2 The SDO Manager and Dynamic SDO Connections

The Pre-defined Connection Set in CANopen specifies only one SDO channel for 
every Node ID. This means that by default every CANopen slave node implements 
exactly one SDO server, and only one node (typically a master or configuration tool) 
will act as an SDO client to access the Object Dictionaries of the slaves. No other node 
can use the same SDO channels to talk to any of the slaves without risking collisions 
with an SDO request message with the same identifier from another SDO client. Even 
if the CAN messages do not collide, the additional SDO requests from a different 
source can easily interfere with the other SDO communication that is going on. 
Clearly this has to be avoided.

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F89h
Name Boot Time

Mandatory No but recommended for NMT Masters

Subindex 00h
Name Boot Time

Type UNSIGNED32

Default Value 0h

Access Read/Write

Mandatory No

Map to PDO No

Table 3.14 Object Dictionary Entry Boot Time

Table 3.13  (Continued) Object Dictionary Entry Network List: Serial Number
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Therefore, an SDO Manager is specified that is in charge of all SDO channels and that 
has exclusive access to them. If implemented, the SDO Manager and the NMT Master 
are on one and the same node. 

A node, for instance a configuration or diagnosis tool that needs to talk to any of the 
slaves, has to request a channel from the SDO Manager first. The channel can only be 
used after that request has been granted or it has been confirmed that there is no SDO 
Manager present in the network.

The procedure for the dynamic assignment of an SDO channel can be summarized as 
follows:

1. The SDO Requesting Device (SRD) sends the “Dynamic SDO Request” message. 
Because this message has the fixed CAN message identifier 6E0h and data length 
zero, it can be sent by any node at any time.

2. The SDO Manager recognizes the “Dynamic SDO Request” and starts scanning the 
network. It reads the 1F10h “Dynamic SDO Connection State” entry of each node 
until it finds the one that issued the request.

3. Once the SRD is found the SDO Manager enables the SDO client functionality in 
the SRD to allow the node client access to the Object Dictionary of the SDO Man-
ager.

4. The SRD can now request or release channels by writing to the 1F00h and 1F01h 
entries.

5. The SDO Manager will act on the requests and try to establish the SDO channel by 
writing to the Object Dictionary entries for SDO channel configuration of both the 
SRD and the target node that the SRD wants to connect with.

To allow for a more efficient method for configuration tools to get access to an entire 
network, there is also a mechanism to simply request all default SDO channels. If the 
SDO Manager grants this request, it will stay away from all default SDO channels. 

Multiple SDO Clients and Servers

Even though by default all nodes implement only one SDO client, DS301 speci-
fies that each node in the network may support up to 128 SDO servers, and just 
as many clients (objects 1200h-12FFh, SDO Server and SDO Client Parameters). 
An SDO Manager makes use of the additional SDO clients and can dynamically 
configure them when other devices request them. A second option is to stati-
cally configure additional SDO channels during network configuration.
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Figure 3.4 illustrates the messages involved when a SRD requests all SDO channels 
from the SDO Manager. 

Figure 3.4 Dynamic Request for all SDO Channels

When the SDO Manager reads [1F10h,00h] from the SRD, the SRD replies with 
00000003h to indicate that it desires to use all SDO channels. The SDO Manager will 
overwrite [1F10h,00h] with 00000004h to indicate that the request was granted.

SRD SDO Manager

Dynamic SDO Request
Message 6E0h, no data

Stop scan upon response with bit0=1
SDO Read Response is 0000 0003h

SDO Read Request [1F10,00]
SDO Read Request [1F10,00]SDO Manager scans all nodes

SDO Read Request [1F10h,00h]

SDO Write Request [1F10h,00h]
with data 0000 0004h
SDO Write Response

From now on SRD may use 
all SDO channels
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Figure 3.5 Register as SRD

When the SRD only wants to request single SDO channels, it needs to register as a 
SRD with the SDO Manager first. The sequence for such an SRD registration process 
is illustrated in Figure 3.5. This time the SRD replies to the SDO Manager’s read 
request of [1F10h,00h] with the value 12800001h indicating that it wants to register 
with the SDO Manager and requires an SDO channel to the SDO Manager. In this case 
the SRD also informs the SDO Manager that the next available SDO Client within the 
SRD is [1280h] (this is only an example; it could also have been one of the other SDO 
clients in the range from 1280h to 12FFh).

The SDO Manager now executes several SDO Write Requests to 1280h to configure 
the SDO Client to link to an SDO Server within the SDO Manager. Once the SDO Cli-
ent is configured, the SRD has an SDO channel to the SDO Manager to execute read or 
write accesses to the Object Dictionary in the SDO Manager. The process is completed 
by the SDO Manager writing 00000002h to [1F10h,00h] of the SRD.

Once the SRD is registered it can write to the 1F00h and 1F01h entries of the SDO 
Manager to request or release single SDO channels.

SRD SDO Manager

Dynamic SDO Request
Message 6E0h, no data

Stop scan upon response with bit0=1
SDO Read Response is 1280 0001h

SDO Read Request [1F10,00]
SDO Read Request [1F10,00]SDO Managers scan all nodes

SDO Read Request [1F10h,00h]

SDO Write Request [1280,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1F10h,00h]
with data 0000 0002h
SDO Write Response

SDO Write Request [1280,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1280h,xxh]
Configure SDO Client
SDO Write Response

SRD is now registered with SDO Manager and can use 
SDO client 1280h to access SDO Manager
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Figure 3.6 SRD Requesting a SDO Channel

Figure 3.6 shows the messages involved in the request of a single SDO channel. In this 
example, the SRD has the node ID 5 and desires an SDO channel to node 7 with node 
7 being the server and node 5 the client. The SRD uses its SDO channel to the SDO 
Manager to write to [1F00h,00h] of the SDO Manager. The value written contains the 
next available SDO Client in the SRD (here 1281h), the Node ID of the SRD and the 
Node ID of the target node.

Assuming that node 7 only has one SDO server implemented (the default), the SDO 
Manager would set up the SDO Client 1281h in the SRD to use the default SDO chan-
nel and would itself refrain from using that channel further.

However, if node 7 has multiple SDO servers implemented, the SDO Manager would 
not assign the default SDO channel to node 5 but would configure both nodes to use a 
new channel. So in addition to configuring the SDO Client in the SRD it would also 
configure the additional SDO Server in node 7 as illustrated in Figure 3.7.

SRD
Node 5

SDO 
Manager

SDO Write Request [1F00h,00h]
with data 1281 0507h
SDO Write Response

SRD Desired
Node 7

SDO Write Request [1281,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1281,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1281h,xxh]
Configure SDO Client
SDO Write Response

Default SDO channel of node 7
is now assigned to SDO client

1281h in SRD - node 5
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Figure 3.7 Fully Dynamic SDO Channel

The following is a description of the primary Object Dictionary entries used to config-
ure the SDO Manager.

3.2.2.1 [1F00h] and [1F01h]: Request and Release SDO Channel

After it has been assigned an SDO channel by the SDO Manager, a device that wants 
to request or release SDO channels (the SRD) can do so by writing to these Object Dic-
tionary entries in the SDO Manager. The entries contain a value of type UNSIGNED32 
that contains the following bits:

Bit Description

0 – 7
Node ID of the node the SRD wants an SDO channel to; 
when writing to 1F01h and this is zero, then request to release all con-
nections and cease to be a SRD.

Table 3.15  Control Bits for Request and Release SDO Channel

SRD
Node 5

SDO 
Manager

SDO Write Request [1F00h,00h]
with data 1281 0507h
SDO Write Response

SRD Desired
Node 7

SDO Write Request [1281,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1281,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1281h,xxh]
Configure SDO Client
SDO Write Response

SDO channel assigned from 
SDO client 1281h in node 5 to 
SDO server 1200h in node 7

SDO Write Request [1200,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1200,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1200h,xxh]
Configure SDO Server
SDO Write Response



Embedded Networking with CAN and CANopen

136

The value contains the Node ID of the device that the SRD wants to establish an SDO 
channel to, as well as the Node ID of the SRD itself. The SDO channel requested 
would make the SRD the SDO client, and the node would be the SDO server. The 
third value available defines the Index of a free SDO client configuration Index within 
the SRD. The SDO Manager will use that entry to configure the SDO client within the 
SRD.

The Object Dictionary entries are specified as follows:

8 – 15 Node ID of the SRD.

16 – 31
Index of a free Client SDO Entry in the SRD's Object Dictionary 
(1280h – 12FFh); when writing to 1F01h and this is zero, then this is a 
request to release all connections.

Index 1F00h
Name Request SDO

Mandatory Yes for SDO Managers, not used on other nodes

Subindex 00h
Name Request SDO

Type UNSIGNED32

Default Value Not defined

Access Write Only

Mandatory Yes for SDO Managers

Map to PDO No

Table 3.16 Object Dictionary Entry Request SDO

Index 1F01h
Name Release SDO

Table 3.17  Object Dictionary Entry Release SDO

Bit Description

Table 3.15  (Continued) Control Bits for Request and Release SDO Channel
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3.2.2.2 [1F10h]: Dynamic SDO Connection State

This entry is not implemented by the SDO Manager, but by the devices that want to 
request dynamic SDO channels. After an SDO Manager receives the request indicat-
ing that there are nodes on the network which are requesting an SDO channel, the 
SDO Manager scans all 1F10h entries of all nodes to find out which node(s) requested 
an SDO channel.

Read requests from this entry have to return zero if the node does not request an SDO 
channel. If the node sent a “Dynamic SDO Request” message (COB ID 6E0h, no data 
field), it must report the following values upon a read access:

• Set Request Indication bit to signal that an SDO channel is requested.

Mandatory Yes for SDO Managers, not used on other nodes

Subindex 00h
Name Release SDO

Type UNSIGNED32

Default Value Not defined

Access Write Only

Mandatory Yes for SDO Managers

Map to PDO No

Bit Description
0 Request Indication.

1 - 2 Connection State.

3 Request Error Control.

4 - 7 Reserved. Always zero.

8 - 15 Error code.

16 - 31 Index of a free Client SDO Entry in the SRD's Object Dictionary (1280h 
– 12FFh).

Table 3.18 Control Bits Dynamic SDO Connection State

Table 3.17  (Continued) Object Dictionary Entry Release SDO
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• Set Connection State to one if access to all SDO channels is desired, other-
wise leave zero. This is useful for configuration tools that temporarily want 
to have access to all nodes.

• Set Request Error Control to one, if the SDO Manager should continue to 
provide error control services (heartbeat monitoring or node guarding) for 
the nodes that the SRD gets connected to.

• Set the Index (range 1280h to 12FFh) of the SRD’s SDO client entry to be 
used for the communication with the SDO Manager. This value can remain 
zero if access to all SDO channels is requested.

The SDO Manager will write to this entry to confirm or deny the request:

• Request Indication bit is cleared to signal successful registration as SRD.
• Connection State is set to one if registration as an SRD was successful or to 

two if all SDO channels were assigned to the SRD. A value of three indicates 
that the dynamic SDO channel assignment is completed (SDO client and 
server configured on both ends).This value will be set to zero if an error 
occurred in which case an error code will be reported (see Table 3.19).

• Request Error Control will be set to one if the SDO Manager continues to 
perform the error control for the node that the SRD established an SDO 
channel with.

Error Code Description
00h Unspecified error.

01h There was no free SDO channel to create a connection between 
the SDO Manager and SRD.

02h There were no more free SDO channels in the CANopen net-
work.

03h The Slave does not have any free Server SDOs.

04h The Slave node is not available.

05h – FFh Reserved.

Table 3.19  Error Codes Used with Dynamic SDO Channel Assignment
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3.2.2.3 [1F02h,xxh]: SDO Manager COB IDs

In order to assign CAN message IDs for additional SDO channels, the SDO Manager 
needs to know which IDs are still available in the system. This is the configurable list 
of IDs that the SDO Manager can use for dynamic channel assignments. Each list 
entry is of type UNSIGNED32 and has the following bits defined for 11-bit COB IDs:

The important bits are 30 and 31. If 31 is set, the entry is used by the SDO Manager. 
The COB ID is “owned” by the SDO Manager and only it is allowed to use or assign it. 

Index 1F10h
Name Dynamic SDO Connection State

Mandatory Yes for Nodes using Dynamic SDO Channels

Subindex 00h
Name Dynamic SDO Connection State

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes for Nodes using Dynamic SDO Channels

Map to PDO No

Table 3.20 Object Dictionary Entry Dynamic SDO Connection State

Bit Description
0 – 10 COB ID

11 - 29 Set to 0

30
0 if the COB ID is free to be used for an SDO channel.
1 if the COB ID is currently in use for an SDO channel.

31
0 if the COB ID is valid, this Subentry is used.
1 if the COB ID is not valid, this Subentry is not used.

Table 3.21 Control Bits of SDO Manager COB ID Entries
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This also applies if bit 30 is cleared. If bit 30 is cleared, the COB ID is currently not 
used for any SDO channel, however, the SDO Manager can assign it anytime.

Index 1F02h
Name SDO Manager COB IDs

Mandatory Yes for SDO Managers

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes for SDO Managers

Map to PDO No

Subindex 01h – FEh
Name COB ID 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Table 3.22 Object Dictionary Entry SDO Manager COB ID
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3.2.2.4 [1F03h,xxh]: SDO Connections

These entries contain the table of the current dynamic SDO channels assigned by the 
SDO Manager. The data type is UNSIGNED32 and the following bits are defined for 
these entries:

The offsets are added to the base Index address for the SDO communication parame-
ters. The Index with the SDO Server Communication Parameters in the SDO Server is 
1200h plus the offset. The Index with the SDO Client Communication Parameters in 
the SDO Client is 1280h plus the offset.

Bit Description
0 – 7 SDO Server Node ID

8 – 15 SDO Server Communication Parameter Offset

16 – 23 SDO Client Node ID

24 – 31 SDO Client Communication Parameter Offset

Table 3.23 Control Bits for SDO Connections Entry

Index 1F03h
Name SDO Connections

Mandatory Yes for SDO Managers

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for SDO Managers

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 1-254

Table 3.24  Object Dictionary Entry SDO Connections
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3.2.3 The Configuration Manager

In a network where the individual nodes are not pre-configured and must be config-
ured after every power-up, a Configuration Manager is required. The Configuration 
Manager’s task is to locally store the configuration of each node and transfer that 
information to the nodes upon each power-up of the system. If implemented, the Con-
figuration Manager and the NMT Master are on the same node.

If the Configuration Manager runs on a PC-style computer it stores the configuration 
information by having local copies of the DCF files with the configuration for each 
node in the system. It stores these files in an array of Object Dictionary entries located 
at 1F20h (type of the entry is DOMAIN, which has an unspecified length). The Subin-
dex directly represents the Node ID. So the entry at [1F20h,07h] holds the DCF for 
node number 7.

To optimize memory usage in Configuration Managers that run without a file system, 
a concise version of the DCF is typically stored in 1F22h. The concise DCF format is 
compressed in two ways. First, it only contains the Object Dictionary entries that need 
to be configured (if some default values are actually used in a node, these do not get 
configured). Secondly, a binary format is used instead of an ASCII format.

The concise DCF format is straight-forward:

• The first entry is a variable of type UNSIGNED32 specifying how many 
entries are in this DCF: “Number of entries.”

• For each entry, the following record is stored:

o Index (UNSIGNED16)

o Subindex (UNSIGNED8)

o Length (UNSIGNED32), length of the data field to follow, in bytes

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Table 3.24  (Continued) Object Dictionary Entry SDO Connections
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o Data (DOMAIN), the data field

Although the regular ASCII DCF format and the concise DCF format are used when 
accessing the entries at 1F20h or 1F22h, this does not tell us anything about the true 
storage format within the Configuration Manager.

There might be some managers with enough intelligence that they do some compres-
sion of their own. For example, they may accept regular DCF formats, but internally 
store the information in the concise format. Others might further compress the concise 
format internally by not allowing any values greater than UNSIGNED16 for the num-
ber of entries or the length of an entry. 

Because the configuration process for an entire system can take multiple seconds to 
execute for each node, several functions have been provided to shorten the configura-
tion cycle. If the individual nodes support the storage of their last configuration in 
non-volatile memory, a Configuration Manager would only need to double check to 
see if each node still has the valid last configuration stored.

The following is an overview of the primary Object Dictionary entries used to config-
ure the Configuration Manager.

3.2.3.1 [1F20h-1F22h,xxh]: DCF Storage

These Object Dictionary entries store the DCF configuration files for the nodes that 
need to be handled by the Configuration Manager. The Subindex directly relates to 
the CANopen Node ID number of the node to which a DCF belongs. If 1F20h and 
1F21h are implemented, 1F22h does not need to be implemented. The concise format 
used in 1F22h is intended as an alternative for Configuration Managers that do not 
have enough physical resources (memory storage capacity, CPU performance to inter-
pret ASCII DCF) to implement 1F20h and 1F22h.

Index 1F20h
Name Store DCF

Mandatory No

Subindex 00h
Name Number of Entries

Table 3.25  Object Dictionary Entry Store DCF
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Read attempts from a 1F20h Subindex with no DCF stored result in a SDO Abort with 
the error code 08000024h “Data Set Empty.”

Type UNSIGNED8

Default Value 7Fh (highest Node ID available)

Access Read Only

Mandatory Yes if 1F20h is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Store DCF Node 1 – 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if 1F20h is implemented

Map to PDO No

Index 1F21h
Name Storage Format

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh (highest Node ID available)

Access Read Only

Mandatory Yes if 1F20h is implemented

Map to PDO No

Subindex 01h – 7Fh

Table 3.26  Object Dictionary Entry Storage Format

Table 3.25  (Continued) Object Dictionary Entry Store DCF
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Name Storage Format Node 1 – 127

Type UNSIGNED8

Default Value 00h: uncompressed ASCII

Access Read/Write

Mandatory Yes if 1F20h is implemented

Map to PDO No

Index 1F22h
Name Concise DCF

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh (highest Node ID available)

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Concise DCF Node 1 – 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Table 3.27 Object Dictionary Entry Concise DCF

Table 3.26  (Continued) Object Dictionary Entry Storage Format
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Read attempts from a 1F22h Subindex with no DCF stored result in the return of an 
“empty” concise stream where the first 32-bit entry (Number of Entries) is zero. So the 
response would be 00000000h.

3.2.3.2 [1F26h-1F27h,xxh]: Expected Configuration Date and Time Stamp

If the individual nodes on the network support the “Store Parameter Functionality” at 
1010h (storing a configuration in non-volatile memory locally), the entry 1020h “Ver-
ify Configuration” of these nodes will be set to the date and time of the last configura-
tion. 

The entries at 1F26h and 1F27h of the Configuration Manager contain a copy of these 
entries so that the Configuration Manager can quickly confirm if the last configura-
tion saved is still the one to be used.

Index 1F26h
Name Expected Configuration Date

Mandatory No, required for handling nodes that use 1010h

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh (highest available Node ID)

Access Read Only

Mandatory Yes if 1F26 is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Configuration Date Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if 1F26 is implemented

Map to PDO No

Table 3.28 Object Dictionary Entry Expected Configuration Date
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3.2.4 The CANopen Manager

The term “CANopen Manager” was created in order to have a single term for the 
combination of master and manager functionalities. A node is called a CANopen 
Manager if it provides the NMT Master functionality and at least one of the functions 
of an SDO Manager or Configuration Manager.

For details about the functionality provided by these masters and managers, see the 
previous sections.

Index 1F27h
Name Expected Configuration Time

Mandatory No, required for handling nodes that use 1010h

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh (highest available Node ID)

Access Read Only

Mandatory Yes if 1F27 is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Configuration Time Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if 1F27 is implemented

Map to PDO No

Table 3.29 Object Dictionary Entry Expected Configuration Time
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3.2.5 The Boot-up Process

Due to the many configuration options available, the boot-up process can vary greatly 
in CANopen. The complexity of the boot-up process can vary from simple pre-config-
ured, master-less systems that start-up themselves, to complex dynamic systems with 
Flying Masters and an elaborate configuration process depending on the components 
hooked up to the network. [CiADS302] uses a number of flow diagrams to illustrate 
the possible boot-up options. For simplicity this book stays with two common exam-
ples.

3.2.5.1 Minimal NMT Master Boot-up

In a system with only a minimal NMT Master, the individual nodes transmit their 
boot-up message and then stay in pre-operational mode. The NMT Master continu-
ously scans the network, either by passively waiting for the boot-up messages or 
actively by trying to read Object Dictionary entries, such as 1000h device type infor-
mation. Alternatively it could ensure a synchronous start-up by issuing a “reset all 
nodes” command to make sure that it did not miss a boot-up message.

Once the NMT Master determines that all nodes are available that are required for 
smooth network operation, it will send the NMT Master message “start all nodes” to 
start the network and the devices.

Optionally, it would continue monitoring the network and then react to network fail-
ures like nodes disappearing or changing their operating state.

3.2.5.2 CANopen Manager Boot-up

If a system contains nodes that need to be configured before they can start operation, 
a CANopen Manager with Configuration Management is required.

The NMT Master related boot-up procedure of the CANopen Manager is basically 
identical to the NMT Master boot-up described previously. However, before starting 
the network, it needs to be confirmed that each node is configured correctly. The 
CANopen Manager verifies the configuration of each node by first checking to see if 
the node supports the “save parameters functionality” (saving a configuration in non-
volatile memory). If it does not support this function, it needs to be configured.

If it does support the save parameters function, it just needs to be verified that the 
configuration is still valid. That can be done by comparing the date and time stamp of 
the last configuration stored in the node with that stored in the CANopen Manager. If 
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they are identical, no further configuration is required. If they do not match, the node 
needs to be configured.

Once all nodes are processed, the NMT Master message “start all nodes” can be sent 
by the CANopen Manager.

3.3 Device Profile for Encoder (DS406)

3.3.1 Introduction

In order to distinguish between encoders with “basic functionality” and “extended 
functionality” the device profile introduces two classes: “C1” and “C2.” The “C1 
class” encoders are basic encoders reporting one position value. “C2 class” encoders 
can not only have advanced functions like scaling, they can also consist of multiple 
encoders and report the values from multiple encoders.

Although not pointed out directly in the specification, using only absolute position 
values when transmitting positions via a network based on CAN is recommended. 
One of the known problems of CAN communication is that in some rare cases the 
error detection and re-transmission scheme can cause the duplication of messages. In 
other words, a node can conceivably receive a message twice.

If the data in that message is an absolute position value nothing happens. However, if 
the data is incremental and it is received twice the receiver would now assume an 
incorrect position for the encoder.

Objective

There is hardly any CANopen device that could be simpler than a single chan-
nel encoder reporting exactly one position value to the network. That’s why 
this example was chosen as a practical example of what is specified in a device 
profile.

The content of this section is based on [CiADS406]. The definitions and require-
ments shown are those for a “C1 class” encoder, a basic encoder without scal-
ing or other extended functionality, which simply reports one position value.
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3.3.2 Object Dictionary Entries

The following Object Dictionary entries are mandatory for “C1 class” encoders. They 
are in addition to the regular mandatory entries like error register and Identity Object.

3.3.2.1 Index [1000h]: Device Type

One of the first things a device profile defines is the details about how Object Diction-
ary entry [1000h] has to be implemented. This is the device type entry, typically the 
first entry read by CANopen Masters or configuration tools that scan the network for 
connected nodes.

The device profile for encoders specifies that the low word of the 32-bit device type 
field contains 0196h (= 406d, the device profile number).

The high word contains the encoder type, which can be one of the values in Table 3.30.

3.3.2.2 Index [1800h,xxh] and [1A00h,xxh]: 1st TPDO Parameters

The first default transmit PDO contains exactly one variable: the 4-byte encoder posi-
tion value stored in [6004h]. The mapping entry in [1A00h,01h] is 60040020h. The 
transmission type [1800h,02h] is set to 254: device profile specific. It is transmitted 

Encoder 
Type Description
1 Absolute single-turn rotary encoder

2 Absolute multi-turn rotary encoder

3 Absolute single-turn rotary encoder with counter

4 Incremental rotary encoder

5 Incremental rotary encoder with counter

6 Incremental linear encoder

7 Incremental linear encoder with counter

8 Absolute linear encoder

9 Absolute linear encoder with cyclic coding

10 Multi-sensor encoder interface

Table 3.30  Encoder Types
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asynchronously using the event timer. Older implementations use the device profile 
specific event timer at [6200h], newer implementations will adapt the device profile 
independent event timer [1800h,05h]. In case both are implemented, they must always 
be identical (writing to one also changes the other).

3.3.2.3 Index [1801h,xxh] and [1A01h,xxh]: 2nd TPDO Parameters

The contents of the second default transmit PDO are identical to the first. The only 
difference is that it has a different default for the transmission type [1801h,02h], which 
is 1. It is set to synchronous transmission with every SYNC signal received.

3.3.2.4 Index [6000h]: Operating Parameters

This is an UNSIGNED16 read-write value where individual bits report some of the 
operating parameters like measuring direction or scaling capabilities available in this 
encoder. For “C1 class” rotary encoders only bit 0 “Code Sequence” is mandatory. It 
has to be set to 1 for clockwise operation, meaning turning the encoder clockwise 
increments the position value. It has to be set to 0 if turning it counterclockwise incre-
ments the position value.

3.3.2.5 Index [6004h]: Position Value

The 32-bit read-only position value stored as UNSIGNED32.

3.3.2.6 Index [6500h]: Operating Status

The operating status is a read-only version of entry [6000h].

3.3.2.7 Index [6501h]: Resolution

This UNSIGNED32 read-only value is used slightly differently on rotary and linear 
encoders. For rotary encoders it shows the number of measuring steps reported by a 
single 360 degree turn of the encoder. For linear encoders it shows the length of a sin-
gle measuring step in nanometers.

3.3.2.8 Index [6502h]: Revolutions

This UNSIGNED16 read-only entry is used for rotary encoders. It contains the num-
ber of full 360 degree turns the encoder can count. For single turn rotary encoders this 
value is 1. The total measuring range reported in the position value is Revolutions 
[6502h] multiplied by Resolution [6501h].
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3.3.3 Encoder Object Dictionary Example

The following DS406 related Object Dictionary entries would be implemented for a 
basic C1 class absolute multi-turn rotary encoder.

Index
Sub 
index Description Data Type

Default 
Value

1000h 00h Device Type UNSIGNED32 00020196h

1800h 1st TPDO Communication 
Parameters

1800h 00h Number of Entries UNSIGNED8 5

1800h 01h COB ID UNSIGNED32 180h + 
Node ID

1800h 02h Transmission Type UNSIGNED8 FEh

1800h 03h Inhibit Time UNSIGNED16 0

1800h 05h Event Time UNSIGNED16 0

1A00h 1st TPDO Mapping Param-
eters

1A00h 00h Number of Entries UNSIGNED8 1

1A00h 01h 1st Mapping Entry: Position 
Value

UNSIGNED32 60040020h

1801h 2nd TPDO Communication 
Parameters

1801h 00h Number of Entries UNSIGNED8 5

1801h 01h COB ID UNSIGNED32 280h + 
Node ID

1801h 02h Transmission Type UNSIGNED8 1

1801h 03h Inhibit Time UNSIGNED16 0

1801h 05h Event Time UNSIGNED16 0

1A01h 2nd TPDO Mapping 
Parameters

Table 3.31  An Object Dictionary Example for Encoders
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3.4 Device Profile for Generic I/O (DS401)

3.4.1 Introduction to Generic I/O

As with all device profiles, DS401 defines a small set of mandatory functionality that a 
device must have in order to be able to claim DS401 compliance. In addition, it speci-
fies a much larger set of optional functionality that may be implemented if it is 
required. In the case of DS401 the optional functions can add up to the point where it 
is hard to implement all of them if the target is an 8-bit microcontroller.

1A01h 00h Number of Entries UNSIGNED8 1

1A01h 01h 2nd Mapping Entry: Posi-
tion Value

UNSIGNED32 60040020h

6000h 00h Operating Parameters UNSIGNED16 (no default)

6004h 00h Position Value UNSIGNED32 (no default)

6500h 00h Operating Status UNSIGNED16 (no default)

6501h 00h Resolution UNSIGNED32 (no default)

6502h 00h Revolution UNSIGNED16 (no default)

Objective

The device profile for generic I/O is one of the most often implemented CANo-
pen device profiles. By default it supports a total of up to 64 digital input chan-
nels and up to 64 digital output channels. The analog channels provided by 
default are a total of up to 24 (12 channels for input and 12 for output), each 16-
bit resolution. 

The content of this section is based on [CiADS401]. The definitions and require-
ments shown are those that are mandatory and must be supported by a generic 
I/O device in order to be able to claim DS401 compliance.

Index
Sub 
index Description Data Type

Default 
Value

Table 3.31  (Continued) An Object Dictionary Example for Encoders
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For example, there can be about ten configurable parameters for each analog input 
channel. These can include an offset and a scaling and several parameters for the 
change-of-state detection. The change-of-state detection could include detection 
involving an upper and lower limit/threshold as well as a negative or positive value 
difference.

Another indicator of the potential for complexity is the number of device profile spe-
cific Object Dictionary entries specified. The mandatory entries are about one for 
every 8 bits of digital input or output data, one for every 16 bits of output data and 
two for each 16 bits of analog input data. 

In addition, the device profile specifies hundreds (or thousands if all the entries speci-
fied for single-bit access are counted) of optional Object Dictionary entries that either 
contain configuration parameters or alternate access to the process data (for example 
16-bit access instead of 8-bit access to the digital data).

For the scope of this book we focus on the mandatory function set and some selected 
optional functions that are commonly implemented in many devices. For a complete 
listing of the optional functions see [CiADS401].

3.4.2 Object Dictionary Entries

The following Object Dictionary entries are mandatory for “Generic I/O” devices. 
They are in addition to the regular mandatory entries like error register and Identity 
Object.

3.4.2.1 Index [1000h]: Device Type

The device profile for generic I/O specifies that the low word of the 32-bit device type 
field contains 0191h (= 401d, the device profile number).

Bits 16 through 19 provide information about the type of I/O provided. There is one 
bit each that can be set to signal the support of a specific I/O type as listed in 
Table 3.32.

Bit Description
16 Digital Input

17 Digital Output

Table 3.32 I/O Types
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In addition, bits 24-31 are used to report special functionality. So far only one value 
has been specified. If bits 24-31 contain a 1 the device is a joystick.

3.4.2.2 Index [140xh,xxh] and [160xh,xxh]: RPDO Parameters

By default a total of up to four RPDOs are configured. The transmission type 
[140xh,02h] is set to 255: manufacturer specific. The default behavior is that upon 
receiving a RPDO the data contained in the RPDO is immediately applied to the out-
puts.

The default RPDO mapping is illustrated in Figure 3.8. RPDO1 contains 8 digital out-
put bytes that, upon receiving, will be copied to the Object Dictionary entries 
[6200h,01h-08h]. RPDO2, 3 and 4 each contain four 16-bit analog values that are 
mapped to the Object Dictionary entries [6411h,00h-0Ch].

Figure 3.8 Default RPDO Mapping of DS401

18 Analog Input

19 Analog Output

Bit Description

Table 3.32 I/O Types
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Notes: All Index, Subindex values in hexadecimal, 
8-bit values are UNSIGNED8 and 16-bit values are INTEGER16
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3.4.2.3 Index [180xh,xxh] and [1A0xh,xxh]: TPDO Parameters

By default a total of up to four TPDOs are configured. The transmission type [180xh, 
02h] is set to 255: manufacturer specific. The default behavior is a change-of-state 
transmission – input data gets transmitted whenever the inputs change. Both inhibit 
and event times have a default of 0.

The default TPDO mapping is illustrated in Figure 3.9. TPDO1 contains 8 digital input 
bytes that are taken from the Object Dictionary entries [6000h,01h-08h]. TPDO2, 3 and 
4 each contain four 16-bit analog values that are taken from the Object Dictionary 
entries [6401h,00h-0Ch].

Figure 3.9 Default TPDO Mapping of DS401

3.4.2.4 Index [6000h,xxh]: Read Digital Inputs

This array is mandatory for devices that support digital inputs. It is an array of 
UNSIGNED8 read-only values that contain the digital inputs. Subindex 0 specifies 
how many Subentries are implemented. The default is 8 providing a total of 8x8 = 64 
digital input bits. The maximum value allowed is FEh allowing for a total of 254x8 = 
2032 digital inputs.

3.4.2.5 Index [6002h,xxh]: Polarity of Inputs

Although not mandatory, this is an Object Dictionary entry supported by many 
generic I/O devices. If implemented, it is an array of UNSIGNED8 read-write values 
that is exactly as long as the array in [6000h,xxh].
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If implemented, each bit in this array defines the polarity inversion of the bits in the 
[6000h,xxh] array. If a bit in this array is set, the corresponding bit in [6000h,xxh] is 
inverted. If a bit is cleared, the corresponding bit is not changed.

3.4.2.6 Index [6200h,xxh]: Write Digital Outputs

This array is mandatory for devices that support digital outputs. It is an array of 
UNSIGNED8 read-write values that contain the digital outputs. The entry is specified 
as “read-write” in order to be able to read-back the last value written to the output. 
However, these entries can only be mapped to RPDOs, not to TPDOs.

Subindex 0 specifies how many Subindexes are implemented. The default is 8 provid-
ing a total of 8x8 = 64 digital output bits. The maximum value allowed is FEh allowing 
for a total of 254x8 = 2032 digital outputs.

3.4.2.7 Index [6202h,xxh]: Polarity of Outputs

Although not mandatory, this is an Object Dictionary entry supported by many 
generic I/O devices. If implemented this is an array of UNSIGNED8 read-write values 
that is exactly as long as the array in [6200h,xxh].

If implemented, each bit in this array defines the polarity inversion of the bits in the 
[6200h,xxh] array. If a bit in this array is set, the corresponding bit in [6200h,xxh] is 
inverted. If a bit is cleared, the corresponding bit is not changed.

3.4.2.8 Index [6206h,xxh] and [6207h,xxh]: Error Mode and Error Value for Outputs

Although not mandatory, these are Object Dictionary entries supported by many 
generic I/O devices. If implemented, these are arrays of UNSIGNED8 read-write val-
ues exactly as long as the array in [6200h,xxh].

If implemented, each bit in [6206h,xxh] determines if a default value should be 
applied to the corresponding output upon detecting an error condition or if the node 
is stopped. The entries in [6207h,xxh] are the default values that should be applied if 
this function is enabled and an error or stop condition is detected.

3.4.2.9 Index [6401h,xxh]: Read Analog Inputs

This array is mandatory for devices that support analog inputs. It is an array of 
INTEGER16 read-only values that contain the analog inputs. Subindex 0 specifies 
how many Subentries are implemented. The default is 12 analog inputs. The maxi-
mum value allowed is FEh allowing for a total of 254 analog inputs.
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If the resolution of the inputs is less then the 16 bits provided (for example, some just 
have a 10-bit resolution), then the value must be shifted to the most significant bits 
and the least significant, unused bits must be filled with zeros.

3.4.2.10 Index [6411h,xxh]: Write Analog Outputs

This array is mandatory for devices that support analog outputs. It is an array of 
INTEGER16 read-write values that contain the analog outputs. The entry is specified 
as “read-write” in order to be able to read-back the last value written to the output. 
However, these entries can only be mapped to RPDOs, not to TPDOs.

Subindex 0 specifies how many Subentries are implemented. The default is 12 analog 
outputs. The maximum value allowed is FEh allowing for a total of 254 analog out-
puts.

If the resolution of the outputs is less then the 16 bits provided (for example just have 
a 10-bit resolution), then the value received must be shifted in order to use the most 
significant bits and ignore the least significant, unused bits.

3.4.2.11 Index [6443,xxh] and [6444,xxh]: Error Mode and Error Value for Outputs

Although not mandatory, these are Object Dictionary entries supported by many 
generic I/O devices. If implemented these are an array of UNSIGNED8 read-write val-
ues for [6443h,xxh] and an array of INTEGER32 read-write values for [6444h,xxh]. The 
length of both arrays is the same as the length of array [6411h,xxh].

If implemented, each entry in [6443h,xxh] determines if a default value should be 
applied to the corresponding output upon detecting an error condition or if the node 
is stopped. If the entry is “1” the corresponding default error value is used. The 
entries in [6444h,xxh] are the default values that should be applied if this function is 
enabled and an error or stop condition is detected.

The data type of the default error values is INTEGER32 in order to be usable for any 
integer based output (including INTEGER8 and INTEGER16). When used for another 
data type output the lower bytes are ignored. In the case of an INTEGER16 output, 
only the two most significant bytes of the INTEGER32 default error value are used.

3.4.3 Illustrations

Figure 3.10 shows the mandatory Object Dictionary entries involved for handling a 
digital or analog output. The Object Dictionary entry with the process output data can 
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be modified from the network side of a device by a SDO request or by a RPDO that 
has this process output data mapped into it. With each change of the process output 
data, the data gets immediately applied to the application side of the device. The pro-
cess data is not modified in any way and the last applied output value will be contin-
uously applied until it gets changed via the network. It will not change in the event of 
an error.

Figure 3.10 Basic Setup of Output Processing

A more advanced setup of an output device is shown in Figure 3.11. Here the Object 
Dictionary entries for error mode and values and some data manipulation entries 
such as polarity change or scaling are implemented.
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Figure 3.11 Output with Optional Error Mode and Data Manipulation

On the network side, the process data is still received via RPDOs or by a SDO request 
to the Object Dictionary entry with the process data. However, if (and how) it gets 
applied to the application side of the device depends on several settings. During regu-
lar operation, the data will be manipulated as specified before it gets applied. For dig-
ital data the manipulation option is a potential change in polarity. For analog data the 
manipulation is an optional scaling with a multiplication factor and an offset.

If an error occurs or the device is halted, the output applied depends on the settings of 
the Error Mode and the Error value. If the Error Mode is enabled for a particular out-
put, then the specified default output value will be applied.

The diagram in Figure 3.12 shows the basic elements of input processing. The TPDO 
mapping parameters determine into which TPDO an input signal is copied.

For each TPDO, the transmit trigger mechanism in an input device has to check the 
conditions for the actual transmission of a TPDO. That can be an expiration of a timer 
or the detection of a COS (change-of-state).
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Figure 3.12 Basic Setup of Input Processing

A more advanced setup is shown in Figure 3.13. Here the data gets manipulated 
before it is stored in the Object Dictionary. For digital data the manipulation option is 
a potential change in polarity. For analog data the manipulation is an optional scaling 
with a multiplication factor and an offset.
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Figure 3.13 Input Processing with Data Manipulation and Advanced COS 
Detection

The advanced COS detection for digital inputs is an edge detection. A COS can either 
be recognized on any data change, only on a rising edge (zero to one transition) or 
only on a falling edge (one to zero transition).

With analog signals, the advanced COS detection can either be a function of reaching 
a pre-defined limited or a value difference. When using the pre-defined limit, a COS is 
detected if a certain threshold (upper limit or lower limit) is reached. When using 
value differences, a configurable value difference relative to the last data transmitted 
must be reached in order to recognize a COS.
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3.4.4 Generic I/O Object Dictionary Example

The following DS401-related Object Dictionary entries would be implemented for a 
node with 2 bytes (each digital) and 2 words (each analog).

Index
Sub 
index Description Data Type

Default 
Value

1000h 00h Device Type UNSIGNED32 000F0191h

1400h 1st RPDO Communica-
tion Parameters

1400h 00h Number of Entries UNSIGNED8 2

1400h 01h COB ID UNSIGNED32
200h + 
Node ID

1400h 02h Transmission Type UNSIGNED8 FFh

1401h 2nd RPDO Communica-
tion Parameters

1401h 00h Number of Entries UNSIGNED8 2

1401h 01h COB ID UNSIGNED32
200h + 
Node ID

1400h 02h Transmission Type UNSIGNED8 FFh

1600h 1st RPDO Mapping 
Parameters

1600h 00h Number of Entries UNSIGNED8 2

1600h 01h 1st Mapping Entry: 1st 
Write 8-bit Output

UNSIGNED32 62000108h

1600h 02h 2nd Mapping Entry: 2nd 
Write 8-bit Output

UNSIGNED32 62000208h

1601h 2nd RPDO Mapping 
Parameters

1601h 00h Number of Entries UNSIGNED8 2

Table 3.33  DS401 Object Dictionary Example
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1601h 01h 1st Mapping Entry: 1st 
Write 16-bit Output

UNSIGNED32 64110110h

1601h 02h 2nd Mapping Entry: 2nd 
Write 16-bit Output

UNSIGNED32 64110210h

1800h 1st TPDO Communica-
tion Parameters

1800h 00h Number of Entries UNSIGNED8 5

1800h 01h COB ID UNSIGNED32
180h +
Node ID

1800h 02h Transmission Type UNSIGNED8 FFh

1800h 03h Inhibit Time UNSIGNED16 0

1800h 05h Event Time UNSIGNED16 0

1801h 2nd TPDO Communica-
tion Parameters

1801h 00h Number of Entries UNSIGNED8 5

1801h 01h COB ID UNSIGNED32
280h + 
Node ID

1801h 02h Transmission Type UNSIGNED8 FFh

1801h 03h Inhibit Time UNSIGNED16 0

1801h 05h Event Time UNSIGNED16 0

1A00h 1st TPDO Mapping 
Parameters

1A00h 00h Number of Entries UNSIGNED8 2

1A00h 01h 1st Mapping Entry: 1st 
Read 8-bit Input

UNSIGNED32 60000108h

1A00h 02h 2nd Mapping Entry: 2nd 
Read 8-bit Input

UNSIGNED32 60000208h

1A01h 2nd TPDO Mapping 
Parameters

Index
Sub 
index Description Data Type

Default 
Value

Table 3.33  (Continued) DS401 Object Dictionary Example
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1A01h 00h Number of Entries UNSIGNED8 2

1A01h 01h 1st Mapping Entry: 1st 
Read 16-bit Input

UNSIGNED32 64010110h

1A01h 02h 2nd Mapping Entry: 2nd 
Read 16-bit Input

UNSIGNED32 64010210h

6000h Read Digital Inputs 8-bit

6000h 00h Number of Entries UNSIGNED8 2

6000h 01h Read Digital Input 1 UNSIGNED8 --

6000h 02h Read Digital Input 2 UNSIGNED8 --

6002h Polarity Digital Input 8-bit

6002h 00h Number of Entries UNSIGNED8 2

6002h 01h Polarity Digital Input 1 UNSIGNED8 0

6002h 02h Polarity Digital Input 2 UNSIGNED8 0

6200h Write Digital Outputs 8-
bit

6200h 00h Number of Entries UNSIGNED8 2

6200h 01h Write Digital Output 1 UNSIGNED8 --

6200h 02h Write Digital Output 2 UNSIGNED8 --

6202h Polarity Digital Output 8-
bit

6202h 00h Number of Entries UNSIGNED8 2

6202h 01h Polarity Digital Output 1 UNSIGNED8 0

6202h 02h Polarity Digital Output 2 UNSIGNED8 0

6410h Read Analog 16-bit 
Inputs

6410h 00h Number of Entries UNSIGNED8 2

6410h 01h Read Analog Input 1 INTEGER16 --

Index
Sub 
index Description Data Type

Default 
Value

Table 3.33  (Continued) DS401 Object Dictionary Example
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3.5 Safety-Relevant Communication  
(DSP304, DSP307)

3.5.1 Introduction and Terminology

In general, any application that has the potential to “significantly” harm the environ-
ment, injure or even kill one or multiple persons is considered “safety-related.” All 
major standardization bodies publish standards defining safety-related systems and 
specifying safety levels. One of the standards available is IEC 61508 which defines a 
total of 4 safety-integrity levels (SIL) with 1 being the lowest safety level and 4 the 
highest.

6410h 02h Read Analog Input 2 INTEGER16 --

6411h Write Analog 16-bit Out-
puts

6411h 00h Number of Entries UNSIGNED8 2

6411h 01h Write Analog Output 1 INTEGER16 --

6411h 02h Write Analog Output 2 INTEGER16 --

Objective

In this section we outline some of the functions and methods used to imple-
ment safety-relevant communication on CANopen.

Because safety aspects also depend on the specific application, implementation 
methods may vary. For example, there is a CANopen framework for safety-rel-
evant communication [CiADSP304]. However, the maritime industry also had 
safety requirements specific to their application, resulting in the CANopen 
framework for maritime electronics [CiADSP307].

Index
Sub 
index Description Data Type

Default 
Value

Table 3.33  (Continued) DS401 Object Dictionary Example
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The safety-integrity levels are a measurement of the worst that can happen if some-
thing goes wrong. For example, the controls for a table saw have the potential to con-
tribute to a severe injury of a person. Such an application would be considered a SIL1 
application. However, the controls of a chemical plant are in a different safety level as 
their failure could contribute to multiple fatalities. This is considered at least a SIL3, 
perhaps even a SIL4 application.

A safety-related system can typically be divided into multiple safety functions, each 
responsible for a single crucial aspect of the entire system. A system is considered to 
be functionally safe if all of its safety functions are carried out without failure.

The distinction between a safety-relevant versus a safety-critical application is the 
existence of a “safe state.” If a system has a safe state it can turn to it is considered 
safety-relevant. This includes all applications with an emergency shut-off switch – if 
the system is switched off it can do no harm. Safety-critical systems, on the other 
hand, require continuous control; once airborne a plane needs continuous control and 
once started a chemical process might need continuous control.

For more information on safety related systems, IEC62508 and related subjects see 
[Smith01].

3.5.2 Defects Happen

One of the basic rules when designing a safety-related system is that defects happen. 
However, a single defect may not be allowed to result in the failure of a safety func-
tion. As far as electronics are concerned this means that redundancies need to be 
added. Circuits and wiring can be duplicated on the hardware side. On the software 
side, activities can also be duplicated; for example, sending a message twice.

There are multiple locations where redundancies can be added to a CANopen node: 
microcontrollers and software can be duplicated, the CAN controller can be dupli-
cated, the transceiver and wiring can be duplicated and the messages on the bus can 
be duplicated. Which duplications really make sense depends on both the application 
and how the duplications are made. Duplicating a microcontroller and using the same 
software on both does not do much to increase safety. If there is a conceptual defect in 
either the microcontroller or the software it will be present in the first and the second 
microcontroller. And typically in a complex system a software bug is far more likely 
than an electronic component failing.

Another implication of “defects happen” is that no single component in the network 
should be essential to the operation of the system. Failure of a single node should not 



Embedded Networking with CAN and CANopen

168

prohibit other nodes from continuing their communication. This consideration favors 
a truly distributed system without a master, which is fully supported by CANopen 
where the nodes can exchange messages directly, whether the other nodes are alive or 
not. Furthermore, this is another example of the CANopen heartbeat being preferable 
to node guarding. Node guarding requires a single node to poll all the slaves, making 
the node that does the polling essential to the system. With the heartbeat method, 
however, nodes produce their heartbeat independently and the communication part-
ners can directly monitor that heartbeat.

If for some reason a master is essential to the system then it would need to be dupli-
cated. CANopen provides methods to use one or multiple “Flying Masters” as a 
backup to the main master. As the term suggests, they can take over the main master’s 
responsibilities “on-the-fly” during operation of the network.

3.5.3 Adding Safety to CANopen

Like many other computerized networks CANopen can be used in safety-relevant 
applications. The major criteria for safety-relevant communication is met if a system 
can reliably detect the loss of communication (maybe because the network cable broke 
or a node went off-line) and fall back to the safe state as a result. This also illustrates 
the fact that primary responsibility for implementing safety lies with the consumer of 
the messages and not the producer. Thus the essential device is not the emergency 
shut-off switch but all the devices consuming that message - they need to be able to 
both receive messages from the switch, as well as be able to detect the loss of the 
switch and then act upon that information.

The other criterion is to ensure reliable, secure communication. If an emergency shut-
off switch continuously sends the message “We are still all on GO,” it must be ensured 
that there is no way that this node (or any other) produces this message by accident. 
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More safety can be added in CANopen by adding redundancies to different levels. 
Figure 3.14 illustrates the basic communication path of a CANopen node. A micro-
controller communicates with a CAN controller that uses a transceiver to exchange 
signals with the physical media. Software redundancies can be added without chang-
ing this structure. Messages can be duplicated, sent twice over the network, and only 
when both instances are transmitted is the transmission regarded as successful. To 
further increase the safety, the second message has all data bits inverted and at least 
two bits in the message identifier field inverted, too.

Figure 3.14 Adding Software Redundancy

In addition to adding software redundancies, some applications may require adding 
hardware redundancies, too. One of the scenarios suggested by the CANopen frame-

When designing software for safety-relevant applications one should carefully 
consider where it makes sense to design tasks that run independently and 
where they need to be interlocked. 

The worst (but still functional) design for an emergency shut-off switch would 
have two independent tasks: one copies the current state of the button to the 
message transmit buffer (setting up the “We are still all on GO” message) the 
second task would simply trigger the transmit message from a timer interrupt 
service routine.

If the first task fails for any reason, the second would still continue to transmit 
“We are still all on GO.”
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work for safety-relevant communication is illustrated in Figure 3.15. Here the micro-
controller and the CAN controller are duplicated, but they still share the same 
transceiver and physical media. This would be primarily used where electronic cir-
cuits responsible for going into a safe state need to do a “controlled” shut-down, like 
switching off components in a certain order or applying additional brakes to a motor.

Figure 3.15 Adding Hardware Redundancy

The CANopen framework for maritime electronics uses another approach. The exam-
ination of the safety requirements in a ship placed the probability of “something hap-
pening to the wiring or an entire segment of the network” above the probability of 
“something happening to individual electronics.” As a result, the framework recom-
mends duplicating the wiring as shown in Figure 3.16.

The idea is to not only duplicate the wiring but also to ensure that the wires take dif-
ferent paths. So the main trunks of the bus would be separated, for instance one going 
along the starboard side of a ship and one along the port side.
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Figure 3.16 Adding Redundant Wiring

3.5.4 CANopen SRDO – Safety-Relevant Data Object

The CANopen framework for safety-relevant communication specifies SRDOs to be 
used for transmitting safety-relevant data. They key elements of an SRDO are:

• An SRDO consists of two messages.
• The first message’s format is the same as used for regular PDOs, meaning 

one or multiple Object Dictionary entries can be mapped into the SRDO.
• The second message is a duplication of the first with all data bits inverted 

and at least 2 bits inverted in the message identifier field.

All SRDO transmissions have two essential timings. If any of these are exceeded when 
receiving a SRDO, the receiver has to take that as an indication that “something hap-
pened” and should switch to the safe state immediately.

• SCT – Safeguard Cycle Time 
This is the time between multiple SRDOs or, in other words, the “event 
time” of the SRDO. The SCT is measured between the occurrences of the 
second message of an SRDO.
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• SRVT – Safety-Relevant Validation Time 
This is the maximum time allowed between the first and the second mes-
sage of an SRDO.

Figure 3.17 SRDO Timing

Figure 3.17 illustrates the SCT and the SRVT which can both be specified in millisec-
onds. Typically the SRVT is expected to be much shorter than the SCT, as the second 
message should follow almost back-to-back to the first message.

When configuring the SCT and SRVT great care should be taken as to how to config-
ure the producer and the consumers. Due to potential message delays after error con-
ditions on the bus or timer variations in the different microcontrollers, one should not 
set the consumer and the producer to the same SCT and SRVT timings. The recom-
mended approach is to set the timings on the consumers first, since that is the timing 
used to make a decision if the safe state should be entered or not. The corresponding 
times on the producer side need to be shorter, so that the SRDO is produced more 
often than expected. This ensures that even with variations in the timing on the pro-
ducer side the SRDO can still be received by the consumers. Once again, the exact dif-
ference depends on the specific application requirements. In general, setting the 
producer timing to some 80%-90% of the consumer timing is a good start.

time

SRDO
dat

SRVT

SCT

SRDO
inv

SRDO
dat

SRDO
inv

SRDO
dat

SRDO
inv

SRDO
dat

SRDO
inv



173

Chapter 3: CANopen Beyond DS301          

3.5.5 Object Dictionary Entries for SRDOs

The following is a summary of selected parameters that are configurable for the up to 
63 SRDOs.

3.5.5.1 Index [1301h,xxh] to [1340h,xxh]: Communication Parameter

Similar to PDO configuration, each SRDO has one record of communication parame-
ters. The record has a total of six entries resulting in seven Subentries:

By default the CAN message identifiers 101h to 180h are used for SRDOs.

3.5.5.2 Index [1381h,xxh] to [13C0h,xxh]: Mapping Parameter

The structure and usage of the mapping parameters is identical to that of PDOs. See 
Section 2.5.6 for details on how PDO mapping works.

3.5.5.3 Index [13FEh]: Configuration Valid

The 8-bit value at [13FEh] is used by a safety device to signal that it has a valid config-
uration. Only if all SRDO configurations are valid will this value be set to A5h. All 
other values signal that the current configuration is not valid.

Subindex Name Description Type

0 Number of 
Entries Set to ‘6’ UNSIGNED8

1 Direction 1 for Tx, 2 for Rx UNSIGNED8

2 SCT Safeguard Cycle Time in mil-
liseconds UNSIGNED16

3 SRVT Safety-Relevant Validation 
Time in milliseconds UNSIGNED8

4 Transmission 
Type Set to ‘254’ (FEh) UNSIGNED8

5 COB ID 1 CAN message ID of first 
message UNSIGNED32

6 COB ID 2 CAN message ID of second 
message UNSIGNED32

Table 3.34 SRDO Communication Parameters
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3.5.5.4 Index [13FFh,xxh]: Safety Configuration Checksum

The array at location [13FFh,xxh] contains one 16-bit checksum for each SRDO config-
ured in the local node. The CRC for each SRDO is generated over the communication 
parameters (excluding Subindex 0 and 4) and mapping parameters.

To configure an SRDO, a CANopen Master or configuration tool first sets the SRDO 
communication and mapping parameters and then has to write the matching CRC 
checksum for this configuration into the corresponding checksum field. Reading back 
the entire configuration before truly declaring a configuration as valid is recom-
mended.
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 4 CANopen Configuration Example

“Few things are harder to put up with than the 
annoyance of a good example.”

Mark Twain

This chapter uses a fictitious industrial control or automation system to give an exam-
ple of a CANopen network integration cycle. Although it is a fictitious example it is 
representative of typical industrial manufacturing machinery that uses a main Pro-
grammable Logic Controller (PLC) with some I/O nodes connected to it.
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4.1 Evaluating the System Requirements

4.1.1 Defining the System

In order to keep the example simple, a total of three nodes (in addition to the PLC) are 
assumed for this machine.

• The “Left Node” and the “Right Node” have identical communication 
requirements. They should be DS401 compliant (generic I/O) and have a 
fixed number of digital inputs and outputs (2 bits) and analog inputs and 
outputs (2 times 11 bits).

• The “Middle Node” is a specialty module (manufacturer specific) providing 
some inputs (provided in 2 bytes) from a user panel.

By default the entire communication is controlled by the PLC. All inputs are sent to 
the PLC, all outputs come from the PLC. As an optional extension, a future version of 
the control system will have the middle node send its data directly to the Left and 
Right nodes without the PLC relaying the data.

Because the focus of this section is to establish the required communication between 
the nodes, the control algorithm used on the PLC is assumed to be already developed 
and in place. 

In order to get an accurate timing, the SYNC signal is used. The SYNC for this exam-
ple has a 33ms communication cycle period. The control cycle time would be 66ms, as 
two messages are involved for an input to output transfer (first message from input to 
PLC, second from PLC to output).

The bus speed is chosen to be 125kbps, although the maximum network cable length 
for that speed (about 1500 feet) is probably not needed. In general it is a good idea to 

Objective

At the beginning of each system design the overall requirements must be eval-
uated. For our example we assume a central controller (PLC style) with distrib-
uted I/O points. On the communication side elements to be evaluated include 
communication response times, bandwidth, distance, and number and type of 
communication participants (nodes in the network).
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not use a higher bus speed than required. Keeping the bus speed low decreases EMI 
and increases overall system stability and tolerance.

4.1.2 Estimated Bandwidth Usage

A rough estimate of bandwidth usage can be calculated as follows:

1. Calculate the number of data bytes transmitted in each SYNC cycle:

• From Left Node to PLC: 5 (1 byte digital, 2 words analog)
• From Middle Node to PLC: 2 (2 bytes digital)
• From Right Node to PLC: 5 (1 byte digital, 2 words analog)
• From PLC to Left Node: 5
• From PLC to Right Node: 5

This results in a total of 22 data bytes.

2. Calculate the data bandwidth required:

The SYNC cycle time is 33ms, so 22 bytes transmitted every 30ms is about 100 bytes 
for every 100ms, or 1,000 bytes per second. Multiplying by 8 (to achieve bits per sec-
ond not bytes per second) results in about 8kbps.

3. Estimate the total bandwidth:

Besides the data bytes, CAN messages contain message ID information, control bits, a 
checksum and other overhead information. Unfortunately there is no easy rule of 
thumb for the relationship between data bytes and overhead bits. The overhead factor 
can be anywhere from less than 2 to as much as 6 or more if many short messages are 
used. 

Using the overhead factor range of 2 to 6 would result in a bandwidth range of 

2 * 8kbps = 16kbps  to  6 * 8kbps = 48kbps

Because the chosen bit rate of the network is 125kbps the estimation above would 
(even for the worst case) result in a bandwidth usage of 

48kbps / 125kbps = 38.4%
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This is an acceptable margin for a rough estimate. However, if the system would be 
switched down to a 50kbps network speed a more detailed calculation would be 
required.

Advanced development tools such as Vector’s proCANopen or CANoe automatically 
perform these calculations and provide timing reports. The bandwidth statement 
given by CANoe also calculates bandwidth usage for event driven communication.

4.2 Choosing the Devices and Tools

4.2.1 Choices to Make

Before one can make a selection one needs to know what the available options are. A 
fairly compete listing of off-the-shelf CANopen products is published by the CiA. 
There is both a product database and a CANopen product guide available online at 
www.can-cia.org.

It should be noted that depending on the availability of the “best-match” products, it 
might be necessary to take a step back and re-evaluate the system requirements. Per-
haps a similar product that is not a best-fit for the application has some other advan-
tages, and thus can be considered for the application if the requirements are adjusted.

For this example the following devices were chosen:

• PLC: 
Schneider TSX Compact with CAN communication adapter

• Left and Right Node:  
Schneider Advantys STB modular I/O system

• Middle Node: 
Manufacturer specific solution based on Philips CANopenIA-XA

Objective

Once the requirements are set one needs to select the devices and tools used to 
configure and test the devices and the network. In this section we choose tools 
and devices for our example.
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• Configuration Tool:  
Vector proCANopen

• Simulation and Analyzing Tool:  
Vector CANoe

This is a fictitious example, and many devices and tools from various manufacturers 
could have been chosen. However, some of the devices and tools listed above have 
some specific features in conjunction with CANopen.

4.2.2 Modular, Generic I/O

In regards to CANopen, the system shown in Figure 4.1 has two features that stand 
out.

Figure 4.1 Schneider Advantys Modular I/O System

First, it is a modular I/O system. It allows building CANopen generic I/O devices with 
exactly the number of digital and analog channels required by the application. As a 
result, the number of data channels available per device are never fixed and could 
even be expanded in the future without the need to exchange entire devices. In addi-
tion, simple control functions (like Boolean functions, comparators or counters) can be 
performed within the module, creating a simple automation island.
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Second, it uses CANopen on its backplane. The communication used between the 
individual components of the Advantys STB system is a dedicated CANopen net-
work. The module on the left in Figure 4.1 is called a CANopen NIM (Network Inter-
face Module). It has two CANopen interfaces and acts as a gateway between the 
upstream network (where it is a CANopen generic I/O module) and the downstream 
network (where it is a CANopen Master communicating with the individual modules 
of the local system).

4.2.3 Tools

When it comes to configuration, simulation and test of a CANopen network, the Vec-
tor tools proCANopen and CANoe provide powerful features as the following exam-
ples will show. These tools can be used to configure, simulate and also test large 
CANopen networks before they are built physically. Furthermore the simulation 
engine of CANoe can be used to create the communication of an entire network. This 
way a new node for a network can be tested without requiring the “live” network for 
the test phase.

4.3 Configuring Single Devices

4.3.1 Advantys STB Configuration

As the previous section has shown, some CANopen nodes can be fairly sophisticated, 
such as the modular Schneider Advantys STB system. In order to manage the modu-
larity of the system, Schneider provides its own setup software that configures a mod-
ular system and, depending on the configuration, generates an appropriate Electronic 
Data Sheet – the electronic specification for the functionality provided by a CANopen 
node.

Objective

Many CANopen devices offer several setup or configuration options through 
jumpers, switches or proprietary setup tools that are not necessarily available 
through regular CANopen configuration tools. This section shows some of the 
proprietary setup tools available with some devices.
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Such individual, device-specific setups and configurations need to be performed 
before the device can be integrated into a CANopen network.

The screen shot in Figure 4.2 shows an example of an Advantys STB system consisting 
of several Advantys STB modules and additional external third party CANopen mod-
ules that can be integrated into the “local” CANopen network. The configuration of a 
system can be done manually (drag and drop individual modules from the catalog) or 
read in from a physical system. The connection between the PC and the system is 
made via a serial link to a special connector on the NIM.

Figure 4.2 Schneider Advantys Configuration Software

All the process data of such an automation island is combined into one process image 
which is provided to the “upstream” CANopen network. The process image is simply 
mapped into the PDOs available to the upstream network.

Once the configuration is completed, an EDS can be generated. The EDS file is needed 
when integrating this particular automation island into a CANopen network.
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4.3.2 CANopenIA Configuration

Another example for a device specific setup tool is that of Philips’ CANopenIA. The 
“Middle Node” was chosen to be implemented based on the Philips CANopenIA-XA 
controller which also comes with an individual setup tool, CANopenIASetup.

The CANopenIA nodes do not support dynamic PDO mapping and thus the setup 
tool needs to be used to configure a CANopenIA chip. The configuration includes 
some hardware settings (like Node ID, bit rate used and which ports/pins of the con-
troller are enabled) and software settings like the default heartbeat time or the PDO 
configuration (both communication and mapping parameters).

Figure 4.3 Philips' CANopenIA Setup Tool

The screenshot in Figure 4.3 shows the configuration of the first TPDO. The settings 
selected set a SYNC transmission for the TPDO and a CAN message ID of 20Bh to be 
used. Once the setup of a node is completed the setup information can be saved into a 
DCF (Device Configuration File) and a binary file that needs to be transferred to the 
CANopenIA chip. Although a download tool is provided, a regular CANopen config-
uration tool could be used for that purpose as well.

The reason why the setup tool provides a DCF instead of an EDS is that the DCF is 
already node specific. It contains the setup information for exactly one node with a 
specific node ID and not a generic setup for multiple nodes.
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4.4 Overall Network Configuration

4.4.1 Getting Started: Select Nodes

The configuration of an entire network using Vector’s proCANopen starts by selecting 
the nodes of the network. For each node a name, Node ID number and an EDS file 
describing the node must be chosen. Figure 4.4 shows the selection of the EDS file for 
the master in the example application, and Figure 4.5 shows the node configuration 
options. Here the node is named “Schneider TSX Master,” has the Node ID “1” and 
uses the EDS file “asbc259.eds.”

Figure 4.4 Selecting an EDS file for a Node in proCANopen

Objective

Although it is theoretically possible to configure an entire network on a “node-
by-node” basis, it is not a very practical approach for bigger networks or for 
configuring multiple networks.

In this section we show how a configuration tool such as Vector’s proCANopen 
can configure an entire network and automates the work of assigning process 
data variables to specific Process Data Objects (PDO).
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Figure 4.5 Configuration of a Node in proCANopen

Figure 4.6 below shows the PLC and the left and right node of the example system. 
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Figure 4.6 Main Overview Window of proCANopen

4.4.2 Establishing Connections

Once the nodes have been configured, connections need to be made. A connection is 
the link from one input variable to one output variable in the system.

It should be noted that the user only configures these connections (linking an input 
variable of one node to the output variable of another). The software in proCANopen 
then automatically assigns PDOs as required to implement these connections. So the 
tedious task of assigning individual variables to PDOs does not need to be executed 
by the user, it is automated.

A right mouse click on any of the nodes opens up a local menu, from which “Graphic 
Connection” can be chosen. For the configuration in this example, the left node is cho-
sen with a right mouse click, then “Graphic Connection” is selected. Then the PLC is 
selected to be the communication partner. After clicking on the button “Insert PDOs” 
the window shown in Figure 4.7 pops up. It allows the specification of a prefix that is 
used for all variable names in the PLC. As all these variables come from the left 
Advantys node, the prefix entered is “AdvL_” which makes it easy to distinguish the 
variables from the left and the right node.
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Figure 4.7 Step 1 of Making a Graphical Connection

After hitting “OK” proCANopen automatically connects all process variables from 
the left node to the PLC as shown in Figure 4.8. The names for the process variables in 
the Advantys node were directly extracted from the EDS file provided by the Advan-
tys configuration software. The names generated for the corresponding variables in 
the master all have the specified prefix followed by an automatically generated name 
based on the process variable name used in the Advantys node.
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Figure 4.8 Step 2 Graphical Connection Completed

The importance of the prefix becomes more apparent in Figure 4.9 where both the 
process variables from the left and the right node are shown in the master.

As specified, the Advantys system in this example has only 2 bits of digital inputs and 
outputs and 2 words with analog inputs and outputs. The reason why a total of 5 
bytes digital input are available is that Advantys also reports status and some echo 
information back.

The PDO transmission type used for the connections can be selected using the 
“Options” button. The default is “device profile specific,” however any of the other 
possible transmission types may be chosen.
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Figure 4.9 Step 3 Adding Connections for the Right Node

Once all the node specific configurations have been made, the list of all PDOs used in 
the network can be displayed. The left Advantys node with the Node ID 11 uses two 
transmit and 2 receive PDOs as shown in Figure 4.10. The first TPDO has 5 digital 
bytes mapped into it and uses the CAN message ID 18Bh which is the default from 
the pre-defined connection set.
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Figure 4.10 The list of all PDOs used in the Network

The final step of the configuration process is to start the “make” process that gener-
ates all the files needed to simulate this network using Vector’s CANoe.

4.5 Network Simulation

One of the biggest advantages of a network simulation is that potentially crucial situa-
tions (like a high busload or how the overall system changes by adding or removing 

Objective

This section shows how the network configured in the previous section can be 
simulated using Vector’s CANoe.
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nodes) can be tested before all nodes are available physically. This allows tracking 
down potential danger zones where a system may reach its limits.

If you are not interested in the simulation of the network but would like to start 
“using” the real network, you can skip this section.

Once a CANopen network has been configured using Vector’s proCANopen it can 
easily be simulated with CANoe. After starting a new CANoe configuration, the sys-
tem configured by proCANopen can be imported. After ensuring that the CANoe 
configuration is saved and set to use the same CAN bit rate as the proCANopen 
setup, the simulation can be started by pressing the Tool button with the flash. The 
first messages that appear in the trace window are the boot-up messages of the indi-
vidual nodes (see Figure 4.12, “CANoe Trace Recording of Simulation,” on page 192, 
first 3 messages in trace window).

It should be noted that “simulation” in this sense actually means that the CAN traffic 
generated is actually sent on the network. As a minimum “network” CANoe expects a 
closed-loop system where both CAN ports provided by the Vector CAN hardware 
interface are connected together using a short CAN bus cable with two termination 
resistors.

As the PLC/Master is currently not simulated with the control algorithms it does not 
create the NMT startup message. As a result all nodes remain in the pre-operational 
state. However, all functions of proCANopen are fully usable – proCANopen does 
not realize that the network is simulated and thus can interact with all the simulated 
nodes.

To set all the nodes to operational, proCANopen can be used to generate the NMT 
message “Start all nodes.” Once the nodes are in the operational state, the default 
communication mode is “change-of-state,” which means a TPDO is transmitted 
whenever its input data changes. The inputs of each node are simulated by the auto-
matically generated panel windows. By manually changing some of the inputs in the 
panels, the appropriate TPDO is transferred and the corresponding variable in the 
receiving node/panel is updated.
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Figure 4.11 Automatically Generated Panels for I/O Simulation

The images in Figure 4.11 show the I/O panels for the nodes 1 (PLC), 11 (left Advantys 
system) and 12 (right Advantys system). The input data entered manually (for exam-
ple the bits [6000h,01h-05h] of node 11) is transferred to the corresponding output 
data (here [5200h,01h-05h] of node 1).



Embedded Networking with CAN and CANopen

192

Figure 4.12 CANoe Trace Recording of Simulation

The trace window shown in Figure 4.12 lists the CAN messages that were generated 
so far. Each node generated its own boot-up message “HBGuard_xxx” with the data 
being 0. Node ID 127 is the default used by proCANopen which participates in any 
CANopen configuration as a true node of that system. The “DynSDOReq” was a 
dynamic SDO request of proCANopen to see if a CANopen SDO Manager is in the 
system. As there was no response, proCANopen took control and sent the “start all 
nodes” message “NMTZeroMsg.” All following messages are TPDOs where the pre-
fix of the message name indicates the Node ID number of the node transmitting the 
PDO and the suffix indicates the PDO number (starting at zero). Message “N11_T0” 
shows the same data that was visualized in the panels of Figure 4.11.

Because the CAN messages of this CANopen network are actually transmitted via the 
CAN interface, all network statistic analysis windows display the values for this net-
work. These include information about the current and maximum bandwidth as well 
as statistics on how often which messages occur.
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4.6 Network Commissioning

4.6.1 Finalize the Configuration

In Section 4.4 some global settings and specifically the PDO mapping were already 
configured. What was not yet set up is some fine tuning concerning TPDO triggering 
methods, heartbeat or node guarding setup and error behavior. In addition, a method 
is needed to automate the configuration process.

The configuration of the nodes can be finalized using Vector’s proCANopen and the 
“Device Access” functionality which allows read/write accesses to the Object Diction-
ary of each node. This can include things like using a different transmission type for 
specific PDOs and setting the heartbeat times used by individual nodes. Figure 4.13 
below shows the “Device Access” window for the node 12, “Advantys Right.” The 
Producer Heartbeat Time is in the process of being set to 300 milliseconds.

As an example, the TPDO communication parameters of the right and left Advantys 
node (ID 11 and 12) could be changed to use the SYNC signal instead of the default 
change-of-state transmission type. Whether the nodes are simulated by CANoe or 
physically present on the network, any changes made with proCANopen become 
immediately active and can be analyzed in the trace window of CANoe, CANalyzer 
or other analyzing tools.

Objective

Whether the nodes of the network are simulated or physically existing on the 
network, the process for the final steps of the network configuration are the 
same. This section deals with these last steps of the configuration and how to 
apply them to a network.
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Figure 4.13 Setting the Heartbeat Producer Time of Node 12

The trace listing in Figure 4.14 uses relative timestamps, so the timestamp displayed is 
the time that expired since the last occurrence of a message with this message ID. The 
trace shows that the SYNC is sent about every 33 milliseconds (note that the actual 
value displayed here is 35.52 – the accuracy depends on the producer, in this case it 
comes from a regular PC) and the heartbeats of nodes 11 and 12 occur every 300 milli-
seconds.
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Figure 4.14 Trace Listing of SYNC’d Communication

The timestamp can also be used to verify the triggering of each PDO. Here some other 
SYNC periods were chosen to add some diversity:

• N11_T0: Send with every SYNC
• N11_T1: Send on every 5th SYNC
• N12_T0: Send with every SYNC
• N12_T1: Send on every 4th SYNC

Once the network and all nodes have the desired configuration there are a number of 
methods to ensure that this configuration is used as the new default configuration 
right after startup of the network.

4.6.2 Downloading Configuration to Nodes

Vector’s proCANopen stores any configuration change that is made to the Object Dic-
tionary of a node into the corresponding DCF. This is true for all writes made to a live 
or simulated network as well for the changes made only in the input mask of a node’s 
Object Dictionary.

At any time, the current configuration can be downloaded to the entire network or 
groups of nodes. This means that the configuration data stored in the DCF files is 
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written to the appropriate Object Dictionary entries. This allows a quick configuration 
of an entire network or parts of a network after a power-up or reset cycle.

4.6.3 Storing the Current Network Configuration

In addition, proCANopen supports the setup of configuration management (CMT) 
for a CANopen Manager in the system. The entire network configuration can be 
stored in a concise format usable by CANopen Managers that are responsible for the 
configuration of the individual nodes.

Figure 4.15 Configuration Management Window

The Object Dictionary entries used for these configuration cycles are either selected 
automatically or manually. For the manual selection each node has an individual list 
of selectable CMT parameters. In Figure 4.15 the list of CMT parameters is shown for 
the left Advantys node. The PDO parameters are always part of configuration man-
agement and are not listed. The only configurable parameter currently selected for 
CMT is the heartbeat producer time [1017h,00h]. It is set to 300 milliseconds. The total 
amount of configuration data (concise DCF format) is displayed at the bottom, cur-
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rently 325 Bytes. This is the amount of storage needed in a CANopen Manager to 
store the configuration data for this node.

4.6.4 Alternatives with Store Parameters

If the individual nodes support the “Store Parameters” feature, an alternate configu-
ration storage scenario is available. Each node can be instructed by proCANopen to 
save the current set of configurable parameters in its own non-volatile memory. This 
allows each node to store its own configuration and use it as the new default upon the 
next startup.

This feature can also be used if a Configuration Manager is not available in the net-
work. However, it should be noted that without a Configuration Manager any new 
nodes added to the system (for example, repair replacements) must be configured 
before they are inserted into the system.

4.7 Advanced Features and Testing

4.7.1 Advanced Node Simulation

So far only the communication between the nodes has been simulated, tested and ana-
lyzed. However, in CANoe it is possible to add algorithms to the simulated nodes, 
allowing them to produce certain data or interact with the data received. 

The simulation of nodes is based on a programming language called CAPL (CAN 
Application Programming Language). Because the CAPL programs implementing the 
individual nodes are available in CANoe, they can be edited and enhanced to work 
with the data received or to be transmitted. An example of a CAPL program is shown 
in Figure 4.16.

Objective

This section summarizes extended features of the example setup. These fea-
tures are not essential to the overall configuration, commissioning and mainte-
nance cycle. However, they are useful for getting advanced and/or automated 
test results.
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Figure 4.16 The CAPL Program for Node 12

4.7.2 Migration from Simulation to Physical Node

Another useful CANoe feature is that simulated nodes can be disabled individually. 
This allows for a variety of functions such as replacing the simulated nodes one-by-
one with the physical nodes.

Another typical use is the test and configuration of a single node. Test and configura-
tion would not need to be done on the live system, instead the CANoe simulation can 
be used with only that node disabled in the simulation that is currently connected 
physically and needs to be tested.

4.7.3 Advanced Panel Design

For applications that require extensive use of the I/O panels (for example if used for 
very thorough testing or as a test tool at the end of the production line), a more graph-
ical representation of the data might be desirable.

The panels shown in Figure 4.11 are kept simple, as they are automatically generated. 
However, CANoe comes with a panel editor that allows the generation of customized 
I/O simulation panels based on standard graphical elements (dials and bars) and cus-
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tomized bitmaps. An advanced example for the panels is shown in Figure 4.17 where 
both the support feet and the ladder of a fire engine are animated.

Figure 4.17 Example for an Advanced Panel Design
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 5 Underlying Technology: CAN

“The wireless telegraph is not difficult to understand. 
The ordinary telegraph is like a very long cat. 

You pull the tail in New York, and it meows in Los Angeles. 
 The wireless is the same, only without the cat.”

Albert Einstein

CANopen was designed as a higher-layer protocol for CAN, operating with ISO 11898 
compliant high-speed transceivers (line drivers). In general, CANopen is “open” 
enough that it can be operated with other CAN transceivers or even using completely 
different networking technologies. However, when choosing other transceivers or net-
work technologies, one needs to understand that the result is a proprietary solution 
that is not compatible with anything else. Standard CANopen components only work 
if ISO11898 compliant high-speed transceivers are used.

About the Terminology 
CAN – Controller Area Network – was invented in the late eighties. Since then 
some terms have been added and others replaced. As authors we had to make 
a choice on the terminology to use. Using the latest terms was one desire. How-
ever, in reality there are still many documents such as CAN controller 
datasheets, manuals and web pages using the established terminology, so just
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In order to truly understand CANopen and to be able to monitor, analyze and debug 
a CANopen system, some basic understanding about CAN is required. This chapter 
deals with CAN – the Controller Area Network – but with a focus on CANopen. 
CANopen does not use all of the features provided by CAN, and sometimes avoiding 
certain features is specifically recommended.

Features not used or not of direct concern (like synchronization mechanisms that 
shorten or lengthen individual bit times allowing all nodes to stay “in sync”) are not 
covered in this book. Readers looking for additional details about CAN should con-
sider reading [Etschberger01] or [Lawrenz97].

ignoring the old terminology was not an option either. Here are the terms in 
question:

ISO 11898 vs. ISO 11898-X 
This ISO standard specifies CAN physical layers. The original standard 
ISO11898 (which is still the only one published by ISO to date) only specifies 
one physical layer. However, a new version of the standard is in the works add-
ing other physical layers, too. Assuming the current drafts are accepted, ISO 
11898-2 will contain the specification for the high-speed transceivers as used by 
CANopen.

CAN 2.0A/B vs. Base Frame Format and Extended Frame Format 
Many CAN related documents still make reference to CAN version 2.0A and 
2.0B, which refers to the usage of 11-bit or 29-bit CAN message identifiers, 
respectively. The terminology used today is more intuitive. A CAN message 
frame with an 11-bit identifier is called base frame format, whereas the 
extended frame format corresponds to CAN message frames with a 29-bit 
identifier.

As an example of one of the unused features, the CiA recommends avoiding 
the use of the so-called extended frame format (which use 29-bit CAN message 
IDs instead of 11-bit IDs). Currently all CANopen functionality is entirely spec-
ified based on the 11-bit IDs of the base frame format. However, CANopen is 
open enough that it works with 29-bit identifiers, too.

So why shouldn’t we use extended IDs?

A detailed answer is in the FAQ in Appendix A, which can be found in the Ref-
erence section. In summary, extended IDs “steal” from the data-bandwidth and 
are less secure because the checksum needs to cover additional bits.
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5.1 CAN Overview

CAN was originally designed for automotive networks, where many small sensors 
need to report small values frequently. As a result, CAN features small message 
frames of only up to 8 data bytes but on the other hand can handle many message 
frames per second. At the highest bit rate of one Megabit per second, several thou-
sands of messages could occur per second (see also Section 5.2.7).

The overhead per message includes an 11-bit message identifier and a 15-bit Cyclic 
Redundancy Checksum (CRC). A message can contain 50% overhead or more (dou-
bling the length of a message) and makes CAN very secure and reliable, especially as 
the CRC is confirmed by all nodes. If a single node reports a CRC error, all other nodes 
discard the message and it automatically gets re-transmitted (see Section 5.2.9).

The typical physical medium is a twisted pair of wires and the maximum network 
length depends on the network speed chosen. At 1Mbps the maximum length is about 
40m/120ft. Longer distances are achievable at lower speeds, for example about 500m/
1500ft at a speed of 125kbps (see Section 5.2.1).

CAN is a multi-master network, so each node may send its data at any time. Colli-
sions get resolved by priority. The message with the lowest message identifier wins 
the arbitration process and gets through. In order for this mechanism to work, all 
CAN message identifiers used in a network must be unique. Higher-layer protocols 
ensure the uniqueness of the CAN message IDs by assigning/reserving certain IDs for 
certain purposes (see also Section 5.2.8).

On the lowest level all message frames are broadcasts, meaning every single node 
receives every single message on the network. It is up to each individual node to 
decide if a particular message is needed by that node. To avoid a situation where each 
node must really examine every message on the network, most CAN controllers have 
filter techniques implemented in hardware (see Section 5.3). 

Objective

This is a brief summary of the most essential CAN features such as a high mes-
sage rate per second, high reliability through extensive CRC and CRC checking 
by every node, typical physical media and arbitration by message priority. All 
of these features are explained in more detail in the following sections.
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5.2 An Introduction to CAN

CAN is a very flexible communications network as it only implements parts of the 
physical layer and data link layer (see the end of Section 1.3.1 for more info on net-
work layers and the 7-layer reference model). CAN may be implemented on different 
physical transmission media like twisted pair, power lines, optical and others. On top 
of the data link layer, a variety of higher-layer protocol standards are available, plus a 
countless number of in-house proprietary standards.

All major chip manufacturers provide microcontroller derivatives with CAN inter-
faces on-chip. The selection of an external transceiver determines the physical layer. 
All other CAN features described in this section are implemented on-chip as part of 
the CAN interface. This includes the entire error detection and message re-transmis-
sion mechanisms.

5.2.1 The Physical Layer based on ISO 11898 

Although there are customized CANopen implementations using different physical 
implementations, the standard itself specifies the usage of “standard high-speed 
transceivers” in accordance with ISO11898. These transceivers (line drivers) are con-
nected between the CAN controller and the physical medium: a pair of wires - prefer-
ably twisted with optional wires for shielding or additional customized signals.

Objective

This section explains the basic concepts of CAN. This includes physical signals, 
layout, speeds and limitations. After reading this section, you will know what 
kind of signals you will see when you hook up an oscilloscope to the CAN bus. 
In addition, you will understand how the error detection and re-transmission 
handling is implemented in CAN.
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Figure 5.1 ISO 11898 Compliant High-speed Transceiver

As Figure 5.1 illustrates, the transceiver takes the TTL signal (on some parts this might 
be a 3V level) coming from the CAN controller’s transmit pin and converts the signal 
to a differential signal between the two wires of the network cable (typically labeled 
CAN_L and CAN_H for low and high). In return, differential signals on the two wires 
of the network cable are converted back into TTL level and are fed back to the CAN 
controller’s receive pin.

5.2.2 Signal States: Recessive versus Dominant

The letters “d” and “r” in Figure 5.1 stand for the so-called “dominant” and “reces-
sive” signal states on CAN.

A logical 1 indicates the recessive state. It is represented by 5V (or 3V on 3V devices) 
on the TTL level and by a zero difference between the two network wires CAN_L and 
CAN_H. Both wires are at a level of about 2.5V.

A logical 0 indicates the dominant state. It is represented by close to 0 volt on the TTL 
level and by a 2 volt difference between the two network wires. CAN_L is driven 
about one volt lower and CAN_H is driven about 1 volt higher.

In CAN the dominant signal overwrites the recessive signal. If multiple nodes write to 
the network at the same time, the network will be in the dominant state if any single 
node writes the dominant signal. This mechanism is used to detect collisions: a node 
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writing the recessive state and reading back the dominant state knows that there was 
a collision and can now start appropriate recovery actions.

Logically a CAN network behaves like a “wired AND gate.” If any single node writes 
a dominant bit (zero), the entire network will be in the dominant state. Only if all 
nodes write a recessive bit (one) will the network be in the recessive state.

At this point it should be noted that the network only supports these two states. There 
is no third state for “idle.” Extensive periods of the recessive state are used for 
“idling.”

5.2.3 Signal Levels

The exact voltage levels used on the transmission wires are shown in Figure 5.2 below. 
In the recessive state, both CAN_L and CAN_H are at 2.5V. In the dominant state, 
CAN_L is pulled down by 1V and CAN_H is pulled up by 1V. So the levels are 1.5V 
for CAN_L and 3.5V for CAN_H with a 2V difference between them.

Many transceivers have some additional pins such as a “slope control” and a 
2.5V “reference output.” The slope control is only needed in applications that 
have hard limitations on the amount of electromagnetic interference they may 
produce. It allows softening the signal edges. However, if the CAN bus is used 
at higher bit rates, the bit time becomes so short that there is no room to play 
with the signal edges. Unless you really need this feature, we recommend not 
using the slope control and leaving the setting at “best signal quality.”

The 2.5V reference output is not needed for the implementation of CAN or 
CANopen and can be ignored.

It would be nice to know how that discussion went when the designers of the 
transceiver had the choice: What do we put on the extra pin that we have available? 
and somebody probably came up with We have a stable 2.5V level in the trans-
ceiver itself, why don’t we put that out, maybe somebody else can use it?

What a far-reaching decision that was: as a result, technical support engineers 
have one more frequently asked question to deal with that is heard over and 
over again: What is that 2.5V reference for? It would have been so much easier for 
technical support if the pin would have simply be left at NC – Not Connected.
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Figure 5.2 High-speed Signal Levels According to ISO-11898

The main benefit of a differential signal is its immunity to electromagnetic interfer-
ence (EMI). If the signals are exposed to external EMI influence, that influence affects 
both wires as illustrated in Figure 5.3. In addition, the EMI generated by CAN itself is 
reduced by using a differential signal in wires close to each other.

Figure 5.3 Using a Differential Signal

The figure shows how signals produced by node 1 can get altered during their trans-
mission to nodes 2 and 3. However, the level of change is the same on CAN_L and 
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CAN_H and the transceivers of nodes 2 and 3 can still reliably detect the voltage dif-
ference between the two lines. 

For those who are interested in more information about how CAN works we 
recommend the books [Lawrenz97] and [Etschberger01] that go into all the 
details. This section lists some details you will need to know when looking at 
low-level CAN signals and frames with oscilloscopes or logic analyzers. How-
ever, for CANopen development, monitoring and analysis, a CANopen moni-
tor or analyzer is much more suitable than an oscilloscope!

Idling 
A CAN bus can only be in one of two states: it is either recessive or dominant. 
So what about “idle” – does that mean we always have constant transmissions? 
This is true in a sense; by default every CAN controller constantly transmits the 
recessive state.

Between frames / messages, the bus defaults back to the recessive state, the log-
ical 1. This is also called the “Inter-Frame Space.” 

Bit Coding 
CAN uses NRZ (Non-Return to Zero) bit coding. This means that during an 
entire bit time the signal stays at the logical 0 or 1 level, without any edges or 
transitions within the bit time.

Bit Stuffing 
Within data frames (messages), CAN uses a technique called bit stuffing. For 
synchronization purposes, edges are required within the communication data 
stream. To ensure that there are enough edges, the transmitter automatically 
inserts an opposite stuff bit into the communication stream after 5 consecutive 
bits of the same value.

The receiver counts consecutive bits received within a data frame and after 5 
consecutive bits automatically removes (ignores) the following opposite stuff 
bit from the communication stream.

Note that the bit stuffing mechanism is only active within data frames and not 
during the inter-frame space (idling).
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Figure 5.4 CANscope Display of a Data Frame

Figure 5.4 is from an oscilloscope-like tool with CAN awareness, the CANscope from 
Vector. Without the CAN awareness it would be very hard to recognize the different 
sections of the data frame displayed, especially the stuff bits. The message shown uses 
the identifier 181h (default ID of PDO1 from node 1) and has four data bytes: A9h, 
14h, 40h and FFh. The bottom line indicates the four stuff bits of this message.

5.2.4 Wiring/Cabling 

The differential signal used by ISO 11898 compliant transceivers already gives CAN a 
good level of EMI protection, and in some cases ordinary twisted-pair wiring without 
additional shielding can be used. However, for noisy environments using a shielded 
cable is still recommended. 

The common perception is that CAN is a 2-wire network. However, an additional 
common ground is required for reliable operation. If the entire network is embedded 
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in a machine or apparatus there typically is a common ground and it might not be 
necessary to actually use a third wire. If, on the other hand, the network spreads over 
a longer distance, the additional wire for ground should be part of the wiring. 

Many applications use the same trunk of wiring for supplying the devices with 
power, which makes 4-wire CAN cabling one of the more popular variants. Two 
shielded twisted pairs are what many industrial automation applications use. One 
pair is used for the CAN signal and the other pair for the common ground and power 
supply. 

[CiADRP3031] recommends the specific wiring, termination resistors and connectors 
to be used. In general, CAN is not very demanding in regards to the cabling, espe-
cially if only medium bit rates of 250kbs or below are used. Besides many variations of 
twisted pairs, there are applications that use flat ribbon cables, telephone cabling, PC 
serial cables, Ethernet cabling, Firewire cabling and others.

5.2.5 Connectors

Because CANopen is used in many very different applications, the wiring and the 
connectors are not part of the specification and are application specific. To allow a 
variety of connectors to still be compatible, the CiA recommends pin-outs for all 
major connector types typically used in CANopen environments. The recommenda-
tions are published in [CiADRP3031]: CiA Draft Recommendation Proposal 303-1.

The signals specified for connectors are:

• CAN_L: 
CAN_L is the bus line that is driven lower during the dominant bus state.

• CAN_H: 
CAN_H is the bus line that is driven higher during the dominant bus state.

• CAN Ground: 
This is the common ground used by the CAN nodes. If the nodes have a 
common ground anyway, this signal might not be needed.

• CAN Shield (Optional): 
An optional shield around the CAN_L and CAN_H signal is connected to 
this pin.

• Positive Supply (Optional): 
If a CAN node is supplied with its operating power via the cable, this pin 
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gets connected to the positive line of the supply power. The voltage levels 
are not specified. A commonly used voltage in industrial systems is 24VDC.

• Ground (Optional): 
This is an additional ground pin that in most applications will be identical 
to the CAN ground.

5.2.5.1 9-Pin D-Sub

When using 9-pin D-Sub connectors, the male connector is expected to be on the 
device or network node. The female connector is used on the cable.

Figure 5.5 Pin Assignment for 9-pin D-Sub

In general, pins that are unused or reserved may be used for manufacturer spe-
cific purposes. However, you should keep in mind that the CiA reserves the 
right to change their recommendation for the reserved pins in the future.

Pin  Signal Description

1 - Reserved

2 CAN_L CAN_L bus line (dominant low)

3 CAN_GND CAN Ground

4 - Reserved

5 (CAN_SHLD) Optional CAN Shield

Table 5.1  Pin Assignment for 9-pin D-Sub
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5.2.5.2 Muti-Pole or Dual Header Row

When connecting to a header row directly on a PCB, the layout is D-Sub compatible – 
meaning that if clamped 9-pin D-Sub connectors are used on a flat ribbon cable, it can 
be directly connected to a dual header row.

Figure 5.6 Pin Assignment for 10-pin Dual Header Row

6 (GND) Optional Ground

7 CAN_H CAN_H bus line (dominant high)

8 - Reserved

9 (CAN_V+)
Optional CAN external positive supply (dedicated for 
supply of transceiver and opto-couplers, if galvanic iso-
lation of the bus node applies)

Pin  Signal Description

1 - Reserved

2 (GND) Optional Ground

Table 5.2  Pin Assignment for 10-pin Dual Header Row

Pin  Signal Description

Table 5.1  (Continued) Pin Assignment for 9-pin D-Sub
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5.2.5.3 RJ10 – 4-pin

Some RJ10 sockets have a “connector inserted” detection built in. On devices with two 
sockets this can be used to implement auto-termination. As long as only one cable is 
inserted in any of the two sockets a termination resistor is connected. As soon as both 
sockets are used (two cables plugged in), the termination resistor is disconnected.

Figure 5.7 Pin Assignment for 4-pin RJ10

3 CAN_L CAN_L bus line (dominant low)

4 CAN_H CAN_H bus line (dominant high)

5 CAN_GND CAN Ground

6 - Reserved

7 - Reserved

8 (CAN_V+) Optional CAN external positive supply

9 - Reserved

10 - Reserved

Pin  Signal Description

Table 5.2  (Continued) Pin Assignment for 10-pin Dual Header Row
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5.2.5.4 RJ45 – 8-pin

One of the benefits of RJ45 is that many cable configurations are readily available off-
the-shelf as this connector is used by Ethernet. Therefore it is seldom necessary to 
manufacture customized cabling when using RJ45.

Figure 5.8 Pin Assignment for 8-pin RJ45

Pin  Signal Description

1 (CAN_V+)
Optional CAN external positive supply (dedicated for 
supply of transceiver  and  optocouplers,  if  galvanic  
isolation  of  the  bus node applies)

2 CAN_H CAN_H bus line (dominant high)

3 CAN_L CAN_L bus line (dominant low)

4 CAN_GND Ground / 0 V / V-

Table 5.3  Pin Assignment for 4-pin RJ10

Pin  Signal Description

1 CAN_H CAN_H bus line (dominant high)

2 CAN_L CAN_L bus line (dominant low)

3 CAN_GND Ground / 0 V / V-

Table 5.4  Pin Assignment for 8-pin RJ45
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5.2.6 Physical Layout 

The physical layout of a CANopen network is that of a linear bus. The main trunk 
consisting of the CAN_L and CAN_H signals must have termination resistors at each 
end of the line. It is recommended that the termination resistors be 120 Ohm for buses 
running at a speed of 1Mbps. Slower and longer buses should use resistor values in 
the range of 150 Ohm to 300 Ohm.

If “junctions,” “Y’s” or “drops” are used, they may not exceed a maximum length. 
This length depends on the maximum speed used on the network. The higher the 
speed, the shorter the maximum drop length allowed. In a worst case scenario with a 
bit rate of 1Mbps the maximum drop length may not exceed 1 (one) foot.

4 - Reserved

5 - Reserved

6 (CAN_SHLD) Optional CAN Shield

7 CAN_GND Ground / 0 V / V-

8 (CAN_V+)
Optional CAN external positive supply (dedicated for 
supply of transceiver and opto-couplers, if galvanic iso-
lation of the bus node applies)

Additional recommended pin-outs for industrial connectors including “mini” 
and “micro” style connectors and for Firewire connectors are specified in 
[CiADRP3031].

Pin  Signal Description

Table 5.4  (Continued) Pin Assignment for 8-pin RJ45
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Figure 5.9 Physical Layout

Figure 5.10 CANopen Bit Rate versus Bus Length

There are many factors involved when calculating maximum bus length and maxi-
mum drop length possible. Besides the conductivity factors of the cabling and connec-
tors, one also needs to consider the number of nodes connected, the bus speed used, 
the delay time of the transceivers and the position of the sample point for read-backs 
(which specifies where in a bit time a node samples the bit for reading it – typical val-
ues are in the range of 70% to 87%). 

The single most crucial value for the maximum bus length is the bus speed. 
Figure 5.10 shows how the bus speed influences the maximum bus length achievable. 
The physical background is quite simple. The way the arbitration and error detection 
system of CAN works, a single bit must be stable on the entire bus before the next bit 
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can start. So as an estimate, the shortest bit time possible is the time it takes for a sig-
nal to travel from a node at one end of the bus to one on the other end – and back 
again. “And back” is required to ensure that any node still has a chance to overwrite 
the signal on the bus. So a node writing the recessive state could be overwritten by 
one writing the dominant state.

In summary, one bit time cannot be shorter than the time it requires for a signal to go 
through a transceiver onto the bus, roughly traveling at the speed of light to the other 
end, going through a transceiver again, and all the way back. At a bit rate of 1Mbps 
some 120 feet is about the best one can expect in terms of CAN bus length. If some of 
the other conditions are unfavorable, like lots of nodes connected to the bus or an 
early sample point for the read-back, the maximum length possible might not even 
reach 100 feet.

In many cases, a rough estimate for the maximum achievable bus length is sufficient. 
An estimate is shown in Figure 5.10. 

5.2.7 The CAN Base Frame Format 

Of the various messages/frames on CAN, the one used most often is the Data Frame 
containing process data. Another important frame is the Error Frame. Additional 
information about the frames listed here and other messages/frames such as remote 
frames and overload frames can be found in [Lawrenz97] and [Etschberger01].

Figure 5.11 The CAN Base Frame Format
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Consider Figure 5.11, reading from left to right. The CAN Data Frame begins with a 
dominant start bit. While idle, the bus is in the recessive state, so that any transition 
from idle to dominant is considered the start of a frame.

What follows is the 11-bit CAN message identifier. In CANopen this is usually part of 
the COB ID, the Connection Object ID. Because this field is part of the arbitration pro-
cess (the resolving of collisions if multiple nodes transmit at the same time), it must be 
ensured that each message ID is unique in the network. This simply means that no 
CAN ID may be transmitted by more than one node at any time.

When using CANopen, the three control bits that follow should all be considered 
“reserved” and should be left at 0. The CiA recommends that developers not use RTR 
(remote request, used to poll a certain message) or IDE (used to enable a 29-bit identi-
fier instead of 11-bit) in CANopen networks. See also the FAQ Appendix A for more 
information on RTR.

DLC stands for “Data Length Code” and specifies how many data bytes are in this 
frame. Although the DLC is a 4-bit value, the only values allowed for DLC are 0 
through 8.

The data field contains as many data bytes as specified by the DLC. So the length in 
bits is either 0, 8, 16, 24, 32, 40, 48, 56 or 64. Right after the data field is the 15-bit CRC 
– Cyclic Redundancy Checksum. 

The remaining control bits are the CRC delimiter, the ACK (acknowledgement) slot 
and the ACK delimiter. The delimiters are used to give all nodes some time to work 
on and react to the previous bits. Receiving nodes get one bit time (CRC delimiter) to 
compare the CRC calculated internally on the received data with the CRC received in 
the frame. They then have one bit time (ACK delimiter) to complete CRC calculation 
and one bit time (ACK slot) to acknowledge that they received the Data Frame. If the 
last delimiter is recessive, it confirms that all nodes received the frame and matched 
the CRC. See also Section 5.2.9.

The data frame ends with an end of frame sequence of 7 consecutive, recessive bits. A 
minimum period of 2 (new ISO 11898-1) or 3 (ISO 11898) recessive bits must follow as 
inter-frame space (idle between messages), before the next frame can begin.

Depending on the number of data bytes in a data frame, the length of a data frame 
varies from 44 to 108 bits. However, due to the bit stuffing the actual length of a data 
frame can be longer.
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For more information on bandwidth and worst-case calculations such as the highest 
expected message rate (data frames per second) or the highest possible data band-
width, see the FAQ Appendix A.

5.2.8 Collisions and Arbitration 

The collision and arbitration process is one of the central features of CAN. It ensures 
that if a collision occurs (multiple nodes transmitting at the same time), they are 
resolved by priority and the highest priority message will get through. The entire pro-
cess is implemented in such a way that no bandwidth is lost. 

The process is similar to CSMA/CD (Carrier Sense Multiple Access with Collision 
Detection). “Carrier Sense” means that a node constantly “senses the carrier,” listen-
ing to the communication on the network. It will not, however, interfere with a com-
munication currently in progress. “Multiple Access” means multiple nodes have 
access to the carrier medium at the same time – if there is no communication on the 
network, multiple nodes may try to write to the network at the same time. The “Colli-
sion Detection” is the detection of a collision if indeed multiple nodes write at the 
same time.

The interesting part is what happens next. The traditional CSMA/CD as implemented 
on Ethernet would start a jamming sequence once a collision is detected. This way the 
communication is interrupted for everybody and aborted. All nodes will start over 

When the designers at Bosch who developed CAN had to decide how many 
data bytes would be allowed as minimum and maximum, several factors were 
evaluated. 

One concern was that even the highest priority messages would have to wait 
until the message currently in progress was completed. So the maximum mes-
sage length allowed directly determines the maximum delay even the highest 
priority message might have before it gets transmitted.

Another concern was the reliability of the checksum. The longer the message, 
the less effective the CRC.

The final compromise was to allow 0 to 8 data bytes, requiring a 4-bit DLC – 
Data Length Code. Some argue that a 4-bit DLC could also be used to allow a 
message length of up to 15 data bytes, However, that would entirely change the 
communication timing and reliability of CAN.
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after a random delay. Unfortunately this process steals bandwidth, as nothing can be 
transmitted during the jamming sequence.

CAN uses a smarter approach. Instead of producing a jamming sequence, collisions 
are instantly resolved by priority. The message with the highest priority wins this 
arbitration and gets through. Not only does the highest priority message get through, 
the entire process is immediately repeated with all the messages that lost the arbitra-
tion cycle. So the message with the next highest priority is automatically transmitted 
next. Sometimes, this mechanism is called CA (Collision Avoidance) instead of CD 
(Collision Detection), arguing that collisions in the true sense do not happen in CAN. 
This entire process is implemented in hardware and does not require any software 
intervention.

Figure 5.12 The CAN Arbitration Process

Figure 5.12 illustrates how the arbitration cycle of CAN works. The most likely sce-
nario for a collision occurs when multiple modes internally get a request to send a 
frame while another transmission is currently in progress. In this case nodes 1, 2 and 3 
get a request to send while node X is transmitting. Because nodes 1, 2 and 3 are con-
stantly listening to the network, they know that the network is currently being used 
and they wait until node X completes its transmission.
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Once node X completes its transmission, nodes 1, 2 and 3 will wait until the end of the 
minimum inter-frame space (three recessive bits) and then simultaneously start trans-
mitting their messages. They all write the dominant start bit. Right after the start bit, 
the three nodes start the bit-by-bit arbitration cycle in which the 11-bit message identi-
fier is used. The nodes write the message identifiers with the highest significant bit 
first.

There are three key points to the arbitration process that follows:

1. CAN message identifiers are unique in the network. An identifier is assigned to a 
node and only that node may transmit it.

2. Writing a 0 (the dominant state) overwrites a 1 (the recessive state).

3. Each node writing a bit also reads it back from the bus to confirm that transmis-
sion was successful, or if it was overwritten.

Because the identifiers are unique, there will be a collision somewhere within the 11-
bit identifier field if multiple nodes try to transmit at the same time. Nodes that send a 
1 and read back a 0 know that another node overwrote their 1 and that they lost the 
arbitration. They will step back from the bus and try again immediately after this 
frame ends. In this example, node 2 loses arbitration in the third bit of the identifier. It 
writes a 1 but reads back a 0, so it knows that it lost arbitration and will abort the cur-
rent transmission. Instead, it will start receiving the message from the node which 
won the arbitration.

The algorithm started in each node with a request to transmit performs the following 
simplified steps:

1. Wait until the bus is available (wait until current message is completed).

2. Send the dominant start bit.

3. Send the next bit of the 11-bit CAN identifier.

4. Read back the bit from the bus lines.

5. If the bit from step 4 is different from the bit from step 3, receive the incoming mes-
sage, then go back to step 1 and start over.

6. If number of bits arbitrated is not yet 11, go back to step 3.

7. Arbitration won – send data frame.
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5.2.9 Error Detection Mechanisms

CAN has very sophisticated error handling implemented as part of the protocol. Most 
steps involved are implemented directly in the CAN controller hardware and are usu-
ally not influenced or controlled by the application program.

Although the arbitration process is one of the best features of CAN, it is also 
directly responsible for some of the limitations of CAN. 

Because every node needs to be able to read back the bit that it just wrote, a bit 
must be stable on the entire bus before the next one can be transmitted. This 
limits CAN’s maximum speed/distance compared to networks that operate as a 
pipeline – bits are pushed in as fast as possible without waiting. By the time the 
first bit reaches the end of the pipeline, several more bits might be already on 
the way.

The message identifier uniqueness requires that the 2048 (211) identifiers avail-
able need to be assigned to the network nodes to ensure that no single node 
uses an ID that is assigned to another node. All higher-layer protocols includ-
ing CANopen implement some scheme to assign the identifiers. Most of these 
schemes require that each node be assigned a unique Node ID before it gets con-
nected to the network. Typically nodes get pre-configured via some software 
setup tool that writes to non-volatile memory, or by switches or dials.

A true plug-and-play implementation would preferably not require such a 
setup from the user. In some applications, each setup step performed by the 
user is considered a “hazard” as there are always some users that will do 
wrong what they can do wrong.

There are some work-a-rounds for this problem, all with their own set of draw-
backs. See the FAQ Appendix A for more information on possible work-a-
rounds.

Note: In carefully controlled situations, multiple nodes may transmit the same 
message identifer to signal a request or condition, as long as the message does 
not contain any data. If more than one node attempts to transmit the message 
at the same time, a single message will appear on the bus as all nodes will think 
that they transmitted their message. It is then up to any listening node to deter-
mine what to do next, for example polling all nodes to see which one transmit-
ted the message. An example of this is the  Dynamic SDO Request message 
described in Section 3.2.2.
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In low-level hardware, each node on the network actively monitors the network and 
checks the CRC of every message. Figure 5.13 illustrates a successful CRC compari-
son. In this case node 1 transmits a message and during transmission also calculates 
the cyclic redundancy checksum. The checksum covers all bits from the first bit of the 
message identifier up to the last bit of the last data byte transmitted. The calculated 
15-bit checksum, in this case 4A2Fh, is transmitted right after the last data bit.

Any other node on the network which receives the data frame actively calculates the 
checksum. In this case node 2 receives the message, calculates the checksum and com-
pares the one calculated with the one received via the network. If the two match, it 
pulls the acknowledgement bit to the dominant state as a confirmation that the recep-
tion process was completed successfully. 

Because every node on the network performs this task, one might get the impression 
that the acknowledgement only confirms that at least one node received the message 
correctly. However, a look at the case for a mismatch illustrates that it actually means 
that every node on the network received it correctly, because if a single node detects a 
mismatch it will destroy the faulty message for every node.

It should be noted that the above is only true for nodes that are in error active mode. 
A node that is error passive or even “bus off” does not destroy messages with a CRC 
error.

Figure 5.13 Cyclic Redundancy Check – Match
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Figure 5.14 Cyclic Redundancy Check – Mismatch

In Figure 5.14 the scenario from Figure 5.13 is modified slightly. In this case, the CRC 
transmitted gets changed during reception. 

As a result of the change, a different checksum is received by node 2. Node 2 detects 
the mismatch and instead of setting the acknowledgement bit, it generates an Error 
Frame which is recognized by all other nodes on the network (including the one trans-
mitting the message). Every node recognizes the error and discards the current mes-
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sage. After a specified timeout, the inter-frame space, the transmitting node will 
automatically re-try to transmit the message data frame again.

Figure 5.15 CAN Controller Error States and “Bus Off”

A question that typically arises at this point is What happens if the check sum generator of 
a node is faulty? It would destroy every communication attempt on the network.
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If, on the other hand, the values of the error counters increment further and the trans-
mit error counter overflows (greater than 255) the node goes into “Bus Off.” Bus Off 
means that the CAN controller shuts down and stops transmitting or receiving CAN 
messages. Bus Off is a serious network error and self recovery is not possible. The Bus 
Off state can only be left by re-initializing the CAN controller.

5.2.10 The Safety of CAN: Error Statistics

The overall error statistics of a CAN network depend on several factors. As described 
earlier, any single node detecting an error will actively destroy the message for all 
nodes, so the more nodes that are connected and participating in the communication 
the more reliable the network becomes. Other factors include the level of electromag-
netic interference along the network cable and the kind of shielding used. The differ-

How to treat a “Bus Off”

The Bus Off state is typically reported to the microcontroller by an error inter-
rupt. What exactly happens in this interrupt service routine depends on the 
application software. 

Because Bus Off is an indication of a serious network error, just re-initializing 
the CAN controller might not fix the problem. You should consider a con-
trolled shut-down of the entire system if it is feasible. 

However, if your application can not afford an immediate shut-down (like 
many automotive systems), the only thing you can do is to re-try. Reset the con-
trollers involved and try again. To give other nodes a chance to catch-up or 
recover, the re-initialization should not be immediate (for example, by imple-
menting an immediate reset upon Bus Off detection). Instead, there should be a 
minimal timeout before re-initializing. Typically the timeout should be in the 
hundreds of milliseconds.
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ential signal provides more stable communication in noisy environments, but still 
CAN is not immune to interference.

There are several research papers available online that examine the performance, reli-
ability and vulnerability of CAN. See [Charzinski], [Nolte] and [Zuberi] in Appendix 
J. Interested readers should have no problem locating the papers using an online 
search engine.

CAN Error Statistics

It is often said that with statistics you can prove anything...

Nevertheless, the network reliability of CAN is very high. To those who are 
familiar with Cyclic Redundancy Checksums this should not come as a sur-
prise. Just to give a comparison: on Ethernet protocols a 16 bit checksum is typ-
ically used to cover message blocks of up to 1,500 bytes. In CAN, a 15-bit 
checksum covers a maximum of 8 data bytes.

The guaranteed Hamming Distance for CAN is 6. The Hamming Distance is a 
measurement for the checksum reliability. In this case it means that up to 5 bit 
errors (bits randomly flipped in the data covered by the checksum and in the 
checksum itself) can be detected reliably.

One of the most stringent statistical requirements set by some automotive 
applications is fulfilled by CAN: if a network based on 250kbps operates for 
2000 hours per year at an average busload of 25% an undetected error occurs 
only once per 1000 (one thousand) years. 

An “undetected error” means that multiple bits in a message get distorted in 
such a way that the CRC does not detect it and a message with the wrong iden-
tifier or the wrong data contents gets through.
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5.3 Selecting a CAN Controller

“Just because something doesn't do what you 
planned it to do doesn't mean it's useless.”

Thomas Edison

The first CAN controllers implemented in the early eighties were the Intel 82526 and 
the Philips 82C200. Their features were quite different. The Philips 82C200 only pro-
vided a very basic set of communication functions, and thus was dubbed a “Basic 
CAN controller.” The Intel 82526 (its successor 82527 is still used today) was referred 
to as a “Full CAN controller.” Today there are so many variations of CAN controllers 
that the terms Basic or Full CAN often cannot be applied anymore and a more specific 
one-to-one comparison becomes necessary.

In general, all CAN controllers available today can be used to implement CANopen – 
even those that were designed with other protocol structures in mind.

5.3.1 Required Performance

The required communication performance, which of course depends on the specific 
application and implementation, is a crucial selection criterion. In any case, the worst-
case scenario for CAN communication can be summarized as follows: The highest bit 
rate is 1Mbps. The longest possible message contains 8 data bytes. The shortest possi-
ble message (0 data bytes) takes about 50 bit times on the bus. At 1Mbps, 50 bit times 
correspond to 50 microseconds.

If the goal of an application is to handle CAN interrupts in real-time, the microcon-
troller would need to “digest” an incoming message with 8 data bytes in less than 50 

Objective

In this section we point out the main benefits and drawbacks of specific CAN 
implementations with a special focus on suitability for CANopen. Several of 
the major chip manufacturers producing CAN devices add their own twist to 
the CAN controllers by incorporating some additional hardware functionality. 
The main goals for these customizations are usually either to lower the burden 
on the host MCU (like filtering, buffering and/or queuing incoming messages) 
or providing extra safety and security (producing additional or more detailed 
error detection mechanisms).
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microseconds. Potentially this is the shortest time the next receive interrupt could 
occur.

However, to leave enough MCU operating time for the real application (whatever is 
handled besides CAN communication), the “digesting” should take far less than 50 
microseconds.

Experienced users of 8-bit microcontrollers will immediately see that such a worst-
case scenario could be very challenging to some microcontrollers, and could easily 
keep them busy with nothing but CAN communication. However, it is seldom the 
case that a single node needs to receive and work on 100% of the messages on the bus. 
Typically a node only needs to listen to a certain percentage of the messages. While 
this helps to reduce the overall average MCU operating time required for handling 
the CAN communication, work-a-rounds are still needed to handle bursts of back-to-
back messages that a node might need to receive.

Fortunately, modern CAN interfaces have hardware filtering and buffering features 
that help with the task of ignoring unwanted communication and buffering back-to-
back messages.

5.3.2 Hardware Filtering with Match and/or Mask

The functionality of hardware filters is very similar on many CAN devices. While 
receiving a CAN message, the identifier (and sometimes even the data) can be com-
pared to a configured filter. Only if the incoming message matches the filter does the 
message get stored into a receive buffer. The major differences in filters are usually the 
width of the filter, and whether or not it is a “match only” filter or also allows a mask 
to be used. A mask allows for the setting of individual bits as “don’t cares,” so a com-
bination of match and mask registers can be used to select range filters, such as receiv-
ing all messages with an identifier in the range of 000h to 0FFh.

The filter width specifies how many bits of an incoming CAN message can be pro-
cessed. For a standard CAN message identifier at least 11-bits are required. For an 
extended CAN message identifier it is 29-bits.

Where a “match only” filter looks for one exact match (for example, exactly one iden-
tifier), a combination of match and mask allows for filtering on message groups (for 
example, identifiers 100h to 11Fh). Usually, a bit set in the mask register means that 
the corresponding bit in the CAN message is a “don’t care” value for the purposes of 
acceptance filtering. If a bit is cleared, it must match the value in the match register.
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5.3.3 Different CAN Implementations

5.3.3.1 Traditional Basic CAN

Figure 5.16 Block Diagram of a Basic CAN Controller

The first “Basic” CAN interface was implemented by the Philips 82C200. In compari-
son to the earlier Intel 82526 it only provided "basic" functionality. Basic CAN inter-
faces only offer a limited number of receive buffers and filters (typically one to three). 
If a node using such a controller needs to listen to a number of different messages (dif-
ferent CAN message identifiers), the filters usually have to be set “wide open” caus-
ing an interrupt with every single message on the bus. Obviously, the microcontroller 
will receive many CAN interrupts, as it has to check in software to see if a message 
can be ignored or needs to be worked on.

Today some CAN controllers have an “extended” Basic CAN interface that has addi-
tional buffers that can be used for either receive or transmit. However, using multiple 
buffers is the main idea of the Full CAN controller.
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5.3.3.2 Traditional Full CAN

Figure 5.17 Block Diagram of a Full CAN controller

The very first CAN controller, the Intel 82526, used the so-called “Full-CAN” imple-
mentation. Full CAN controllers have a number of message objects (typically 15). 
Each message object is bi-directional (can be configured to either transmit or receive), 
each has its own transmit/receive buffer for one message, and each has one filter 
match register. This allows developers to set a message object to listen for exactly one 
message (one identifier).

As long as the total number of messages a node needs to listen to is smaller than the 
number of message objects available, these interfaces are very efficient. They will only 
cause an interrupt to the MCU if a “wanted” message is received. However, as soon as 
many different identifiers need to be received, there is no true benefit to a Full CAN 
interface over the Basic CAN interface. This is the case when implementing CANopen 
masters or managers that need to communicate with many or all nodes on the net-
work.

In addition, the Full CAN mechanism does not offer any protection from a back-to-
back worst-case scenario. Each message object has a single buffer and a matching 
incoming message will override the buffer’s contents, so it is possible for messages to 
get lost. As long as a buffer is configured for a single message identifier, this scenario 
is not too problematic, as it is unlikely that the producer of that message will produce 
them back-to-back. But if any of the message objects are configured to receive multi-
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ple CAN identifiers (as required by most CANopen masters or managers), the micro-
controller needs to be prepared for the possibility that these could come in back-to-
back. On a 1Mbps CAN network that means about 50 microseconds from a receive 
interrupt occurrence to a potential overwrite of the message by the next incoming 
message.

5.3.3.3 FIFOs

Figure 5.18 Block Diagram of Philips’ PeliCAN (SJA1000, 87C591 and LPC99x)

The only way to get around the back-to-back message problem and the high perfor-
mance and timing demands on the interrupt service routine is with a receive FIFO 
buffer (First In – First Out). A typical implementation features a number of filters that 
include both match and mask registers. Upon a filter match, the incoming message is 
moved into the FIFO buffer. An interrupt request to the MCU is made depending on 
configuration; either a certain fill-level is reached or a high priority filter received the 
last incoming message.

Even if such a FIFO can only hold 64 bytes it is still big enough to improve upon the 
back-to-back scenario mentioned earlier. If the FIFO is configured to cause an inter-
rupt with every single incoming (matched) message, the MCU has at least 500 bit 
times until the FIFO will overflow. This is about 10 times more time available to the 
MCU than with Basic CAN or Full CAN implementations.

On the downside, messages in the FIFO cannot pass each other. So if the FIFO already 
contains several messages and an additional, but high priority message comes in, the 
MCU first needs to process all messages previously stored in the FIFO before it gets 
access to the high priority message. In a Full CAN interface it is up to the interrupt 
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service routine to determine in what order the message objects are checked, and it 
may be possible for a higher priority message to pass previously received, lower pri-
ority messages.

5.3.3.4 Enhanced Full CAN with Receive FIFO

Figure 5.19 Philips’ Enhanced CAN Interface of the XA-C37

The latest developments do not have standardized names because chip manufacturers 
have come up with their own customized improvements for the CAN interfaces. Sev-
eral chip manufacturers now offer devices that combine the benefits of Full CAN and 
a FIFO.

The most powerful approach is a Full CAN implementation with a dedicated FIFO for 
each single message object. Although powerful, these are also the most complex con-
trollers to configure, especially if each individual FIFO can be freely located in RAM 
and can be of individual lengths.

Another alternative is to be able to take a Full CAN implementation and concatenate 
message objects to a FIFO. So instead of one message object only having one buffer, a 
FIFO can be formed “borrowing” the buffers of other message objects. Although fairly 
flexible, the disadvantage is obvious - with each buffer added to a FIFO, one message 
object is lost. So the value of this feature increases with a high number of message 
objects, but decreases as the number of message objects decreases.
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5.3.4 Physical Interfaces of CAN Controllers 

A variety of interfaces have been implemented for the communication between the 
microcontroller and the CAN controller. The typical interface is “memory-mapped,” 
meaning that the SFRs (the Special Function Registers) that control the CAN interface 
are mapped into the microcontroller’s memory. Using memory read and write 
instructions the microcontroller can then access the registers; for example, those con-
taining the bytes of a single CAN message. This method is used for both “stand-
alone” (external to the microcontroller) and “on-chip” CAN controllers.

CAN controllers with many features also require many SFRs. For example a full-CAN 
style controller typically needs 16 registers per message object - four for the message 
ID, one for the length, up to eight data bytes and some control and/or filter mask reg-
isters.

On 8-bit microcontrollers the SFRs are typically located in internal data memory – 
which in the case of the 8051 is limited to a total of 256 bytes. Obviously there is not 
enough room in that address space to map all CAN registers into it, since that address 
space is also needed for non-CAN related registers.

Semiconductor manufacturers took different approaches to solve this problem on 
8051 architectures. Some have chosen to place the CAN SFRs into the XDATA seg-
ment which is normally used for external memory. However, XDATA access is slower 
than internal memory access.

Philips Semiconductors chose a different path using just two SFRs: a selection or 
pointer register and a data register. By setting the selection/pointer register, the appli-
cation can select which of 256 “hidden” CAN SFRs should be made available in the 
data register. A read or write instruction from or to the data register then performs a 
read or write to the selected CAN register. In addition, the read or write from or to the 
data register also auto-increments the selector/pointer. This allows the application to 
continuously read from or write to the data register if consecutive registers are to be 
accessed.

Sometimes a “stand-alone” CAN controller is equipped with another serial interface 
(I2C or similar) towards the microcontroller. Before using one of these controllers, one 
should carefully examine the worst-case bus speed and bus load that could occur. The 
burden on the microcontroller can be quite high because the “regular” serial protocols 
require the microcontroller to react (typically via an interrupt) upon every byte trans-
mitted. Using a memory-mapped CAN controller, the microcontroller only needs to 
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react upon an entire message, so there are fewer interrupts that the microcontroller 
needs to deal with.

5.3.5 Code, Data Memory and CPU Performance Requirements

Another important selection criterion comes not from the CAN interface imple-
mented on a specific microcontroller, but from the microcontroller or microprocessor 
itself. Some CANopen implementations can be quite demanding on memory and 
CPU performance requirements. Obviously CANopen masters/managers require 
more storage space for code and variables and more CPU power than average CANo-
pen slave nodes. However, some CANopen slave nodes also might require more 
resources than an 8-bit microcontroller can provide.

While a specific implementation of a CAN controller can take workload from the 
microcontroller or microprocessor using it, the overall performance of a CANopen 
implementation also depends on the resources provided by the main processor. For 
example, a full-CAN style CAN controller can be setup to exclusively use one mes-
sage object for each CAN message received or transmitted by a CANopen slave node 
(using the hardware filters provided, a message object can be assigned to one specific 
message ID). Typically the messages handled by a CANopen slave are one message 
object for receiving the NMT Master message, one for the heartbeat message pro-
duced, two for the SDO request and response channels and one for each PDO. For 
simple CANopen slaves this allows for a very efficient usage of the resources pro-
vided by the CAN controller.

However, if the nodes get more complex (increasing number of PDOs and/or monitor-
ing of several heartbeats), it may be the case that the total number of CAN messages 
that need to be handled exceeds the number of message objects provided by the CAN 
controller. Once that point is reached the benefits of the “full-CAN” style CAN con-
troller vanish. At this point one message object needs to be “opened” to receive all 
incoming messages (by removing all hardware filters). The result is that the CAN 
receive interrupt now gets far more messages to process and needs to run at a higher 
priority to deal with the additional network traffic. The interrupt service routine 
needs to look at the received message and decide in software if this message is needed 
by the local node or not. If it is needed, it needs to be removed from the CAN buffer 
before the next incoming CAN message overwrites the data. In order to achieve this, 
many implementations use additional memory buffers for the receive messages, 
requiring additional RAM.

In these cases the SJA1000-style CAN controllers from Philips Semiconductors are 
more suitable. They already have a receive buffer built-in, so the worst-case timing for 
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a potential over-write of that buffer is much longer. As a general guideline, on an 
SJA1000 it takes about 10 times longer for a potential overwrite to occur, compared to 
a “Basic” CAN controller or a “Full” CAN controller with one message object set to 
receive everything.

To get an estimate of the CPU load required to handle CANopen, one should evaluate 
the CPU load available for handling the CAN communication (in comparison to how 
much CPU load is required for handling the application), the desired CAN bit rate, 
and the instruction execution rate of the microcontroller.

The question is On average, how many instructions can the microcontroller use for work on 
the CANopen stack for each CAN bit time? (i.e. InstructionsPerBitTime).

To get the number of InstructionsPerBitTime, one first calculates the CAN bit time. 
For example, at a bit rate of 1Mbps the bit time is 1 microsecond.

The next number needed is the number of instructions the microcontroller can execute 
during that time. A regular 8051 running at 12MHz would execute only one instruc-
tion per bit time. However a “6-clock” (double speed) part running at 24MHz would 
execute four.

Finally, it needs to be determined how much overall CPU load (as a percentage) is 
available for handling the CANopen communication, and this is applied to the num-
ber of instructions executed per CAN bit time. For example, if there are four instruc-
tions per bit time and the overall CPU load available for CANopen is 33% the result 
for “InstructionsPerBitTime” would be 1.333 instructions.

When it comes to CPU performance requirements for CANopen implementa-
tions, it is unfortunately impossible to make exact comparisons as there are too 
many differences in the CAN controllers, the microcontroller architectures and 
the quality of the source codes and compilers. 

The following is intended only as a rough estimate to give the reader some 
guidance as to whether or not the performance of the microcontroller chosen is 
sufficient, or if more detailed examinations have to be made.

For 16-bit devices, multiply the result InstructionsPerBitTime by 1.5 and for 32-
bit devices – don’t even do this calculation, you should have enough perfor-
mance.
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If the resulting InstructionsPerBitTime is below 2, one would need to evaluate the 
entire system and scenario thoroughly and very carefully.

• If the resulting InstructionsPerBitTime is above 5, there should be ample 
performance for handling any CANopen implementation.

• For everything in between it might be necessary to guarantee a certain over-
all efficiency either by using an advanced CAN controller or by optimizing 
the CANopen software towards the specific microcontroller or a combina-
tion of both.

5.3.6 Controller Selection Summary

Selecting the CAN controller that is right for a particular application goes hand-in-
hand with the selection of the microcontroller unit (MCU) used to run the application 
software.

Basic CAN controllers can dramatically increase the workload for the MCU and 
should only be considered for simple, minimal CANopen slave nodes in minimal net-
works. Because a lot of message filtering has to be done in software, the workload to 
handle the communication will greatly increase with the number of nodes connected 
to the network.

Full CAN controllers are ideal for CANopen slave nodes where the number of differ-
ent CAN messages received does not exceed the number of “message object buffers” 
implemented in the controller. In this case, one message object can be configured to 
exclusively receive CAN messages with one particular CAN message identifier. If, 
however, the implemented node needs to receive more different CAN messages than 
message objects are available (for example, complex slaves or a CANopen master lis-
tening to many PDOs), the Full CAN interface does not have any advantage over the 
Basic CAN interface.

CAN controllers with one or multiple receive FIFO buffer(s) are suitable for any 
CANopen implementation, both slaves and masters or managers. Full CAN control-
lers that have the capacity to combine several message objects into a FIFO also fall into 
this category. CANopen nodes that need to receive many or all CAN messages on the 
network benefit greatly from these implementations, as these are the only ones that 
protect the application from high real-time demands. If a Basic or Full CAN controller 
is used to receive most or all CAN messages, the CAN interrupt service routine must 
often be implemented with the highest priority level. This is because after some 50 bit 
times on the bus (at 1Mbps about 50 microseconds) a data overrun could potentially 
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occur. Using a hardware FIFO buffer, this time is multiplied by a factor of 10 or more, 
depending on the size of the FIFO.

5.4 CAN Development Tools

There is a wide variety of development tools available that assist engineers in the 
development, debugging and testing process. When selecting tools like network mon-
itors, analyzers, loggers, stimulators and simulators, one needs to evaluate what kind 
of functionality is available and which upgrade or options paths are available towards 
CANopen. In the same way an oscilloscope only offers limited visibility when looking 
at a CAN data frame, CAN monitors and analyzers lack functionality when the final 
application is CANopen.

The tool used most often is a network monitor or analyzer. These come in a very wide 
variety of both functionality and pricing. As with any development tool, additional 
functionality directly relates to development time saved. When calculating project 
budgets, the cost of the tool needs to be evaluated in comparison to the time needed 
for development, debugging and testing. It should also be considered that the tools 
can be re-used in future projects. However, engineering time spent on debugging is 
always a loss of time and money.

Objective

Unfortunately, there is no standard definition of what features a CAN monitor, 
CAN analyzer or CANopen configuration tool must have. As a result, there are 
many different products on the market with similar names but very different 
prices. It is not uncommon that a high-end tool costs ten times as much as a 
low-end tool.

In this section we do not recommend or compare any specific tools. Instead, we 
give the reader a list of functions that we found useful when using CAN moni-
tors and analyzers. The reader can use this list when drawing comparisons 
between different commercial products.
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5.4.1 Functions Expected of a CAN Interface

5.4.1.1 Basic Functions

• Support a variety of CAN PC interfaces: ISA, PCI, PCMCIA/CardBus, “Don-
gle” for COM or LPT, USB and others

• 9-pin D-Sub male connector on CAN interface

• ISO-11898 compliant high-speed transceiver

• Support all CANopen bit rates: 1Mbps, 800kbps, 500kbps, 250kbps, 
125kbps, 50kbps, 25kbps and 10kbps

5.4.1.2 Advanced Functions

• Able to use a variety of transceivers

• Support all CAN bit rates: from 1kbps to 1Mbps

• Support up to 100% busload on 1Mbps network

• Multiple CAN interfaces in one hardware

• Produce a high-resolution timestamp

• Able to generate Error Frames

5.4.2 Functions Expected of a CAN Monitor or Analyzer

5.4.2.1 Basic Functions

• Runs on all current Microsoft Windows operating systems

• Trace display (trace of all messages on the bus)

o Timestamp

o Chronological display or fixed position (new message with same ID 
overwrites previous display)

• Transmission of CAN messages

o Multiple messages configurable

o Transmit on key pressed

o Transmit in reply to a specific message received
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5.4.2.2 Advanced Functions

• Symbolic display

o Replace identifiers with symbolic names

o Show single variables from CAN messages (for example display byte 2 
and 3 of a CAN message as a word called “RPM”)

o Support higher-layer protocols such as CANopen (knows and displays 
all the symbols known in CANopen)

o For CANopen support: recognizes EDS files, and can extract symbolic 
information from EDS files

• Trace display

o High-resolution timestamp

o Fully support “symbolic display” as described above

• Graphical Display

o Draws graphs showing how variables change over time

• Transmission of CAN messages

o Transmit periodically (every X milliseconds)

o Allow the data to be changed with each message sent

o Simulate specific nodes (script or program controlled reactions)

• Logging: record and replay messages

• Scripting language, usable to simulate nodes that are physically not yet 
available
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Figure 5.20 Screen Shot of Vector's CANalyzer with CANopen Option

5.4.3 Functions Expected of a CANopen Configuration Tool and Monitor

5.4.3.1 Basic Functions

• Runs on all current Microsoft Windows operating systems

• Send NMT message (start, stop nodes)

• Implements SDO write and read access

o Access any OD entry of any node on the network

o Support both expedited and segmented transfer

o Read/write from/to window or file

• CANopen-aware trace display
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• Transmission of PDO or other CAN messages

o Multiple messages configurable

o Transmit on key pressed

o Transmit in reply to a specific message received

5.4.3.2 Advanced Functions

• Network Scan (find and display all nodes found)

• Implements SDO write and read access

o Support of block transfer mode

• Supports EDS files (extracts symbol information)

• Entire Network Configuration (versus node-oriented configuration)

o Uses dynamic mapping and linking to make point-to-point connections

o Graphical representation of network (graphic display of each node 
found)

• Can assume NMT and/or CANopen Manager functionality

o Produce SYNCs

o Monitor Heartbeats (or execute Node Guarding)

• Scripting language
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 6 Implementing CANopen

“I love deadlines. I love the whooshing sound 
they make as they fly by.”

“A common mistake that people make when trying to 
design something completely foolproof is to 

underestimate the ingenuity of complete fools.”

Douglas Adams

Objective

This chapter is for readers that need to develop and build a CANopen node. If 
you are integrating a CANopen network consisting of off-the-shelf products, 
you might want to skip this chapter.

When it comes to implementing CANopen, the “openness” of CANopen pro-
vides several benefits. However, there are also drawbacks involved.

In this chapter we show development engineers these benefits and drawbacks 
while comparing and contrasting different implementation approaches. 
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6.1 Communication Layout and Requirements

Before one can start to make decisions about how to implement specific nodes of a 
CANopen network, it is essential to get an overview of the overall communication 
requirements. A reasonable understanding about the amount of communication that 
needs to be handled by individual nodes is required. This process also includes select-
ing the specific CANopen features that need to be implemented by each node. Are 
they following a specific device profile? And if yes, do all features of the device profile 
get implemented or can certain features be omitted?

To get a first impression of the required bandwidth, it is a good idea to start a table or 
spreadsheet with the maximum number of nodes and a list of all the process data 
variables that are produced by the nodes and transmitted in PDOs. For each process 
data variable produced, the table should have one line with the following columns: 
Node ID (or name), Name of the variable, data type and/or length of the variable and 
worst case transmission frequency. The transmission frequency should be in millisec-

Making a decision on which of the available paths is the best for a specific 
product is a multiple-step process. In general, you will need to:

• Generate an overall communication layout

• Define the CANopen features required for each node

• Evaluate which implementation method fits best

For latest hints on implementation options and code examples visit this book’s 
companion website at 

www.CANopenBook.com

Objective

The first steps in any embedded network design should be to gather as much 
information as possible about the communication requirements. Only with that 
information can we make an estimate about the required bandwidth and 
response times.
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onds. Typically it is the event time or inhibit time (whichever is smaller) to be used for 
the message that contains this variable.

An example is given in Figure 6.1. The column Ovr shows the number of bits of a 
PDO message that are not data bits, and the bps column indicates the bits per second. 
The overhead cannot be determined exactly, due to the bit stuffing done by CAN. 
However, 50 bits per message is an appropriate average for the purpose of getting an 
overview. For node 4 the overhead is only added once since the three variables 
Buttons_1 through Buttons_3 can all go into one PDO.

The formulas used are quite simple: “bps” is the total number of bits produced every 
second:

The bandwidth used by an individual variable is:

Figure 6.1 Worksheet with Produced Process Variables

Having these values and formulas in a spreadsheet allows developers to quickly mod-
ify timing or speed values, or to add or remove variables and see what kind of impact 
the changes would have on total bandwidth usage.

bps  1,000
Time (ms)
------------------------- Bytes 8 Ovr+×( )×=

% of total bandwidth bps
bus speed (kbps)
----------------------------------------=

35.072%Total:

1.280%160501Buttons_34

1.280%160501Buttons_24

9.280%116050501Buttons_14

21.120%264050252RPM_13

2.112%264502502Temp_12

% of totalbpsOvrTime (ms)BytesVariableNode

kbps125Speed:Produced Variables
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The spreadsheet and several other examples can be downloaded from www.CANo-
penBook.com.

6.2 Comparison of Implementation Methods

When it comes to implementing CANopen nodes, there are three primary implemen-
tation options available:

• Develop both hardware and software from scratch

• Develop the hardware from scratch and develop the software using a com-
mercial CANopen stack (software library or source code)

• Design the hardware to use CANopen communication processors (periph-
eral chips or modules that implement CANopen)

How much bandwidth usage is acceptable?

Please note that the given formulas are only rough calculations and do not 
account for all effects like bit stuffing or re-transmission of faulty messages. We 
also did not yet include heartbeats, node guarding and other potential mes-
sages.

The bandwidth calculation method described here is good enough as long as 
your total bandwidth usage stays below 80%. If your usage is beyond 80% you 
should seriously consider choosing a higher bit rate for the CAN bus or reduc-
ing the amount of communication.

If neither are possible, you would need to do a more detailed analysis of your 
worst case scenario. See publications such as [Lawrenz97] and [Etschberger01] 
for more hints on bandwidth calculations.

Objective

In this section we introduce the major CANopen implementation options avail-
able and compare them with each other in regards to their individual benefits 
and drawbacks.
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None of the above can immediately be identified as the best method; the appropriate-
ness of each depends on the application requirements. For some applications, porta-
bility to different microcontroller platforms might be important in order to build a 
variety of CANopen enabled products. Other applications might demand a certain 
performance, or require that a specific microcontroller be used.

More hints on selecting the appropriate method are listed in Section 6.7.

6.2.1 Develop Hardware and Software from Scratch

Although this route might sound tempting for many engineers it has several pitfalls, 
including the longest time for development, debug and test, as well as various “speci-
fication misinterpretation hazards.”

However, the biggest pitfall is the incompleteness of the CANopen specifications, 
especially in regards to error behavior. On one hand, the specifications lack a detailed 
description of error behavior. For example, which errors should a CANopen compli-
ant node report when a particular access sequence is wrongfully executed? On the 
other hand, this error behavior is checked by the CANopen conformance test.

As a result, developing a fully CANopen compliant software protocol stack is far 
more complex than a TCP/IP stack where good documentation and implementation 
examples are readily available. Yet many developers would consider buying a com-
mercial TCP/IP stack implementation because they do not want to re-invent the 
wheel. In comparison, developing a CANopen stack from scratch is like re-inventing 
the wheel and the engine driving it. Before deciding on that path, engineers and man-
agers should carefully evaluate all options.

However, the picture is quite different if 100% CANopen conformance is not really 
required. If all nodes of an application are designed and developed by the same engi-
neering team and are never sold as “CANopen compliant off-the-shelf” products it is 
perfectly acceptable to deviate from the standard – indeed this is part of the openness 
of CANopen. The typical approach is to design the in-house CANopen nodes in a way 
that they have enough CANopen compliance to be able to communicate with other, 
third party, fully compliant CANopen nodes even if they are not 100% CANopen 
compliant themselves.

To assist engineers with the process of deciding if such an approach is feasible for 
their application, the authors developed MicroCANopen. MicroCANopen is a mini-
mal CANopen implementation that can be downloaded for free from www.Micro-
CANopen.com. MicroCANopen is introduced in detail in Section 6.3. 
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MicroCANopen has some clear limitations that are a direct result of making the 
implementation “minimal” in terms of memory (both code and data) and CPU perfor-
mance required:

• Object Dictionary entries are limited to 32-bit, no larger entries supported

• Entire CANopen configuration is “static”: it is hard-coded and cannot 
change during operation

• Not all PDO triggering methods are supported

• Only the newer heartbeat is supported, not the original node guarding

6.2.2 Using Commercial CANopen Software

A very common approach to developing CANopen nodes is to buy CANopen soft-
ware in the form of libraries or source code that implement CANopen. Such commer-
cial solutions are available for a wide variety of microcontrollers and microprocessors 
from various companies. For a current listing of companies offering such products, 
see www.canopen.org and www.canopen.us.

There are several benefits to using commercial CANopen software. The vendor typi-
cally guarantees CANopen conformance of their stack and the examples delivered 
with the product. In addition, these codes are highly adaptable and portable, support-
ing a wide variety of microcontrollers.

Engineers using a commercial CANopen solution can get quick results on the CANo-
pen side of the project and can thus concentrate on the application side. Indeed, expe-
rienced engineers and consultants can create the prototype of a new CANopen node 
within a week if it is based on a commercial software stack with which they are famil-
iar.

Like all CANopen implementation paths, the commercial CANopen software solu-
tions have some pitfalls, too. The primary development goal for most commercial 
solutions is portability. The manufacturers want the code to be executable on the wid-
est variety of processors possible. That literally includes the high-end PC as well as 
the low-end 8-bit microcontroller. Obviously there must be performance drawbacks 
somewhere, as the price for portability is “software overhead” in the form of addi-
tional function interfaces or process queues.

Usually the 8-bit microcontrollers with both limited memory space and CPU perfor-
mance are the ones that do not get “optimal” support from commercial CANopen 
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software. Depending on the configuration, portable CANopen stacks for 8-bit micro-
controllers tend to require at least 12 kbytes to 48 kbytes of code and 500 to 1000 bytes 
of RAM. However, this is more than some of the smallest microcontrollers with CAN 
interface have available on-chip.

Besides using additional off-chip resources, the only solutions for such devices are 
highly customized implementations that typically are less portable, but strongly opti-
mized towards the microcontroller used. There are several companies offering con-
sulting services specializing in such optimized CANopen implementations. On some 
processor architectures the gain can be a factor of 2 or 3 – an optimized CANopen 
implementation is about 2-3 times faster than the “generic portable” implementation 
and requires only 1/3 to 1/2 of the memory.

6.2.3 Using CANopen Processors or Modules

Several companies offer CANopen chips, co-processors, modules or dongles that 
implement the CANopen protocol “in hardware.” Typically the protocol is not han-
dled in hardware, but by a regular microcontroller that is pre-programmed with soft-
ware to handle the CANopen communication.

Usually there are two types of such CANopen implementations; one that is a stand-
alone CANopen I/O node by itself, and one that requires a host processor.

The first provides direct access to digital and analog inputs and outputs. One needs to 
simply design the chip or module into the hardware and directly connect the inputs 
and outputs to the chip or module. No further software development is required. 
Obviously this is one of the fastest implementation methods available, as it com-
pletely skips the software development process.

The second type, where a host processor is required, is more of a CANopen periph-
eral or communication coprocessor. It provides a communication channel to the host 
processor, like a serial interface or a shared, external memory area. The host processor 
and the CANopen coprocessor primarily exchange process data variables. When and 
how those are transmitted via CANopen is entirely handled by the coprocessor. This 
keeps the software interface between host and coprocessor minimal, as only a few 
commands need to be supported and the host does not need to know much about 
CANopen other than how to identify process data variables.

In summary, the main benefit of these hardware solutions is the need for little or no 
software development, resulting in the shortest development times.
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One of the drawbacks is the limited flexibility. Because the developer does not have 
access to the code within the coprocessor, customized CANopen enhancements are 
difficult or impossible to implement. An application would need to stick with the 
exact features provided by the chip or module.

In addition, all “common sense hardware purchasing guidelines” apply: What’s the 
cost and availability of the parts in the volumes required? What kind of long-term 
supply guarantees are there?

6.3 Simple Do-It-Yourself Implementation: 
MicroCANopen

“Beware of bugs in the above code; I have only 
proved it correct, not tried it.”

Donald Knuth

MicroCANopen was introduced by the Embedded Systems Academy as an “entry-
level” alternative to CANopen for deeply embedded applications with limited 
resources. Code and data sizes required depend on the microcontroller used and 
functionality desired. On an 8051 with on-chip CAN interface MicroCANopen 
requires as little as 4 kbytes of code and some 200 bytes of RAM, compared to the 50+ 
kbytes of code and 1 kbyte of RAM for some “full-featured” CANopen implementa-
tions. The small size of MicroCANopen makes it especially suitable for some of the 
smallest CAN microcontrollers around, such as the Philips LPC99x microcontroller 

Objective

For those engineers that are not yet ready to make the step towards a full-
grown, higher-layer CANopen implementation, “MicroCANopen” might be 
an alternative. MicroCANopen is not an existing standard, just a concept 
which suggests that rather than shooting for full CANopen compliance it 
might be better to just adapt the basic ideas of CANopen to your own network 
layout to get a quick start. If the design requires more complex CANopen fea-
tures (or full compliance) in the future, the system would not need to be re-
invented, since the communication basics are already in place and compatible.
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family. Table 6.1 shows a feature comparison between MicroCANopen and CANo-
pen. Code examples for MicroCANopen are available at www.MicroCANopen.com. 

CANopen MicroCANopen

CAN bit rates (in kbps) 10, 20, 50, 125, 250, 500, 
800, 1000 

10, 20, 50, 125, 250, 500, 
800, 1000

Max. nodes per segment 127 127

Network Management

Originally designed to 
use a Master or Man-
ager, but can operate 
without

Originally designed to oper-
ate without a Master or 
Manager, but can use one

Node guarding / heartbeat
Node guarding done by 
master or heartbeat mon-
itoring by any node

All nodes produce heart-
beat, can be monitored by 
communication partners

Configuration of nodes
Nodes can typically be 
configured via the net-
work

Nodes are pre-configured, 
configuration cannot 
change during operation

Object Dictionary:  
ID entries

Available, optional with 
ASCII string Available, 32-bit IDs only

Object Dictionary:  
Process data variables

Available, often with mul-
tiple access (8/16 bit)

Not available in OD, only in 
process data messages

Object Dictionary: 
Process data configuration Available Not available

Object Dictionary: 
Support of long variables

Supports variables and 
data fields of any length

A single OD entry may not 
be longer than 4 bytes

Mapping of multiple vari-
ables into one CAN mes-
sage

Supports dynamic re-
mapping of variables into 
CAN messages 

One fixed, pre-configured 
mapping

Triggering methods of 
CAN messages with pro-
cess data

Any combination of time-
based, polled, change-of-
state, synchronized or 
manufacturer specific; 
Inhibit time supported

Time-based and/or change-
of-state only; Inhibit time 
supported

Table 6.1  Comparison of CANopen and MicroCANopen
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6.3.1 Basic Concepts of MicroCANopen

To be able to implement a minimal CANopen-like system, a few basics and limitations 
need to be addressed. Please note that some of these are not limitations of CANopen, 
but limitations necessary to achieve this “minimal” version of CANopen.

6.3.1.1 Bit Rate/Bit Timing

All network nodes start up with the same CAN bus bit rate. The bit rate used in one 
system/application may be 10 kbps, 20 kbps, 50 kbps, 125 kbps, 250 kbps, 500 kbps, 
800 kbps or 1 Mbps.

6.3.1.2 Node ID

Each network node has a unique Node ID, and this ID is in the range of 1 to 127, 
allowing for a total of 127 nodes in the system. This ID must be assigned and known 
to the node before it gets onto the live network.

6.3.1.3 Byte Ordering

In multi-byte variables the bytes are ordered by significance, the lowest significant 
byte coming first.

6.3.1.4 Process Variables

Any single variable shared via the network is 1, 2, 3 or 4 bytes in length. Note that as in 
CANopen, multiple variables can go into a single CAN message. For ease of use, 
MicroCANopen supports a process image where all process variables communicated 
via the network are stored in one array of bytes.

6.3.1.5 Network Management Master (NMT) 

A typical CANopen network would expect the presence of a CANopen NMT Master 
to actually start and monitor the nodes. In deeply embedded applications where all 
nodes are pre-configured and know what they need to do, a master might not be 
required. 

Beginning with DSP302 Version 3.21 [CiADSP302], CANopen provides a standard-
ized method of operating without a master by allowing the slave nodes to start auton-
omously. In MicroCANopen it is assumed that this is the default operation mode: 
there is no master present and that all nodes automatically startup after power-up.
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6.3.2 Functionality of a Single MicroCANopen Node

Each MicroCANopen node implements a minimal CANopen Object Dictionary. The 
Object Dictionary (OD) of a regular CANopen implementation holds all process vari-
ables that a node needs to receive or transmit. Each entry implemented has a unique 
16-bit Index and 8-bit Subindex value that identifies one process variable in this CAN-
open node. Note: This is different from the CAN ID, which identifies a unique mes-
sage on the bus.

In MicroCANopen, only the OD entries listed in Table 6.2 are implemented. The pro-
cess data variables are not implemented in the OD, they are only available via the pro-
cess data messages listed in Table 6.3 and Table 6.4.

The main functionality of any CANopen implementation is to receive and transmit 
messages. MicroCANopen nodes produce and consume the following CAN mes-
sages:

• Upon startup, a MicroCANopen node transmits a boot-up message and 
continues to regularly transmit a heartbeat message in the specified heart-
beat time interval. Other nodes can take this as an indication about the cur-
rent status of this MicroCANopen node.

• Read accesses to the Object Dictionary are accepted and replied to. This 
allows standardized CANopen configuration tools or Network Manage-
ment Masters to recognize a MicroCANopen node.

Index Subindex Description
1000h 0 32-bit Device Type, typically set to represent generic I/O

1001h 0 8-bit Error Register

1018h 0 8-bit entry of 4 – number of Subindexes in this record

1018h 1 32-bit Vendor ID

1018h 2 32-bit Product Code

1018h 3 32-bit Revision Number

1018h 4 32-bit Serial Number (optional)

Table 6.2 CANopen Object Dictionary Entries Implemented by 
MicroCANopen
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• Up to 4 separate transmit messages with process data can be triggered indi-
vidually by a timer (every x milliseconds) or automatically by a detected 
change-of-state (COS) in the data to be transmitted.

• Up to 4 separate receive messages with process data can be received.

6.3.3 Assigning CAN Message Identifiers

MicroCANopen and CANopen both use CAN base frames (11-bit identifier field). The 
CAN message identifiers used in the system are assigned in accordance with the 
CANopen pre-defined connection set, which embeds the Node ID number into the 
identifier field. For transmitting data a MicroCANopen node uses the CAN IDs speci-
fied in Table 6.3. As an example, the node with ID 3 uses CAN ID 703h to transmit the 
boot-up message.

Table 6.4 shows the CAN IDs a MicroCANopen node listens for. The entries marked 
with “*” can be customized to ensure that a node directly listens to the process data 
message it needs to receive. So if we want the RPDO2 of node number 5 to directly 
consume TPDO1 of node number 8, the CAN ID listened to would need to be changed 
from 305h (default receive ID for RPDO2 of node 5) to 188h (transmit ID for TPDO1 of 
node 8).

CAN ID Used for transmitting
080h + Node ID Emergency Message (optional)

180h + Node ID Transmit Process Data Message 1 (TPDO1)

280h + Node ID Transmit Process Data Message 2 (TPDO2)

380h + Node ID Transmit Process Data Message 3 (TPDO3)

480h + Node ID Transmit Process Data Message 4 (TPDO4)

580h + Node ID Service Data Response (SDO tx)

700h + Node ID Boot-up message and heartbeat

Table 6.3 CAN Identifiers for Transmitting Data
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A CANopen Network Management Master or generic configuration tool can access a 
single node by using the appropriate SDO “channel.” A channel consists of two mes-
sages, one used for the SDO request from the configuration tool to the node and one 
used for the SDO response from the node back to the requester. Thus to access node 
number 3, a configuration tool would use CAN ID 603h and would expect a response 
coming back using CAN ID 583h.

Figure 6.2 shows a screenshot of a trace window with CANopen messages. The trace 
recoding was made with Vector’s CANalyzer and shows the power-up cycle of a 
MicroCANopen node with the node ID 3. After transmitting the boot-up message, 
node 3 starts transmitting its heartbeat about every 2.5 seconds. Using a CANopen 
configuration tool such as Vector’s CANsetter (see Figure 6.3) a read request is made 
to the Object Dictionary entry at Index 1018h, Subindex 1. That location contains the 
Vendor ID, in this case 00455341h.

After receipt of the NMT Master message “Start Node” the MicroCANopen node 
starts transmitting the process data messages with the CAN IDs 183h and 283h.

CAN ID Used for receiving
000h Network Management Master Message (NMT)

* 200h + Node ID Receive Process Data Message 1 (RPDO1)

* 300h + Node ID Receive Process Data Message 2 (RPDO2)

* 400h + Node ID Receive Process Data Message 3 (RPDO3)

* 500h + Node ID Receive Process Data Message 4 (RPDO4)

600h + Node ID Service Data Request (SDO rx)

Table 6.4  CAN Idenifiers for Receiving Data
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Figure 6.2 Vector CANalyzer Trace Recording of Power-up Cycle

Figure 6.3 Reading Object Dictionary Entry [1018h,01h] (Vendor ID) from Node 3

6.3.4 Message Contents

Now that the CAN identifiers are assigned, it is time to examine the required message 
contents. The process data messages (PDOs or Process Data Objects), are the easiest. 
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They may simply be filled with one or more variables (as mentioned before, only use 
1, 2, 3 or 4 byte variables and ensure the byte ordering for multiple byte variables). 
Figure 6.4 illustrates an example of how the 8 bytes of a CAN message could be used 
in a PDO; bytes 1 and 2 contain the 8-bit variables A and B. Bytes 3 and 4 are used for 
the 16-bit variable C and bytes 5 and 6 are used for variable D. Bytes 7 and 8 remain 
unused and are not transmitted.

Figure 6.4 Example for PDO Mapping of Variables

6.3.5 Message Triggering

In CANopen there are several conditions that can trigger the transmission of a mes-
sage. For a minimal implementation we will focus on the following triggering meth-
ods:

6.3.5.1 Boot-up and Heartbeat Message

As soon as the internal initialization is completed, MicroCANopen nodes transmit 
their boot-up message. If the node is configured to auto-start, it is followed by a con-
tinuous heartbeat. The heartbeat frequency is configurable and is typically in the area 
of hundreds to thousands of milliseconds, depending on application requirements. 
The timer resolution is a multiple of milliseconds.

6.3.5.2 Service Data

A master or configuration tool initiates any SDO communication. The MicroCANo-
pen nodes may not trigger SDO communication by themselves, only in response to a 
request. Any SDO request directed at a node requires a response, which can either be 
the correct SDO response or an appropriate abort message.

6.3.5.3 Process Data

CANopen supports several triggering mechanisms for PDO messages containing the 
process data. Of the available mechanisms MicroCANopen nodes support event timer 
transmission and event change (COS, or change-of-state) transmission. In event timer 
mode a PDO is transmitted every n milliseconds. In event change mode the PDO is 

B
Byte 2

CAN-ID
C D

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

UnusedA
Byte 1
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transmitted whenever a change-of-state is detected in any of the data to be transmit-
ted.

To avoid situations where frequently changing data continuously triggers messages, 
the MicroCANopen nodes support the “inhibit time” feature of CANopen. This timer 
prohibits event change PDOs from being transmitted back-to-back. With each trans-
mit an “inhibit timer” is started and the next transmission will not occur until the 
timer expires.

6.3.6 Implementing MicroCANopen

In MicroCANopen there are two software communication interfaces to deal with. To 
the bottom, an interface to a CAN driver is needed that provides some minimal func-
tionality to receive and transmit CAN messages. To the top, a user's interface for the 
application is needed.

6.3.6.1 The MicroCANopen hardware driver interface

Portability to different microcontrollers is not easy to achieve due to the major differ-
ences in the implementations of CAN controllers. For this implementation we simply 
assume that the drivers are taking care of all real-time issues including the CAN inter-
rupt service routine and providing both a receive and a transmit queue. In order to 
avoid making the CANopen communication a high priority within the embedded 
system, MicroCANopen is implemented as a background task that can be called 
within the main while(1) loop. 

Listing 6.1 shows the "mcohw.h" file specifying the driver functions required by 
MicroCANopen. The first functions are needed for initialization of the hardware. In 
addition, the driver must implement some sort of receive and transmit queue for mes-
sages. These queues are accessed by the “PullMessage” and “PushMessage” func-
tions.

/**************************************************************************

MODULE:    MCOHW

CONTAINS:  Hardware driver specification for MicroCANopen implementation

           The specific implementations are named mcohwXXX.c, where

           XXX represents the CAN hardware used.

COPYRIGHT: Embedded Systems Academy, Inc. 2002.

           All rights reserved. www.microcanopen.com

           This software was written in accordance to the guidelines at

           www.esacademy.com/software/softwarestyleguide.pdf

DISCLAIM:  Read and understand our disclaimer before using this code!

           www.esacademy.com/disclaim.htm
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LICENSE:   Users that have purchased a license for PCANopenMagic

           (www.esacademy.com/software/pcanopenmagic)

           may use this code in commercial projects.

           Otherwise only educational use is acceptable.

VERSION:   1.00, Pf/Aa/Ck 07-OCT-02

---------------------------------------------------------------------------

HISTORY:   1.00, Pf 07-OCT-02, First Published Version

---------------------------------------------------------------------------

Implementation recommendations:

1.) CAN interrupt

The CAN interrupt should check all the possible error flags and set the

global variable gMCOHW_status accordingly. Fatal errors must result in

a call to MCOUSER_FatalError with an error code in the range of 0x8000

to 0x87FF.

If a transmit queue is implemented, the transmit interrupt should be used 

to trigger transmission of the next message in the transmit queue.

On "Basic CAN" controllers the receive interrupt copies the incoming message

into a receive queue. CAN controllers with "Full CAN" style capabilities

or internal receive queue might not need to maintain a software queue.

In case a hardware queue or buffers are used, the interrupt should still

check for a potential overrun and set bit RXOR in gMCOHW_status in case

of an overrun.

2.) Timer interrupt

A 1ms timer interrupt needs to implement a local 1ms WORD timer tick.

The timer tick is only accessible via the functions MCOHW_GetTime and

MCOHW_IsTimeExpired to avoid data inconsistency.

In case only a multiple of 1ms is available on a system, the timer tick

would need to be incremented in each interrupt in a way that the timer

tick is still accurate (for example increment by 4 all 4ms).

***************************************************************************/ 

#include "mco.h"

// Status bits for function MCOHW_GetStatus

#define INIT 0x01

#define CERR 0x02

#define ERPA 0x04

#define RXOR 0x08

#define TXOR 0x10

#define BOFF 0x80

/**************************************************************************

DOES:    This function returns the global status variable.

CHANGES: The status can be changed anytime by this module, for example from 

         within an interrupt service routine or by any of the other 
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         functions in this module.

BITS:    0: INIT - set to 1 after a completed initialization

                   left 0 if not yet inited or init failed

         1: CERR - set to 1 if a CAN bit or frame error occurred

         2: ERPA - set to 1 if a CAN "error passive" occurred

         3: RXOR - set to 1 if a receive queue overrun occurred

         4: TXOR - set to 1 if a transmit queue overrun occurred

         5: Reserved

         6: Reserved

         7: BOFF - set to 1 if a CAN "bus off" error occurred

**************************************************************************/

BYTE MCOHW_GetStatus

  (

  void

  );

/**************************************************************************

DOES:    This function implements the initialization of the CAN interface.

RETURNS: 1 if init is completed 

         0 if init failed, bit INIT of MCOHW_GetStatus stays 0

**************************************************************************/

BYTE MCOHW_Init 

  (  

  WORD BaudRate   // Allowed values: 1000, 800, 500, 250, 125, 50, 25, 10

  );

/**************************************************************************

DOES:    This function implements the initialization of a CAN ID hardware

         filter as supported by many CAN controllers.

RETURNS: 1 if filter was set 

         2 if this HW does not support filters 

           (in this case HW will receive EVERY CAN message)

         0 if no more filter is available

**************************************************************************/

BYTE MCOHW_SetCANFilter 

  (

  WORD CANID      // CAN-ID to be received by filter

  );

/**************************************************************************

DOES:    This function implements a CAN transmit queue. With each

         function call is added to the queue.

RETURNS: 1 Message was added to the transmit queue

         0 If queue is full, message was not added,

           bit TXOR in MCOHW_GetStatus set

NOTES:   The MicroCANopen stack will not try to add messages to the queue

         "back-to-back". With each call to MCO_ProcessStack, a maximum

         of one message is added to the queue. For many applications

         a queue with length "1" will be sufficient. Only applications

         with a high busload or very slow bus speed might need a queue
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         of length "3" or more.

**************************************************************************/

BYTE MCOHW_PushMessage 

  (

  CAN_MSG *pTransmitBuf // Data structure with message to be send

  );

/**************************************************************************

DOES:    This function implements a CAN receive queue. With each

         function call a message is pulled from the queue.

RETURNS: 1 Message was pulled from receive queue

         0 Queue empty, no message received

NOTES:   Implementation of this function greatly varies with CAN

         controller used. In an SJA1000 style controller, the hardware

         queue inside the controller can be used as the queue. Controllers

         with just one receive buffer need a bigger software queue.

         "Full CAN" style controllers might just implement multiple

         message objects, one each for each ID received (using function

         MCOHW_SetCANFilter).

**************************************************************************/

BYTE MCOHW_PullMessage

  (

  CAN_MSG *pTransmitBuf // Data structure with message received

  );

/**************************************************************************

DOES:    This function reads a 1 millisecond timer tick. The timer tick

         must be a WORD and must be incremented once per millisecond.

RETURNS: 1 millisecond timer tick

NOTES:   Data consistency must be insured by this implementation.

         (On 8-bit systems, disable the timer interrupt incrementing

         the timer tick while executing this function)

         Systems that cannot provide a 1ms tick may consider incrementing

         the timer tick only once every "x" ms, if the increment is by "x".

**************************************************************************/

WORD MCOHW_GetTime 

  (

  void

  );

/**************************************************************************

DOES:    This function compares a WORD timestamp to the internal timer tick

         and returns 1 if the timestamp expired/passed.

RETURNS: 1 if timestamp expired/passed

         0 if timestamp is not yet reached

NOTES:   The maximum timer runtime measurable is 0x8000 (about 32 seconds).

         For the usage in MicroCANopen that is sufficient. 

**************************************************************************/

BYTE MCOHW_IsTimeExpired 

  (
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  WORD timestamp // Timestamp to be checked for expiration

  );

/**************************************************************************

// Recommended implementation for this function (8051 version):         

{

WORD time_now;

  EA = 0; // Disable Interrupts

  time_now = gTimCnt;

  EA = 1; // Enable Interrupts

  timestamp++; // To ensure the minimum runtime

  if (time_now > timestamp)

  {

    if ((time_now - timestamp) < 0x8000)

      return 1;

    else

      return 0;

  }

  else

  {

    if ((timestamp - time_now) > 0x8000)

      return 1;

    else

      return 0;

  }

}

Listing 6.1 Driver Functions Required by MicroCANopen

6.3.6.2 The MicroCANopen user interface

Listing 6.2 shows parts of the "mco.h" file which specifies the functions provided for 
the application interface. The function “ProcessStack” must be called frequently as a 
background task (for instance calling it from the while(1) loop in main). The only mes-
sages made transparent to the application are those with process data. All service 
messages are handled within “ProcessStack” without additional interfacing to the 
application. The “ReceivedPDO” function is a call-back function, which means it must 
be implemented by the user/application. It gets called from within the stack whenever 
new process data arrives. The default is that this function is called from within “Pro-
cessStack” – meaning that there is an unpredictable delay from the time a message 
arrives until this function actually gets called. Experienced users facing tougher real-
time requirements can modify the code and call this function from within the inter-
rupt service routine (ISR) receiving the CAN messages. However, in this case it must 
be ensured that the code executed within the callback function is absolutely minimal, 
as it will add to the execution time of the ISR.
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/**************************************************************************

MODULE:    MCO

CONTAINS:  MicroCANopen implementation

COPYRIGHT: Embedded Systems Academy, Inc. 2002-2003.

           All rights reserved. www.microcanopen.com

           This software was written in accordance to the guidelines at

           www.esacademy.com/software/softwarestyleguide.pdf

DISCLAIM:  Read and understand our disclaimer before using this code!

           www.esacademy.com/disclaim.htm

LICENSE:   Users that have purchased a license for PCANopenMagic

           (www.esacademy.com/software/pcanopenmagic)

           may use this code in commercial projects.

           Otherwise only educational use is acceptable.

VERSION:   1.20, Pf/Aa/Ck 19-AUG-03

---------------------------------------------------------------------------

HISTORY:   1.20, Pf 19-AUG-03, Code changed to use process image

           1.10, Pf 27-MAY-03, Bug fixes in OD (hi byte was corrupted)

                 OD changed to indefinite length

                 Support of define controled MEMORY types

           1.01, Pf 17-DEC-02, Made Object Dictionary more readable

           1.00, Pf 07-OCT-02, First Published Version

***************************************************************************/ 

/**************************************************************************

GLOBAL TYPE DEFINITIONS

**************************************************************************/

// Standard data types

#define BYTE  unsigned char

#define WORD  unsigned int

#define DWORD unsigned long

// Boolean expressions

#define BOOLEAN unsigned char

#define TRUE 0xFF

#define FALSE 0

// Data structure for a single CAN message 

typedef struct

{

  WORD ID;                  // Message Identifier 

  BYTE LEN;                 // Data length (0-8) 

  BYTE BUF[8];              // Data buffer 

} CAN_MSG;

// This structure holds all node specific configuration

typedef struct

{
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  BYTE Node_ID;             // Current Node ID (1-126)

  BYTE error_code;          // Bits: 0=RxQueue 1=TxQueue 3=CAN

  WORD Baudrate;            // Current Baud rate in kbps

  WORD heartbeat_time;      // Heartbeat time in ms

  WORD heartbeat_timestamp; // Timestamp of last heartbeat

  CAN_MSG heartbeat_msg;    // Heartbeat message contents

  BYTE error_register;      // Error regiter for OD entry [1001,00]

} MCO_CONFIG;

// This structure holds all the TPDO configuration data for one TPDO

typedef struct 

{

#ifdef USE_EVENT_TIME

  WORD event_time;          // Event timer in ms (0 for COS only operation)

  WORD event_timestamp;     // If event timer is used, this is the 

                            // timestamp for the next transmission

#endif

#ifdef USE_INHIBIT_TIME

  WORD inhibit_time;        // Inhibit timer in ms (0 if COS not used)

  WORD inhibit_timestamp;   // If inhibit timer is used, this is the 

                            // timestamp for the next transmission

  BYTE inhibit_status;      // 0: Inhibit timer not started or expired

                            // 1: Inhibit timer started

                            // 2: Transmit msg waiting for expiration of inhibit

#endif

  BYTE offset;              // Address of data in process image

  CAN_MSG CAN;              // Current/last CAN message to be transmitted

} TPDO_CONFIG;

// This structure holds all the RPDO configuration data for one RPDO

typedef struct 

{

  WORD CANID;               // Message Identifier 

  BYTE LEN;                 // Data length (0-8) 

  BYTE offset;              // Address of data in process image

} RPDO_CONFIG;

/**************************************************************************

GLOBAL FUNCTIONS

**************************************************************************/

/**************************************************************************

DOES: This function initializes the CANopen protocol stack.

      It must be called from within MCOUSER_ResetApplication.

**************************************************************************/

void MCO_Init 

  (

  WORD Baudrate,  // CAN baudrate in kbps(1000,800,500,250,125,50,25 or 10)

  BYTE Node_ID,   // CANopen node ID (1-126)

  WORD Heartbeat  // Heartbeat time in ms (0 for none)
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  );

/**************************************************************************

DOES: This function initializes a transmit PDO. Once initialized, the 

      MicroCANopen stack automatically handles transmitting the PDO.

      The application can directly change the data at any time.

NOTE: For data consistency, the application should not write to the data

      while function MCO_ProcessStack executes.

**************************************************************************/

void MCO_InitTPDO

  (

  BYTE PDO_NR,     // TPDO number (1-4)

  WORD CAN_ID,     // CAN identifier to be used (set to 0 to use default)

  WORD event_tim,  // Transmitted every event_tim ms 

                   // (set to 0 if ONLY inhibit_tim should be used)

  WORD inhibit_tim,// Inhibit time in ms for change-of-state transmit

                   // (set to 0 if ONLY event_tim should be used)

  BYTE len,        // Number of data bytes in TPDO

  BYTE offset      // Offset to data location in process image

  );

/**************************************************************************

DOES: This function initializes a receive PDO. Once initialized, the 

      MicroCANopen stack automatically updates the data at offset.

NOTE: For data consistency, the application should not read the data

      while function MCO_ProcessStack executes.

**************************************************************************/

void MCO_InitRPDO

  (

  BYTE PDO_NR,     // RPDO number (1-4)

  WORD CAN_ID,     // CAN identifier to be used (set to 0 to use default)

  BYTE len,        // Number of data bytes in RPDO

  BYTE offset      // Offset to data location in process image

  );

/**************************************************************************

DOES: This function implements the main MicroCANopen protocol stack. 

      It must be called frequently to ensure proper operation of the

      communication stack. 

      Typically it is called from the while(1) loop in main.

**************************************************************************/

BYTE MCO_ProcessStack

  ( // Returns 0 if nothing needed to be done

    // Returns 1 if a CAN message was received or sent

  void

  );

/**************************************************************************

USER CALL-BACK FUNCTIONS

These must be implemented by the application.

**************************************************************************/
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/**************************************************************************

DOES: This function resets the application. It is called from within the

      CANopen protocol stack, if a NMT master message was received that

      demanded "Reset Application".

**************************************************************************/

void MCOUSER_ResetApplication

  (

  void

  );

/**************************************************************************

DOES: This function both resets and initializes both the CAN interface

      and the CANopen protocol stack. It is called from within the

      CANopen protocol stack, if a NMT master message was received that

      demanded "Reset Communication".

      This function should call MCO_Init and MCO_InitTPDO/MCO_InitRPDO.

**************************************************************************/

void MCOUSER_ResetCommunication

  (

  void

  );

/**************************************************************************

DOES: This function is called if a fatal error occurred. 

      Error codes of mcohwxxx.c are in the range of 0x8000 to 0x87FF.

      Error codes of mco.c are in the range of 0x8800 to 0x8FFF. 

      All other error codes may be used by the application.

**************************************************************************/

void MCOUSER_FatalError

  (

  WORD ErrCode // To debug, search source code for the ErrCode encountered

  );

Listing 6.2 Application Interface Functions Provided by MicroCANopen

6.3.6.3 Debugging and Testing

Several tools are available for debugging and testing CANopen nodes. Besides moni-
tor and analysis tools, CANopen-specific tools to maintain and access the Object Dic-
tionary are very helpful. Figure 6.5 shows Vector’s CANeds, an editor for CANopen 
electronic data sheets and device configuration files (EDS, DCF). These files specify 
which OD entries are implemented by a particular node. Configuration tools, analysis 
tools or NMT Master implementations can use this information to directly access the 
OD entries of that particular node.
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Figure 6.5 Vector’s CANeds Editor for the Generation of Electronic Data Sheets

6.3.7 Summary: What Does it Do?

The communication methods implemented in MicroCANopen allow the sharing of 
process data among several CAN nodes in a CANopen-style manner. Data can be 
transmitted with a pre-set frequency (every n milliseconds) or on COS (change-of-
state). MicroCANopen is sufficiently CANopen compatible that regular CANopen 
configuration tools, monitors/analyzers and master implementations such as those 
available from Vector CANtech can be used with it. 

Listing 6.3 shows an example of the main function implementing a MicroCANopen 
node, in this case a temperature sensor with some digital outputs. The CAN bit rate is 
125 kbps, the Node ID is 3, the heartbeat time is 2.5 seconds and the temperature 
value is transmitted every 500 milliseconds.

The process data is organized in a process image, the variable gProcImg, an array of 
bytes. The offset VAR_temp and VAR_digiout are defined to provide symbolic access 
to the offsets.

// Process Image to hold all process data, in total room for 16 bytes

BYTE gProcImg[16];

#define VAR_temp   0 // offset for temperature variable
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#define VAR_digout 2 // offset for a digital output

void main (void)

{

   InitIO();

   // 125kbps, Node ID 3, 2.5s heartbeat

   MCO_Init(125,3,2500); 

   

   // TPDO1, default CAN ID, 500ms timer, no inhibit, 2 bytes of data

   MCO_InitTPDO(1,0,500,0,2,VAR_temp);

   // RPDO1, default CAN ID, 1 byte of data

   MCO_InitRPDO(1,0,1,VAR_digout);

   EA = 1; // End of initialization, Enable all interrupts

   while(1)

   {

     MCO_ProcessStack();

     // Process the data

     gProcImg[VAR_temp+1] = GetHiByteFromADConverter();

     gProcImg[VAR_temp]   = GetLoByteFromADConverter();

     ApplyDigitalOutput(gProcImg[VAR_digout]);

   } // end of while(1)

}

Listing 6.3 Implementing a Temperature Sensor with MicroCANopen

6.3.8 Flow Charts for the Main Function Blocks

The following five flow charts illustrate how the MicroCANopen implementation 
operates. Some of the charts are broken into two parts for readability. Larger copies of 
all the flowcharts are available at www.CANopenBook.com. The main function exe-
cuted is illustrated in Flow Chart 6.1. After checking whether this is the first time the 
function is called, it polls the next receive message from the driver. If a message was 
received and it is an NMT Master message, an RPDO message or an SDO request, the 
associated code sections get executed - see Flow Chart 6.2, Flow Chart 6.3 and Flow 
Chart 6.4. 

If no message was received or the message received was not for the local node to han-
dle, ProcessStack continues with potential transmissions that are due. First, the TPDO 
transmissions are checked (Flow Chart 6.5). If no TPDO transmission is due, the heart-
beat producer time is verified. If it is expired, a heartbeat message is generated.
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Flow Chart 6.1 Process Stack (Continued Next Page)
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Flow Chart 6.1 Process Stack (Continued)
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Flow Chart 6.2 Handle NMT Message
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Upon reception of an NMT message the current state of the node must be switched 
according to the command received.

Flow Chart 6.3 Handle RPDO Message

When handling a Receive PDO, MicroCANopen runs through a loop checking all con-
figured RPDOs to see if the identifier of the message received matches any of the iden-
tifiers used for the RPDOs. If a match is found, the data received is copied to the 
appropriate process variable.

Handling an SDO Request is simplified to the point where only two OD entries are 
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Flow Chart 6.4 Handle SDO Request (Continued Next Page)
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Flow Chart 6.4 Handle SDO Request (Continued)
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Flow Chart 6.5 Handle TPDO Transmit (Continued Next Page)
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Flow Chart 6.5 Handle TPDO Transmit (Continued)
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6.4 Using CANopen Hardware Modules or Chips

One of the fastest ways to design and implement a CANopen node is to use existing 
CANopen hardware in the form of CANopen chips or modules. What all these solu-
tions have in common is that the CANopen protocol stack is pre-programmed into a 
microcontroller which can be incorporated into a hardware design either directly or in 
the form of a module (daughter-board). Typically at least two operation modes are 
supported: some sort of “stand-alone” operation and a “communication co-proces-
sor” operating mode.

6.4.1 Stand-Alone Operation

In stand-alone operation a CANopen hardware solution directly implements a spe-
cific Device Profile and provides the inputs and outputs required for a particular 
application. This allows the chip to be used for this particular application without the 
requirement of an additional microcontroller. A simple example would be that of a 
Generic I/O node, where the CANopen chip or module directly provides the digital 
and analog inputs and outputs on pins of the chip or module. Figure 6.6 shows how 
Philips’ CANopenIA solution works in the stand-alone mode. It provides a total of 20 
digital signals (configurable in groups of 4 bits to be used either as inputs or outputs). 
Analog signals are provided using external D/A or A/D chips with SPI interface.

Objective

This section explains how CANopen modules or chips can be used to develop 
a CANopen node. It also discusses the typical operation modes; “stand-alone” 
usage or usage as a “communication co-processor.” Examples given are for the 
Philips CANopenIA technology.
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Figure 6.6 CANopenIA in Stand-Alone Mode

This mode is most suitable when a specific device profile needs to be implemented, 
such as an encoder, joystick or battery. It allows for the direct connection of a stan-
dardized device to a CANopen network using the CANopen chip or module. 
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Figure 6.7 CANopenIA in Co-Processor Mode

This mode is most suitable for applications that require a certain amount of customi-
zation (as opposed to implementing a standardized Device Profile) and which will 
benefit from off-loading the burden of processing a communication protocol stack to a 
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boot-up this information is shifted into the CANopenIA serially, only requiring a total 
of three pins.

6.5 Using CANopen Source Code

One of the most common approaches in designing and implementing a CANopen 
node is to purchase a code library or the source code for a CANopen slave node. The 
biggest benefits of this CANopen implementation approach are portability and cus-
tomizability. In addition, the providers of the source code typically guarantee that 
their source code passes the CANopen conformance test. Although the final responsi-
bility for conformance lies with the engineering team using the source code, it helps to 
know that all essential CANopen functions as delivered have passed the conformance 
test.

• Portability 
The providers of CANopen libraries or source code ensure good portability 
simply because they want to be able to sell their product, no matter which 
microcontroller is used. As a result, most commercial solutions directly 
support a wide variety of microcontrollers and can be easily adapted to 
“exotic” or legacy systems, such as a Z80 with external CAN controller.

• Customizability 
Many CANopen-based systems take advantage of its “openness” by cus-
tomizing and optimizing certain aspects of the CANopen communication. 
This can include special message trigger methods, customized emergencies 
or customized Object Dictionaries (such as password protected access). 
Customizations like these are only possible if the engineers and program-
mers have access to the CANopen source code.

Objective

In this section we summarize the typical configuration options one has when 
using purchased CANopen source code and how to best make usage of these 
options. All examples given apply to the Vector CANopen slave source code. 
However, other source codes typically have very similar configuration fea-
tures.
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6.5.1 Code Configuration through Conditional Compilation

In order to further support the customization, source codes typically use #define 
statements to control which CANopen functionality is included when compiling and 
building the code. Changing any of these defines can have severe consequences since 
completely different code gets compiled and generated, and some #define combina-
tions might not work with each other. Thus, one should carefully document all 
changes that are done along with the reasons and the persons who did them. Even in 
cases where a setting is switched back to a previous value, it should be documented 
with an additional comment so that the complete history of the changes is traceable.

The following examples are taken from the CANopen slave source code from Vector 
CANTech. Although the names of the #define statements are those used by Vector in 
their “cos_main.h” file, similar statements can be found in almost all commercial 
CANopen source codes.

6.5.1.1 Buffering or Queuing 

Due to differences in CAN controllers, most CANopen implementations provide at 
least two different operation modes on the driver level. One of them, termed “buff-
ered” mode, tries to make best usage of the CAN buffers provided by Full CAN con-
trollers. The other, termed “queued” mode, implements one or more software 
message queues. Incoming messages are copied to the queue by the CAN receive 
interrupt service routine for later processing. The queued mode is enabled by setting 
QUEUED_MODE to 1 (else 0).

The idea of buffered mode is to use one message object of the Full CAN controllers for 
each CAN message received or transmitted. Obviously this can only work if the total 
number of unique message IDs transmitted or received does not exceed the number of 
message objects provided in the CAN controller. The buffered mode is enabled by set-
ting FULLCAN_BUFFER_MODE to 1 (else 0). In addition, NUM_CAN_BUFFER 
needs to be set to the number of CAN message objects supported by the CAN control-
ler.

In general, the queued mode requires more code and data memory than the buffered 
mode, since additional code and storage is required for the handling of the queue. 
Due to the extra overhead in handling the queue, this mode also requires more CPU 
processing time.
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6.5.1.2 SDO Transfers

CANopen defines a total of three different SDO transfer modes: expedited, seg-
mented and block transfer. The expedited transfer is a basic requirement and must be 
supported by all CANopen nodes. It allows read and write accesses to the slave’s 
Object Dictionary entries (which cannot exceed 4 data bytes).

As soon as any Object Dictionary entry in a node is longer than 4 bytes that node must 
support segmented SDO transfer (where up to 7 bytes are transferred in each seg-
ment). In comparison to the expedited SDO transfer, the segmented transfer requires 
significantly more code and data memory. Both communication partners need to track 
each segment of the entire transfer. The receiver typically needs an extra memory buf-
fer big enough to hold the entire data block transferred. A transfer is only considered 
successful after the entire data block was received – so only at that point may it be 
copied to its final destination. The segmented transfer for write accesses can be 
enabled by setting SDO_WRITE_SEG_ALLOWED to 1 (else 0), the segmented trans-
fer for read accesses can be enabled by setting SDO_READ_SEG_ALLOWED to 1 (else 
0).

The block transfer mode not only requires additional memory, it also requires that the 
main MCU have a certain level of performance. Typically the block transfer mode is 
not suitable for 8-bit microcontrollers. Using the block transfer mode, up to 127 seg-
ments (with up to 7 bytes each) are transferred back-to-back with only one acknowl-
edgment message for the entire block. This means the receiver needs to be powerful 
enough to receive these back-to-back messages. The SDO Block Transfer mode can be 
enabled by setting SDO_BLOCK_ALLOWED to 1 (else 0).

In addition, the block transfer mode uses an optional CRC checksum over the entire 
data block transferred. If implemented, both communication partners must calculate 
this CRC in software. Sometimes there are options as to which method to use to calcu-
late the CRC; either a lookup table or dynamically. Dynamically means that the micro-
controller performs the required checksum calculation with every data byte 
transferred. This uses less code memory, however, it requires greater CPU perfor-
mance. When using a lookup table, the CPU has less to calculate but additional mem-
ory to store the lookup table is required. To enable CRC calculation, 
SDO_BLOCK_USE_CRC must be set to 1 (else 0). CRC calculation is done using a 
lookup table if CRC_LOOKUP_TABLE is set to 1. If set to 0 it is dynamically calcu-
lated.
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6.5.1.3 SDO Clients and Servers

Per default, each CANopen slave node implements one SDO server that serves the 
data of the local Object Dictionary to the network using the default SDO channels.

If an additional SDO server is required (to allow other nodes to send SDO requests to 
this node at the same time), MULTI_SDO_SERVER must be set to 1 (else 0) and 
NUM_SDO_SERVERS must to be set to 2. In this case SDO_SERVER2 must also be set: 
to a second CANopen Node ID. The second server requires that the SDO channels 
used are “stolen” from another Node ID. In other words, the physical network may 
not have a CANopen node on it with the Node ID that is used for the second server.

Some applications might require that a CANopen slave node also become an SDO cli-
ent, allowing it to send SDO requests to other nodes. This feature can be enabled by 
setting CLIENT_ENABLE to 1 (else 0).

6.5.1.4 PDOs

The communication and mapping parameters for each PDO are configurable as either 
dynamic or static. The communication parameters determine which CAN message ID 
is used by the PDO, and when and how transmission is triggered. The mapping 
parameters determine which variables (in the form of Object Dictionary entries) go 
into the PDO. Dynamic means that the parameters can be changed during run-time, 
static means that they are fixed, frozen, hard-coded and cannot change during run-
time.

Many deeply embedded applications use static PDOs if the network configuration is 
always the same. However, if the network configuration can change (typical for off-
the-shelf industrial I/O components), dynamic PDOs are required.

RPDO_PAR_READONLY must be set to 1 if the RPDO communication parameters 
are static, or to 0 if they are dynamic.

TPDO_PAR_READONLY must be set to 1 if the TPDO communication parameters are 
static, or to 0 if they are dynamic.

RPDO_MAP_READONLY must be set to 1 if the RPDO mapping parameters are 
static, or to 0 if they are dynamic.

TPDO_MAP_READONLY must be set to 1 if the TPDO mapping parameters are 
static, or to 0 if they are dynamic.
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6.5.1.5 NMT Startup, Heartbeat and Emergencies

Per default, CANopen slave nodes boot-up and stay in the “pre-operational” state 
until a master sets them to “operational.” Sometimes it is desirable that nodes go into 
operational by themselves without waiting for a master (for example, in applications 
without a master). If STARTUP_AUTONOMOUSLY is set to 1 (else 0), the node goes 
into operational by itself, without waiting for a master.

If the node should also start to produce a heartbeat message right after boot-up, 
START_HEARTBEAT_PRODUCER must be set to 1 (else 0). 
START_HEARTBEAT_TIME defines the heartbeat time to be used in milliseconds. 
After boot-up, the node will transmit a heartbeat message every 
START_HEARTBEAT_TIME milliseconds.

A node can be configured to generate or not generate emergency messages. If 
ENABLE_EMCYMSG is set to 1 (else 0) the node produces emergency messages if 
communication faults are detected. A typical emergency would be to receive a PDO 
that is of a different length than expected.

6.5.1.6 Signals

There are several #define statements to configure SIGNAL_XXX. If enabled, these use 
callback functions to signal certain events back to the application. If a certain signal is 
enabled, the corresponding call-back function must be implemented by the applica-
tion.

One example of such a signal is SIGNAL_BOOTUPMSG. The corresponding call-back 
function is called once the boot-up message is transmitted. This is an indication to the 
application that the initialization of the CAN bus interface was successful and that at 
least one other node is out there using the same bit rate.

6.5.2 The Object Dictionary

The Object Dictionary is implemented as an array of structures in the file “objdict.c”. 
The structure for a single entry needs to hold information such as the type and/or sta-
tus for the entry, the Index and Subindex, the length of the data in this entry in bytes, 
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a pointer to the data and information about the access and mapping options (read-
only, write-only, etc.) The access options defined are listed in Table 6.5.

To simplify the way entries are made, macros for the different types of entries are 
defined.

Example: SINGLE_OBJ (index, length, address, access)

This macro is used if the entry is a single object (only Subindex 0 is implemented and 
the entry is stored at Subindex 0). The parameters are:

• Index: 16-bit Index of the Object Dictionary entry

• length: the length of the Object Dictionary entry in bytes

• address: a pointer to the data of this Object Dictionary entry (typically a 
pointer to a variable or to a location in the process image)

• access: the access type for this entry (see Table 6.5)

This macro could be used as follows to specify that the 1-byte variable “gMyStatus” is 
made available at Index [2100h,00h] for read and write accesses:

SINGLE_OBJ(0x2100, 1, &gMyStatus, RW)

Access Type How Object Dictionary Entry Accessed
RO Read-Only, cannot be mapped to a PDO

WO Write-Only, cannot be mapped to a PDO

RW Read-Write, cannot be mapped to a PDO

ROMAP Read-Only, can be mapped into a TPDO

WOMAP Write-Only, can be mapped into a RPDO

RWRMAP Read-Write, can be mapped into a TPDO, but not RPDO

RWWMAP Read-Write, can be mapped into a RPDO, but not TPDO

Table 6.5  Access Types for Object Dictionary Entries
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6.5.3 PDO Mapping

The PDO mapping parameters are implemented in two arrays of structures in the file 
“mapping.c” – one for RPDOs and one for TPDOs. There is one structure for each 
PDO and each structure contains the number of entries mapped for the PDO and a 
total of 8 mapping entries (default). There are always 8 entries, even if fewer entries 
are actually used. However, this parameter is configurable, so if all PDOs use less than 
8 entries it may be modified to the maximum number of PDO map entries used. Sev-
eral macros are provided to make the entries more readable.

Sample mapping entry for one PDO:

NUM_OF_MAP_ENTRIES(2),

MAP_ENTRY(0x2110, 0x00, 16, &gMyVar1),

MAP_ENTRY(0x2120, 0x00, 8, &gMyVar2),

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

The example above is for a PDO with a total of 2 mapping entries 
(NUM_OF_MAP_ENTRIES is set to 2). What follows are two mapping entries, the 
first one maps the Object Dictionary entry [2110h,00h]. There are 16 bits to map and 
the address for the data is the address of the variable “gMyVar1”. The second entry 
maps the Object Dictionary entry [2120h,00h]. There are 8 bits to map and the address 
for the data is the address of the variable “gMyVar2”. A total of 6 entries of 
VOID_MAP_ENTRY are used for the unused mapping entries (these can be avoided 
if the maximum number of map entries allowed per PDO is reduced).
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6.6 CANopen Conformance Test

“Error, no keyboard – press F1 to continue”
PC BIOS

The official CANopen conformance test was developed with significant involvement 
from the engineers of the CiA and is available through National Instruments and the 
CiA. When a device gets conformance tested by the CiA, they use exactly this soft-
ware and simply confirm that the device passed or failed.

6.6.1 What Does it Do?

The conformance test not only tests a physical device, it also tests the Electronic Data 
Sheet (EDS) associated with it. It is important to confirm that an EDS is syntactically 
correct and that a device perfectly matches the EDS – in other words, it has exactly 
those communication parameters implemented as specified in the EDS file.

In part, the CANopen conformance test not only checks to see if all Object Dictionary 
entries specified are available in the device, it also scans for hidden entries that a 
device might have and that are not mentioned in the EDS. Due to this scanning pro-
cess, the entire run-time of the CANopen conformance test is several hours.

It should be noted that the CANopen conformance test only checks the CANopen 
communication behavior. It cannot test PDO data contents or reactions to certain data.

Objective

In this section we will not try to explain all the technical details of the CANo-
pen conformance test nor try to find an answer as to why some specific access 
sequences that are not documented in the CANopen specification are tested. 
Sometimes mysteries are better accepted as such.

Instead we will give some guidelines on when the conformance test should be 
used and when it can be replaced by other test procedures.
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6.6.2 Who Should Use It?

If a CANopen device is designed and developed for the open market with the inten-
tion to sell it as stand-alone “CANopen Gizmo,” then this node should pass the CAN-
open conformance test and get a certificate to that effect. There are several instances 
where end-users had bad experiences with uncertified products, and as a result more 
and more end-users are demanding that only certified products are used in their sys-
tems.

If a CANopen design is based on a self-developed CANopen implementation, passing 
the conformance test is more likely to become a significant hurdle. This can be 
avoided if a design is based on commercial CANopen source code or a CANopen chip 
or module; passing the conformance test should not be a problem since the manufac-
turers of these products ensure that their products can pass.

If a CANopen device is intended for “internal use only” there is no real need or 
requirement to pass the CANopen conformance test. This includes all developments 
where the CANopen network is truly “embedded” – hidden within a machine, virtu-
ally invisible to the end-user of that machine.

As experienced consultants and tutors who also teach classes on software qual-
ity, our first thought concerning the CANopen conformance test was to  recom-
mend to all our students that every CANopen node they develop should pass 
the CANopen test. The idea is that even if a network is completely embedded 
into a machine, it would still give everybody participating in the design of 
CANopen nodes a measurement of how well a specific node is implemented. 
If, for example, something does not work in the communication between two 
nodes, the CANopen conformance test could be used to test if a specific node is 
really behaving as it should.

Well, so much for the theory. As usual the real-world works slightly differently. 
In recent years, the CANopen specification has been enhanced and updated, 
but not all of these updates found their way into the conformance test. So some 
test failures are actually acceptable. Acceptable failures, for example, include a 
lack of support for node guarding if heartbeat is supported, or exceeding 
unspecified time-outs for SDO transfers. 

Another issue is that the entire set of conformance requirements, tests and pro-
cedures is not well documented. So if a certain test fails there is a lot of guess-
work left to the engineers with regards to fixing the problem.



291

Chapter 6: Implementing CANopen         

This can even be extended to scenarios where third party CANopen devices get inte-
grated into such a machine. As seen in Section 6.9 on page 299, there are applications 
where CANopen nodes were intentionally designed in such a way that 100% CANo-
pen conformance is not a requirement. Instead the requirement is that they just need 
to have as much conformity as required in order to work with “regular” conforming 
CANopen devices.

6.6.3 Other Test Options

There are a variety of tools besides the CANopen conformance test that can be used to 
test CANopen devices. Most of them even offer the opportunity to do data dependent 
testing, which is something the CANopen conformance test does not do. Data depen-
dent testing includes sending specific process data to a device as well as verifying the 
process data received from a device.

In general, any CAN monitor or analyzer with a scripting, DLL or batch interface can 
be used to send test messages to a device and analyze the responses. This path 
requires a deep knowledge about the CANopen messaging system, since all messages 
would need to be generated manually.

Things become a little simpler if the monitor or analyzer is CANopen aware and if 
that awareness also finds its way through to the scripting interface, allowing for direct 
execution of SDO and PDO accesses. This path simplifies the generation of CANopen 
specific test sequences, such as a segmented SDO transfer.

If a CAN interface with CANopen DLL is used, standard test software like LabView® 
can be used to execute and log test sequences. This path is very attractive for test engi-
neers that already have test software in place and would like to continue to use the 
same software for their CANopen devices.

Note, however, that we definitely recommend that any CANopen device 
designed be tested. However, using the official CANopen conformance test to 
do so might not always be required or even the best choice.
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6.7 Choosing an Implementation Path

“Experience is the name everyone gives to their mistakes.”
Oscar Wilde

CAN is right for this application, but is CANopen? 
If CAN is definitely going to be used, but it is not yet certain if CANopen or a custom, 
proprietary higher-layer CAN protocol should be used, then MicroCANopen might 
be the perfect match. MicroCANopen can provide a basic communication structure 
that is upward compatible to CANopen. So the final decision to be fully CANopen 
compatible does not need to be made at this point.

Are the CANopen nodes used internally only, or will they be sold individually on 
the open market as CANopen devices? 
If a developed CANopen node is to be sold on the open market as a CANopen device, 
the implementation should either be based on commercial CANopen source code or a 
CANopen hardware module or chip. If the CANopen protocol is developed from 
scratch internally, passing the CANopen conformance test becomes a challenge.

What is the expected volume of the device planned? 
The general rule is that the higher the expected volume of the device, the higher the 
demand for an optimized solution that takes best advantage of the microcontroller 
resources provided. Typically that means a commercial CANopen software solution 
with many target-specific optimizations or a customized implementation, for example 
based on MicroCANopen.

Objective

In this section we give some general guidelines on when to choose which of the 
implementation paths listed in the previous sections.

Note that applications differ and a more detailed evaluation of a particular sce-
nario might be required. This is especially true when it comes to “reaching the 
limits,” such as getting above an 80% bus load, or single nodes requiring a spe-
cific response time (or other real-time behavior).

Simply ask yourself the questions listed in this section and read the recommen-
dations to get some clues about which implementation path is best for you and 
your application.
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How much software development expertise does the engineering team have? 
If the software development expertise of the engineering team is limited, using CAN-
open hardware modules or chips minimizes the software development required. If 
that is not an option, a commercial source code or library should be used to minimize 
the software development for the CANopen protocol stack.

How much hardware development expertise does the engineering team have? 
If the hardware development expertise of the engineering team is limited, using CAN-
open hardware modules can minimize the hardware development required.

What are the time-to-market requirements? 
If the team is under pressure because the CANopen device must be available in a very 
short time, both hardware and software development should be minimized. This can 
be achieved by using CANopen hardware modules or chips. If a solution using source 
code or libraries is required, hiring an experienced consultant/tutor should be consid-
ered to kick-start the project.

How will CANopen be used – strictly as CANopen or is it likely that the system 
will need to be tweaked or optimized? 
If a CANopen node needs to support some specific communication features not stan-
dardized in CANopen, software solutions such as a commercial CANopen source 
code or MicroCANopen are preferred over CANopen hardware modules and chips.

Are there real-time requirements? 
If the CANopen node must fulfill certain real-time requirements, CANopen hardware 
modules and chips have the advantage that their timing behavior is already known 
and typically published in their data sheets. If the application requires a software 
solution, the performance of the implementations for the target microcontroller needs 
to be carefully evaluated. If a lower-end microcontroller is used, a customized imple-
mentation, for example based on MicroCANopen, might be required.
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6.8 Implementing CANopen Compliant Bootloaders

Embedded systems often use flash memory in order to simplify the process of updat-
ing the software/firmware running in embedded devices. Typically microcontrollers 
used with flash memory also provide ISP (In-System Programming) functionality - 
the microcontroller can communicate via one of its communication channels (typi-
cally a serial interface) and accept new code that is programmed into the flash mem-
ory.

In order to provide this functionality, a “bootloader” is required, a minimal piece of 
software that implements the communication and flash programming functions. The 
bootloader is often located in a protected memory area to prevent its accidental era-
sure. It can be activated during the boot-up of the processor (hence “bootloader”) by 
setting a switch, button or jumper during reset.

If such a device is connected to a CANopen network, it would make sense to make the 
bootloader CANopen compliant. This frees the “other” communication channels from 
the bootloader task, as well as allowing the use of standard CANopen configuration 
tools as the communication partner providing the new code (hex file) to be loaded 
into the flash memory.

6.8.1 Minimal Functionality Required

A CANopen node whose only purpose is to accept a hex-file for loading into flash 
memory does not really have to be 100% CANopen compliant. It just needs to provide 
enough CANopen compatibility so that it does not interfere with any other communi-
cation on the network and provides a fully functional SDO server. This ensures that 

Objective

This section discusses the implementation of a CANopen compliant boot-
loader. Such a bootloader allows for the use of a standard CANopen configura-
tion tool to load a hex file with new code via the CANopen network into the 
embedded device.

Note: There is no specification in the CANopen drafts and standards for the 
implementation of a CANopen compliant bootloader. The following is a rec-
ommendation by Embedded Systems Academy. The bootloader functionality 
described here is already used in multiple applications.
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SDO clients (like Masters, Managers or Configuration Tools) can make read and write 
accesses to the Object Dictionary in the node.

Thus the only CANopen features and communication channels that truly need to be 
implemented are the SDO server and the SDO request and response channels.

Sometimes it is desirable for the bootloader to be activated without having to physi-
cally touch the device (like setting a jumper, switch or button). Assuming the device 
in question is a CANopen node that also has a CANopen bootloader, a mechanism is 
needed that switches the device from its regular operation mode into its bootloader 
mode. In CANopen the straight-forward method would be to use a selected write 
sequence to an Object Dictionary entry as a command to switch the node into the 
bootloader mode. 

An additional safety level can be added by adding checksum verification to all down-
loadable program segments. A bootloader should only jump to a code piece if it has 
been verified that the code piece in question is “real code.” One method to implement 
this is by ensuring that any code piece downloaded must always have a pre-defined 
checksum – if a code piece in flash memory does not have that checksum, it is consid-
ered “trash” and should not be executed.

Segmented Transfer vs. Block Mode Transfer

Recall from Section 6.5.1 that when it comes to transferring larger blocks of 
data or code, there are two SDO transfer types that could be used: the seg-
mented transfer (up to 7 bytes of data for each segment with one response mes-
sage for each segment) or block transfer (up to 127 messages of 7 bytes each 
with one response message for the entire block).

Although the block transfer mode is more efficient for large transfers, it is not 
suitable for implementation on 8-bit devices. In addition, flash programming 
typically requires some timeouts after every byte (or group of bytes) so a com-
munication model with only 7 new bytes at a time is quite welcome for the pur-
pose of programming flash memory.

For the purpose of this section, we will simply assume that segmented transfer 
is used. However, in the spirit of the “openness” of CANopen, we leave it up to 
the individual engineers building the nodes to make the final decision.
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6.8.2 Object Dictionary Entries Suggested for a Bootloader

The Object Dictionary entries that should be supported are:

• OD entry [1000h,00h]: Device type information, read-only 
Because there is no device type number standardized for a bootloader, a 
manufacturer specific value can be used. The Embedded Systems Academy 
uses 746F6F62h (ASCII representation is “boot”) in their bootloader imple-
mentations.

• OD entry [1001h,00h]: Error register, read-only 
The bootloader can use this register to signal flash erase or programming 
failures. As an example, setting the voltage error could indicate that the 
flash erase or programming failed (often a specific voltage needs to be set to 
a pin of the flash memory to enable the erasing or programming functional-
ity). Setting the manufacturer specific error bit could indicate an out-of-
range error, seen if an attempt is made to program a memory location that is 
either protected or at which there is no flash memory.

• OD entry [1018h,00h-04h]: Identity Object 
The standard Identity Object as specified in CANopen [CiADS301]. At a 
minimum the Vendor ID, Product code and Revision number should be 
provided.

• OD entry [1F50h,xxh]: Download program data 
This Object Dictionary entry is described in [CiADSP302] and is used to 
directly accept the code programmed into the target memory. Subindex 0 is 
used to quantify how many different program or flash memory areas are 
available. The following Subindexes can each handle the download to one 
program or memory area. For many applications it is sufficient to imple-
ment one area (Subindex 1).

The data type for the OD entry is “Domain” which indicates variable data 
size. The SDO download process itself uses segmented SDO transfer which 
supports such variable data sizes. A download is considered successful if 
no SDO Abort message occurs at any time during the download.

Although not specified by the standard, the Embedded Systems Academy 
recommends using standard ASCII hex files as the files containing the pro-
gram or data. Using a hex file has two benefits: the file contains the target 
address for the programmed data and the file also contains checksums 
making the downloading process more secure.
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Because flash memory often needs to be erased before it can be re-pro-
grammed, Embedded Systems Academy further recommends implement-
ing a specific erase command. For example, an erase could be initiated by 
sending the value 66726C63h (ASCII representation is “clrf”) to the Object 
Dictionary entry [1F50h,01h], or other Subindexes to differentiate between 
different blocks or segments of flash memory.

• OD entry [1F51h,xxh]: Program Control Object 
This Object Dictionary entry is described in [CiADSP302] and is used to 
control the program(s) downloaded to [1F50h,xxh]. The essential command 
to implement is “Start program” which requires writing a 1 to the Object 
Dictionary entry. For example, if a program is downloaded to [1F50h,01h] it 
can be started by writing a 1 to [1F51h,01h].

This Object Dictionary entry could also be used to activate the bootloader 
itself. If the regular CANopen application running on this node supports 
this entry, it should activate the bootloader upon receiving a 0 (zero = Stop 
Program).

6.8.3 Bootloader Flow Chart

Flow Chart 6.6 shows the basic operation steps that a CANopen bootloader should 
follow. It should be the first piece of code that is executed after the reset. It then needs 
to make a decision if it should stay in the bootloader mode or try to execute the appli-
cation program. Typically the decision is made by reading some hardware and/or 
software settings that may or may not enable the bootloader. This could include a 
hardware switch or jumper, as well as a software flag that may have been set by the 
application before the reset.

Before calling the application code, the bootloader must ensure that valid code is in 
the code memory. This is typically accomplished by doing a checksum test. The boot-
loader should only jump to the application code if it is sure that valid application code 
is present at that location.

Once the bootloader is activated, it sends the CANopen boot-up message to inform 
other nodes on the network that it is initialized, and then waits for configuration and/
or start-up. It will then activate the SDO server and handle all incoming SDO requests 
appropriately. This includes starting the application program if a write of 1 is detected 
to [1F51h,01h].
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Flow Chart 6.6 Flow Diagram of a CANopen Bootloader

6.8.4 Handling the Bootloader

If a network is equipped with one or more nodes that have a bootloader as described 
in the previous sections, a standard CANopen configuration tool such as CANeds, 
proCANopen or PCANopenMagic can be used to handle the nodes. The following 
example assumes that only one program area is used and thus [1F50h,00h] and 
[1F51h,00h] are both 1. The following steps should be executed for an entire firmware/
software upgrade cycle.

1. The bootloader of any node becomes active by writing a 0 to [1F51h,01h].
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2. To verify that a node is indeed in bootloader mode, the entry [1000h,00h] should be read 
(contents should be “boot”).

3. If additional identification is required, the entries at [1018h,xxh] can be read.

4. If the flash memory needs to be erased first, a “clrf” can be written to to [1F50h,01h].

5. Now the hex file with the new code can be downloaded to [1F50h,01h]. The download is 
not considered successful if an SDO Abort or Emergency occurs during the download.

6. After completion, the error register should be read to verify that no error occurred.

7. Writing 1 to [1F51h,01h] starts the new code.

6.9 CANopen Implementation Example

Due to its openness, there are many very different CANopen applications. Some engi-
neers take specific advantage of the openness by customizing it towards a specific 
application, others need the standardization and remain well within specific device 
profiles to ensure inter-operation with third party products. 

The following application example is that of a laboratory instrument. Because com-
munication with third party products was not required, it would have been possible 
to customize the CANopen implementation to a point where it would not be CANo-
pen compliant anymore. However, the engineers wanted to keep their application 
open for possible future enhancements involving other CANopen devices. As a result, 
the engineers came up with many customized features that still stayed within the 
CANopen specification.

This application uses optimization of the CAN physical layer as well as the CANopen 
application layer for use as an internal bus in a line of modularized laboratory instru-
ments. Modifications and extensions are described for the pin assignments, Default 

Objective

This section includes text from the paper “Customizing CANopen for Use in 
an Automated Laboratory Instrument” by Michael B. Simmonds of Quantum 
Design, Alan Wilson of Quantum Design and Olaf Pfeiffer of Embedded Sys-
tems Academy. The paper was presented at the International CAN Conference 
2002 in Las Vegas.
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Connection Set, Emergency Object, and the Device Profile to better support the 
requirements of the hardware. In addition, a customized method for firmware 
updates via CANopen is implemented.

6.9.1 Background

The products of Quantum Design are relatively complex cryogenic instruments used 
by physicists and chemists to perform research in material science. These instruments 
contain several GPIB (IEEE-488) modules that are controlled by the operator from an 
application running on a PC. The GPIB was chosen primarily because it was widely 
used by the scientific/engineering community at that time, and enjoyed substantial 
hardware and software support. It also enabled users to integrate their own third 
party instruments into the measurement system.

As the engineers began looking toward more modular and modern architectures for 
their products, the shortcomings of the GPIB became more evident. The cost, com-
plexity, and cable size for this 8-bit parallel bus becomes very unattractive when used 
with a larger number of modules. Even the size of the stacked 26-pin ribbon connec-
tors became a major problem.

Furthermore, the protocols required for exchanging short packets with an array of 
modules is very time-consuming and negates all the advantages one would expect 
from a parallel bus; indeed, the effective bit-rate for actual data was only about 
200kbps. 

For these reasons, Quantum Design’s engineers began searching for an alternative 
among the various serial buses that have become popular in the nearly two decades 
since the original design decision was made. They looked carefully at physical layers 
based on RS485, FireWire, Ethernet, USB, and CAN. CAN was chosen because of sev-
eral perceived benefits including non-critical cables and connector impedance 
requirements, good hardware support at the chip level, excellent bus arbitration and 
error checking, and adequate bandwidth. While the engineers were initially 
impressed by the promise of very high bit-rates available with other buses, a closer 
evaluation showed that for this system they would be better off with the shorter 
frames and inherent collision-avoidance provided by CAN.  Also, the high bit-rates of 
these other buses would limit cable lengths or turn impedance matching into a serious 
design concern.

Having chosen CAN for the lower-level protocols, the engineers needed to select (or 
invent) an “application layer” for the system. Several options were available, all based 
upon CAN: DeviceNet, CAN Kingdom, SDS, and CANopen. Here the decision 
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became more a matter of taste since all of these approaches appeared to offer a reason-
able set of features. The most important service requirement was a confirmed 
exchange of messages longer than 8 bytes; a Service Data Object in the terminology of 
CANopen.  DeviceNet and CANopen appeared to be the most widely used and best 
supported of these options, with DeviceNet enjoying a much greater presence in the 
United States. But since it was not the intention to market fieldbus devices except as 
internal components in the laboratory instruments, this bias toward DeviceNet was 
not a particular concern. The higher bit rate and more efficient block transfers offered 
by CANopen were of greater importance.

6.9.2 Lab Instrumentation Requirements vs. CAN Physical Layer 
Specification

The modules comprising the instrument required several electrical services in addi-
tion to CAN communication, including 24VDC power, 50/60Hz line synchronization, 
hardware reset, and a low-jitter hardware sync signal. In addition, separate paths for 
returning unbalanced supply currents were needed for establishing system ground 
reference, and for dumping shield currents. Table 6.6 shows how CAN’s 9-pin D-sub 
connector was adapted to fill all of these requirements. It should be noted that it is 
possible to connect a standard third party CANopen module into the network by 
using a cable with wires on only pins 2, 3, 7, and 9. In this case, the 24V supply would 
only provide power for the galvanically isolated CAN interface of the module. 

The 50/60Hz sync line allows for very stable measurements in the presence of sub-
stantial line interference. Non-synchronous measurements are prone to exhibit low-
frequency beats as their phase slowly slips with respect to the power lines.

Pin # CAN Standard Pinout QD-CAN Pinout
1 Reserved  -24VDC Supply

6 Optional Ground  System Ground

2 CAN-L Line  CAN-L Line

7 CAN-H Line  CAN-H Line

3 CAN Ground  24VDC Return

8 Reserved  SYNC-H/RS Line

4 Reserved  SYNC-L Line

Table 6.6  Comparison of Pin Assignments
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The SYNC-H/RS and SYNC-L lines allow a very accurate and stable timing signal to 
be distributed throughout the system. This differential signal can serve as a clock, 
sync, or trigger for various modules depending on their requirements. The sub-micro-
second latency and jitter available through this SYNC mechanism is far better than 
could have been obtained through the CAN bus itself. Commands sent over the CAN 
interface can be used to configure or arm modules so they make use of this timing sig-
nal as desired.

CAN transceiver chips are used to control these SYNC lines, so in normal operation 
they will have the same electrical characteristics as the CAN bus. However, pulling 
Sync-H/RS to system ground level for a few microseconds will initiate a hardware 
reset of all modules connected to the bus.

6.9.3 Lab Instrumentation Requirements vs. CANopen Specification

As previously mentioned, the serial bus was selected for internal use in the instru-
ment lines, therefore slavish adherence to an official specification was not required. 
Nevertheless, the engineers wished to avoid “reinventing the wheel” as much as pos-
sible. Earlier designs had suffered from incompletely engineered and under-docu-
mented interfaces between the components of the instruments. It was felt that such 
problems could be reduced by following an official standard that many people had 
already spent considerable time designing.

9 CAN_V+ Optional Supply  +24VDC Supply

5 CAN_SHLD Optional  Line-Sync (50/60 Hz)

Typical CANopen Usage Laboratory Instrumentation Bus
Every implementation quite different Most instruments basically identical

Large number of simple modules A few complex modules

Several interchangeable vendors Vendor makes, uses own modules

Only a few generic module types Unique, application-specific modules

Substantial module configuration req’d Modules wake up knowing their role

Table 6.7  Different Networking Requirements

Pin # CAN Standard Pinout QD-CAN Pinout

Table 6.6  (Continued) Comparison of Pin Assignments
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It was also desirable to maintain the ability to run third party CANopen modules on 
the instrument’s bus in the future. Therefore, any liberties taken with the DS-301 
CANopen specification must be compatible with this requirement. The converse is 
not true, however; the engineers did not care that their own instruments would not 
function correctly in someone else’s network or if the instruments failed to pass CiA 
conformance testing.

There is a substantial difference between the “flavor” of a typical CANopen fieldbus 
system and the bus required for the instruments. These differences are summarized in 
Table 6.8. As one can see, the developers of CANopen were attempting to solve a very 
different set of problems than the engineers at Quantum Design. Nevertheless, the 
CANopen application layer comes fairly close to providing Quantum Design with the 
necessary and sufficient services required.

Modules exchange process data User’s computer collects process data

Minimal SDO traffic when operational Commands continually sent via SDO

Computer used for config & diagnos-
tics User runs instrument through computer

Std. CANopen QD-CANopen
Maximum nodes in system 127 31

Default TPDOs / node 4 34

Default RPDOs / node 4 4

Default SDOs / node 1 1

Bit rates 10kbps - 1Mbps 500kbps - 1Mbps

Dynamic PDO Mapping Optional No

Variable COB IDs Optional No

Remote Response Optional No

29-Bit Identifiers Optional No

LMT Services Optional No

Table 6.8  Comparing Standard CANopen and QD-CANopen

Typical CANopen Usage Laboratory Instrumentation Bus

Table 6.7  (Continued) Different Networking Requirements
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The modules are quite application-specific and can be pre-configured to perform their 
assigned functions in the instruments. There is no need to have dynamic assignment 
of PDO data, nor is there even a need to have configurable COB IDs for the PDOs. In 
fact, it is desirable to have all these parameters “hard-wired” into the firmware so that 
the modules know everything about each other at power-on. 

6.9.4 Optimizing the Default Connection Set

Using a fully static configuration of PDOs (the “default connection set” for the net-
work), it needed to be ensured that it would provide maximum capability towards the 
specific application as far as the number of available communication channels was 
concerned. Modules for this application needed to be able to send as much process 
data as required. The CANopen specification only allows for four TPDOs and 4 
RPDOs per node, a number that was felt to be insufficient for the system require-
ments. On the other hand, the number of nodes permitted by the CANopen specifica-
tion was far in excess of what would be needed for the instruments. 

SDO Block Transfers Optional Mandatory

Error Control Protocol Guarding or Heartbeat Heartbeat

±24V System Power on Bus No Yes

Sync/Reset Signals on Bus No Yes

Line-sync Signal on Bus No Yes

Compatible with DS-301 Net Yes No

Compatible with QD-CANopen Yes Yes

QD TPDO Default Connections  Assigned COB ID 
1 TPDO 1 on N 180h + N

2 TPDO 1 on N + 32 1A0h + N

3 TPDO 1 on N + 64 1C0h + N

4 TPDO 1 on N + 96 1E0h + N

Table 6.9  QD-CANopen Connection Set on Node N (0 < N < 32)

Std. CANopen QD-CANopen

Table 6.8  (Continued) Comparing Standard CANopen and QD-CANopen
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It was therefore decided to make a tradeoff: limit the nodes to 31 in order to expand 
the number of default TPDOs available on each node. Since the modules would serve 
primarily to control the instrument and report back process data, it was the TPDOs (as 
opposed to the RPDOs) that were in short supply. Therefore a strategy was devised 
for “stealing” COB IDs of the default PDOs excluded from the instrument network 
(32-127).

The technique allowed each node in the range 1-31 to have three additional images in 
the range of 32-127. Thus, node 1 also inherited the default PDOs for nodes 33, 65, and 
97. The COB IDs for both RPDOs and TPDOs in this range were taken for use as 
TPDOs for the modules. In addition, there were the COB IDs of the default SDOs for 
these unused nodes. Thus a total of 34 separate Process Data Objects were made avail-
able on each module for reporting data back to the user’s computer. Note that the four 
(4) RPDOs provided by the CANopen standard were retained as part of the modified 

5 RPDO 1 on N + 32 220h + N

6 RPDO 1 on N + 64 240h + N

7 RPDO 1 on N + 96 260h + N

8 TPDO 2 on N 280h + N

9 TPDO 2 on N + 32 2A0h + N

10 TPDO 2 on N + 64 2C0h + N

11 TPDO 2 on N + 96 2E0h + N

12 RPDO 2 on N + 32 320h + N

13 RPDO 2 on N + 64 340h + N

--- --- ---

29 TSDO on N + 32 5A0h + N

30 TSDO on N + 64 5C0h + N

31 TSDO on N + 96 5E0h + N

32 RSDO on N + 32 620h + N

33 RSDO on N + 64 640h + N

34 RSDO on N + 96 660h + N

QD TPDO Default Connections  Assigned COB ID 

Table 6.9  (Continued) QD-CANopen Connection Set on Node N (0 < N < 32)
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default connection set. The order for assigning COB IDs to these 34 PDOs is shown in 
Table 6.9, and was chosen so that they would be used in order of decreasing priority.

Since the COB IDs were not allowed to be changed, the values listed in Table 6.9 could 
be relied upon at all times - the control computer and the other nodes automatically 
know a PDO’s source node and number from its COB ID. And since dynamic data 
mapping is not allowed in the network, the type and meaning of the data payload is 
also immediately known throughout the network.

Although the COB IDs are not allowed to be changed, bit 31 in the dictionary entry for 
PDO communication parameter/COB ID can be set or cleared. According to DS-301, 
setting this bit disables the PDO and may prove useful in managing bus bandwidth 
with so many default TPDOs potentially defined.

Table 6.8 summarizes the differences described so far between the CANopen standard 
and Quantum Design’s adaptation of it.

6.9.5 Enhancing the Role of the CANopen Emergency Object

Specification DS301 appears to leave quite a bit of flexibility in the use of the Emer-
gency Object for device-specific purposes. There are several blocks of Error Codes 
that have been provided to facilitate this - F0xxh is for “Additional Functions,” FFxxh 
covers “Device Specific” errors, 50xxh covers “Device Hardware” errors, and the 
entire “6xxxh” block is available for “Device Software” errors.

Quantum Design’s engineers extended the definition of “emergency” to include any 
significant events or state changes that might occur in a module, but whose actual 
occurrence would not otherwise be known without performing continuous polling of 
the module. Having to do such polling is a substantial programming burden and 
adds unnecessarily to the loading on the CAN bus. Also, such polling cannot be done 
by another node on the network unless it has Client SDO capability, a service not sup-
ported by some commercial CANopen slave stacks.

The engineers proposed to use the block of codes from F000h to FFFFh to indicate 
when there had been a change-of-state in one of the modules subsystems. One bit (of 
the available 12) was assigned to each subsystem that could have externally signifi-
cant state information. Whenever there was an event or state change in one of the 
module’s subsystems, the corresponding bit-flag in the Error Code was set. An entry 
in the Object Dictionary was provided for the purpose of clearing the flag-bits of this 
Error Code, called the “Event Reset Register.” Setting a bit of this object cleared the 
corresponding flag of the Error Code. According to the Emergency Object specifica-
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tion described in DS301, the EMCY (emergency) telegram is sent when (and only 
when) the Error Code changes. Thus clearing any bits in the Error Code will cause the 
EMCY telegram to be sent again. But rather than sending an Error Code of 0000h 
upon resetting one of these bits (as mentioned in the standard), the engineers pro-
posed to send the new Fxxxh pattern. Clearing a bit in the Fxxxh group indicated that 
the module had been re-armed to send an EMCY telegram when another state change 
occurred on that subsystem. Otherwise no further state changes would be announced. 
A suitable EMCY ‘inhibit time” was used in order to avoid consuming excessive 
bandwidth through this module-state reporting scheme.

The five bytes of the “Manufacturer Specific Error Field” provided a set of status flags 
and mode bit-fields. Up to 40 bits of state/mode information could be communicated 
with this scheme. 

There has been considerable discussion about “borrowing” the official CANopen 
emergency protocol for the posting of state-change information. The alternative 
would have been to implement the above scheme using PDOs. Quantum Design 
elected to use the emergency protocol for several reasons - it gave these messages a 
higher priority than all normal PDOs, it allowed state information to be presented by 
a module even when that module was in the Pre-operational or Stopped mode, and it 
conserved COB IDs. In the case of the particular CANopen master API used, emer-
gency messages had their own dedicated queue and callback function. This made 
them somewhat less likely to become lost.

6.9.6 Providing for Application Firmware Update via CANopen

Quantum Design needed the capability to update a device’s firmware by loading new 
executable code directly through the device’s own CAN interface. This requirement 
created an interesting challenge for the firmware architect since the CANopen stack is 
an integral part of the application firmware and must be compiled together with it. It 
was decided that the most reliable and robust method for implementing this capabil-
ity was to have a “CANopen Loader” permanently available on the module. This 
minimal operating system only needed to provide a few services. It had to be able to 
implement an SDO-Server download, it needed to verify the checksum of the pro-
gram it had downloaded, and it needed to transfer command to the downloaded pro-
gram. Once the new downloaded program initialized and began execution, it 
completely replaced the loader and provided the code necessary to implement a 
CANopen interface for any further communications.

Two separate banks of flash memory were available on each module. One bank con-
tained the CAN loader firmware in a write-protected area segment. The other bank 
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was available for storing downloaded application code. When the device was first 
powered-up or after a hardware reset, program execution transferred to the loader 
program. The loader would then verify that the stored application had the correct 
checksum as part of its initialization process.

When the loader started, the node was in a special state not described within the 
CANopen specification. Entry into this mode was signaled by a Boot-up Message 
with a node number that was offset from the actual node by a value of 20 
(720h+NodeID). This would not normally be a valid Boot-up Message within the 
restricted pre-defined connection set where only a range of Node IDs (1-31) is 
allowed, so it can be interpreted as an entry into the “System State.” In this state, a 
node could receive data and report status via SDO, but it had no access to the applica-
tion’s Object Dictionary and could not process any PDOs. If the checksum of the cur-
rent application firmware was determined to be correct by the system code, the node 
could be sent into its normal “Pre-operational” mode by sending the usual network 
command. Alternatively, new firmware could be downloaded by use of SDO writes. 
After the new firmware had been loaded, execution could be transferred over to it by 
bank-switching between the two memory blocks. After initialization, the “real” appli-
cation sent a standard Boot-up telegram and entered into its Pre-operational mode. By 
using bank switching, having to re-map the interrupt vector table was avoided 
because a new table was automatically loaded in the operation.

6.9.7 Creating a Manufacturer’s Device Profile

Quantum Design’s modules were not intended for use on CANopen networks apart 
from their own internal instrument bus. Therefore the engineers were free to create 
their own device profile with a common set of dictionary entries in the range of 6000h 
– 9FFFh. According to the specification, non-standard device profiles should be indi-
cated by a Device Profile Number of zero in the Device Type entry (1000h) of the 
devices Communication Profile. The 16 high bits of this entry are available to specify 
“Additional Information.” A characteristic version number in this location is still used 
so that the system software can distinguish between different revisions of the device 
profile. 

The device profile provides a device-independent structure for accessing common 
information such as module temperatures, module voltages, firmware checksums, 
error registers, and diagnostic test results. SDO writes to a standardized dictionary 
entry are used to command various levels of diagnostic tests.
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6.9.8 Conclusions

Completely standardized CANopen would come remarkably close to filling the needs 
for the modularized instrumentation of Quantum Design. They used PDOs to report 
measurement results back to the master node in the PC. SDOs are used to set or read 
parameters as well as to issue confirmed commands to the nodes. The modification of 
the Default Connection Set, the expanded scope of the Emergency Object, the provi-
sion for CAN-based firmware updates, and the customization of the Device Profile go 
a long way toward making this high-level protocol a perfect fit for Quantum Design’s 
requirements.

6.10 Example of an Entire Design Cycle

6.10.1 Defining Nodes and Process Variables

As discussed in Section 6.1, one should begin with the overall communication layout 
for any new CANopen development. In cases where the entire network is “embed-
ded” and fairly fixed (not re-configured during operation) it has been proven useful 
to use the same Object Dictionary structure for all nodes. This means that one would 
define all process variables in the entire system as having unique Object Dictionary 
entries. The benefit of such an assignment is that the same Object Dictionary structure 
is used on every node. As an example, the “current speed” variable of a construction 

Objective

In this section we show you all steps involved in an entire design cycle of an 
embedded, completely pre-configured master-less system where individual 
nodes are part of the design and development.

For an example of a CANopen network configuration based on off-the-shelf 
CANopen components, see Chapter 4.
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machine would have the same Object Dictionary entry number on both the producer 
and consumer of that variable.

6.10.2 Define Process Data Objects

Once the nodes and the process variables are defined, the next step is to define the 
PDOs used by each node. The usual approach is to start with all Transmit PDOs first, 
defining which nodes combine which process variables into which TPDO (TPDO 
mapping). The next step is defining the communication parameters, determining 
which CAN message IDs are used, as well as the transmission type (which determines 
when the TPDO is triggered). The list of TPDOs along with the selection of the trans-
mission type also directly sets the bandwidth required to handle the PDO related 
communication.

Once the TPDOs are defined, the Receive PDOs are next. It needs to be decided which 
of the many PDOs used on the entire network need to be received and handled by 
each node. 

It should be noted that such a shared Object Dictionary limits the usage of 
generic I/O CANopen devices (DS401 compliant) in the same network. Generic 
I/O devices have their process variables at fixed locations that cannot be 
changed, so using two digital input devices would both produce inputs that 
are stored in their local Object Dictionaries at location 6000h.

Defining the PDOs, both transmit and receive is a process that typically 
requires a few iterations of refinement. One of the challenges is to decide which 
process variables can be best combined into one PDO. 

A typical example would be command bytes sent by one device to several oth-
ers. Should these bytes be sent one-by-one; one separate PDO to each receiving 
device? Or should they all be combined into one PDO and all sent at once?

The latter approach has the benefit of optimizing the usage of the available net-
work bandwidth. It means, however, that each receiver also receives data that 
it does not need (in this case the command bytes directed at the other devices). 
In general, the benefit of bandwidth optimization outweighs the disadvantage 
of handling some additional receive data. CANopen supports receiving such 
“unwanted” data by using dummy-mapping. A receiver may map unwanted 
data of a RPDO directly to so-called dummy entries – which basically means 
that the unwanted data is ignored.
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6.10.3 Electronic Data Sheets, Device Configuration Files and 
Development Tools

Although tables and worksheets (discussed in Section 6.1) can be used for listing and 
defining nodes, Object Dictionary entries and PDOs, the final specification should 
always be made in the form of an Electronic Data Sheet (EDS) or Device Configuration 
File (DCF). They can be generated using an Electronic Data Sheet Editor such as Vec-
tor’s CANeds. Because EDS and DCF are electronically readable, they can be used by 
standard CANopen tools during development and test of the network. They should 
simply be regarded as an electronically readable version of the Object Dictionary 
specification.

6.10.3.1 Configuration

Once the EDS and DCF files are in place, standard CANopen tools can use them. Con-
figuration tools such as Vector’s CANsetter or proCANopen use these files to provide 
the user with device access lists. For each node on the network, these configuration 
tools provide read and write access to each node’s Object Dictionary as shown in 
Chapter 2, Figure 2.1.

6.10.3.2 Monitoring and Analyzing

In addition, the symbol information stored in the EDS and DCF files can be carried 
over to monitoring and analyzing tools such as Vector’s CANalyzer. Instead of just 
displaying the “raw” CAN messages, the CANalyzer with the CANopen option can 
take the symbol information provided by the EDS and DCF and display it along with 
the data transmitted. This way a process data variable can be visualized directly in 
several windows along with its symbolic name. Windows using the symbol informa-
tion include the data window, the trace window and the graphic window where vari-
ables can be tracked over time. Figure 5.20 in Chapter 5 shows a screen shot of the 
CANalyzer displaying the traffic on a CANopen network.

6.10.3.3 Simulation

In cases where simulation of a CANopen network is desirable, the CANoe simulation 
tool from Vector with its CANopen option can automatically simulate the network 
traffic simply by extracting the required communication information from the EDS 
and DCF files.

Even the simulation process of fairly complex networks can be setup within a few 
minutes. The first step is to define the network in proCANopen. Each node must be 
named, assigned a Node ID and an EDS and DCF file. Once all nodes are defined, a 
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“make” process has to be started that produces all the files required for the simula-
tion.

In CANoe, these files can be imported and used to simulate the entire network. The 
simulation includes all CANopen specific network traffic, including heartbeats, PDOs 
and even the entire SDO server of each simulated node. The configuration tools 
CANsetter and proCANopen can access the simulated nodes just as they would 
access the physical devices.

Naturally, the data within the PDOs is not simulated at this point, it is left at zero. The 
tools have no information about the specific data a node produces – however, they can 
simulate the communication behavior by producing the TPDOs according to the 
transmission type setting in the TPDO communication parameters.

It should be noted that the network traffic is not only simulated, it actually gets gener-
ated onto a CAN network if a CAN interface is connected to the system running the 
CANoe simulation model. Because single nodes within the simulation can be disabled 
one-by-one, it is possible to replace simulated nodes with the physical nodes in the 
network once they become available. This allows for a step-by-step migration from a 
simulated network to a physical network.

A more detailed simulation example with screen shots is shown in Chapter 4, Section 
4.5.
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 A Frequently Asked Questions

“The only way to discover the limits of the possible 
is to go beyond them into the impossible.”

Arthur C. Clarke

This FAQ selection was adapted from the FAQ section of www.canbus.us and 
www.canopen.us, web pages dedicated to US users of CAN and CANopen. These 
web pages are maintained by the authors of this book.

A.1 General

A.1.1 What is the identifier of a node, message and/or variable?

In CAN and CANopen there are several identifiers used for different purposes. Begin-
ners tend to mix these up, so pay close attention to the different meanings of the word 
"identifier":

1. On the CAN level (looking at CAN messages on the bus, generated by a CAN con-
troller, no higher-layer protocol involved), the "identifier" is the CAN message 
identifier. Version CAN 2.0A allows for an 11-bit ID (theoretically up to 2048 dif-
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ferent identifiers, some older CAN controllers might support less), version CAN 
2.0B allows for a 29-bit ID. 

2. Higher-layer protocols such as CANopen use node identifiers to address a specific 
node in the network. The Node ID is in the range of 1 to 127 in CANopen and 0 to 
63 in DeviceNet. Sometimes, the Node ID is embedded into the CAN ID. The pre-
defined connection set of CANopen places the Node ID into the lower 7 bits of the 
11-bit CAN ID. 

3. In CANopen, process variables have their own identifier. All process variables are 
located in the Object Dictionary, which is a look-up table using a 16-bit Index and a 
8-bit Subindex. The Index and Subindex are used to identify one specific process 
variable in one specific node. A typical access (SDO access) to such a variable uses 
a CAN message that contains a Node ID within the CAN ID and the Index and 
Subindex (indexing a variable in the Object Dictionary) within the data field.

A.1.2 When and why would I need a higher-layer protocol such as 
CANopen instead of plain CAN?

CAN by itself only provides a method of exchanging up to 8 data bytes using message 
frames that have an identifier. Once you sit down and specify which identifier is used 
for which purpose - and what the contents of each message means (data types, byte 
order, variables) - you are already starting to specify your own higher-layer protocol.

As soon as a certain number of nodes, messages and process variables are involved, 
an in-house specification of that higher-layer protocol needs to be written and main-
tained.

With CANopen, all of that work has already been done. Instead of re-inventing exist-
ing technology, engineers can take advantage of CANopen and adopt existing tech-
nology. 

Due to the "openness" of CANopen it is even possible to pick and choose the features 
required by an application and skip unwanted ones. CANopen literally reduces an in-
house specification to a document that states which features of CANopen are used.

Most commercial CANopen source codes support the selection of features via 
"#define" statements in the source code.

If you are not yet certain if you want to use CANopen or implement an in-house 
higher-layer protocol, consider using www.MicroCANopen.com instead (see Section 
6.3).
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A.1.3 Do I need to have my node CANopen conformance tested?

If you are selling your node to 3rd parties as CANopen compliant, or if you purchase 
a CANopen node from a 3rd party, a CANopen conformance certificate gives both 
parties the extra insurance that the part actually behaves as specified. So if 3rd parties 
are involved (either selling or buying), CANopen nodes should be certified.

For in-house applications where all CANopen nodes come from the same manufac-
turer a conformance test would not really be required. However, if several engineers, 
teams or departments are involved, a conformance test can help, especially in the 
debug and test phase to confirm that a particular node behaves as expected. 

In addition, the conformance test provides an aditional quailty check for all applica-
tions that require in-depth testing. These are often applications like medical devices 
and transport systems, but also include all applications or devices produced by an 
ISO9000-certified manufacturer.

An independent 3rd party such as the CiA (CAN in Automation) should do the con-
formance testing if 3rd parties are involved. This way an independent organization 
can be used as a mediator, in case the parties do not agree about the degree of confor-
mance achieved. For details on CiA conformance testing see www.canopen.org/cano-
pen/conformance.

For in-house applications, the conformance test can also be purchased and performed 
internally. The CANopen conformance test is sold by National Instruments.

A.1.4 Is 127 "really" the maximum number of nodes in a CANopen 
network?

Answer: Not really.

The original CANopen specification is limited to a maximum of 127 nodes, however it 
was kept "open" enough to provide room for extensions. In fact, there is so much 
room available that several very different solutions exist for this problem. There are 
application-specific, customized versions of CANopen networks installed that have 
more than 127 nodes. Contact your favourite CANopen consultant to learn how the 
support of more than 127 nodes can best be implemented in your application.
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A.1.5 Can the Node IDs in a CANopen network be auto-assigned?

Although it is not part of the original standard, there are several, application-specific 
ID claiming implementations. Depending on the application requirements, several 
options are available. One software solution was introduced with device profile 
[CiADSP416].

Pure software solutions usually require that each node have a "unique number of 
bytes" either in the form of a serial number or a random number generator. Depend-
ing on bus speed and number of nodes, the claim-cycle may take several seconds to 
execute.

Other applications might require that the Node ID is related to the physical location in 
the network. So if the Node IDs should really be 1, 2, 3, etc, sorted by their physical 
location, then additional hardware is required.

There are many implementations that use an additional wire in the cabling for this 
purpose. And there are several options on how to use this wire - one is creating a 
daisy-chain (going in and out of each node, with each node having the ability to 
switch the signal for the next node in the chain). In this case the node "closest" to the 
master will be configured first. Once it is configured, it enables the next node in the 
chain.

Consultants can assist with any of the methods above.
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A.2 Implementation Issues

A.2.1 How do I implement CANopen?

Depending on your expertise you might be tempted to simply buy the specification 
and start implementing it. Unless you already have a great deal of expertise with 
CAN and at least one other higher-layer protocol you should really evaluate this 
option carefully. If the project demands a limited CANopen implementation not 
requiring 100% CANopen compliance, then this might be a possible route.

However, as soon as more complex CANopen features or 100% CANopen confor-
mance is required, the recommendation is to not start from scratch. The specification 
unfortunately does not contain all the details necessary, and many issues will only 
show up once the CANopen conformance test is started. Buying somebody else's 
implementation that has already passed the conformance test is a great shortcut, shav-
ing several months off your development time.

A comparison of different implementation methods can be found in Chapter 6.

A.2.2 What are the memory requirements for a CANopen communication 
protocol stack? 

The memory requirements differ a lot depending on the microcontroller architecture 
used and the CANopen features required by a particular node/application. 

The nice thing about CANopen is that the set of mandatory functionality is very small 
and all the other functionality is optional. So a CANopen node can be built with 
exactly the required set of communication functions.

Although a minimal bootloader fits into 2kbytes of code, this does not really imple-
ment a true CANopen node, as there is no process data. 

On an 8-bit microcontroller, take the following generalized rule-of-thumb:

Generic implementations require some 12-20kbytes of code space and about 500 to 
1000 bytes of data memory. An implementation highly optimized towards a specific 
microcontroller can use 25% less code and data memory. 

With MicroCANopen (as introduced in Section 6.3) code sizes stay in the 4-5kbytes 
area with about 200 bytes of RAM required.
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A.2.3 Why do most CANopen applications use CAN 2.0A (base frames 
with 11-bit identifiers) and not CAN 2.0B (extended frames with 29-
bit identifiers)?

CANopen was specified to support both protocol variants, but switching to the 29-bit 
identifiers has several consequences: 

• Because only the address field is extended, but not the data field, the overall 
available data bandwidth decreases. More bits of overhead are added to 
each message. 

• The overall reliability decreases, as the CRC checksum in each message now 
needs to cover 18 bits more. 

• The worst-case delay for high priority messages becomes longer. Even a low 
priority message cannot be interrupted or aborted once it won arbitration to 
the bus. And the maximum length of messages on the bus is increased by 18 
bits.



321

Appendix A: Frequently Asked Questions          

A.3 Performance

A.3.1 How do I calculate worst-case message delay times and data 
bandwidth?

The Embedded Systems Academy offers a free online worst-case calculator:

www.esacademy.com/faq/calc/can.htm 

After entering the desired bit rate, the length of the shortest CAN message (enter 
number of data bytes in your shortest PDO) and the length of the longest CAN mes-
sage (enter 8 - SDO message is always 8 bytes long) hit the "Calculate" button.

The form gets updated and shows you an approximation of the expected timing 
behavior. It is an approximation only - because CAN uses stuff bits the exact message 
length varies slightly with data contents.

A.3.2 How fast is a CAN/CANopen I/O cycle? (read INPUT, trasmit via 
CANopen, write OUTPUT)

Unfortunately there are MANY factors going into this formula. If you are looking at 
an entire I/O cycle, you have the following potential delays: 

Input scan/recognizing loop until setting CAN transmit bit. 
Depending on microcontroller performance and priorities this will be some 200us or 
more. With input filters, polarity changes or configurable "mapping" (which input 
goes to which CAN message) as provided by CANopen, this might more than double.

CAN message on bus delay. 
All delays here are multiple bit times. At 1Mbps, a single bit time is 1us. At 250kbps, 
bit time is 4us. If there is currently a message on the bus, it cannot be aborted/inter-
rupted. The maximum delay until any node gets a chance to try to arbitrate the bus 
depends on the longest possible message on the CANbus. With CANopen that is typ-
ically about 135 bit times. 

CAN arbitration delay. 
Assuming the message of our node has the highest priority, this delay will be zero. 
However, each message currently waiting to be transmitted anywhere on the bus hav-
ing a higher priority will get the bus before our node. Each message delay is another 
47 to 135 bit times. 
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Actual CAN transmit time. 
See www.esacademy.com/faq/calc/can.htm: Some 47 to 135 bit times. 

CAN receive interrupt delay in Output module. 
Depending on microcontroller performance and interrupt priorities this will be some 
100us or more. With output filters, polarity changes or configurable "mapping" 
(which CAN message contents goes to which output is configurable) as provided by 
CANopen, this might more than quadruple. 

Many commercial CANopen stacks leave the CAN receive interrupt before applying 
the output "sometime" later in the background task, making the worst-case MUCH 
longer. 

MINIMUM TOTAL (1Mbps example, highest priority): 
200us + 135us + 0 + 60us + 100us = 495us 

REALISTIC TOTAL (1Mbps example, medium priority): 
300us + 135us + 135us + 60us + 300us = 930us 

Conclusion: A complete I/O cycle can be completed within 1ms on a CANbus running 
at 1Mbps, if the priorities (interrupts on controllers and CAN message) are fairly high. 

As soon as the bus' bitrate is slowed down or a lot of CANopen protocol functionality 
is added, the total I/O cycle time will be closer to 2-3ms.

A.3.3 How can the data bandwidth of a CAN/CANopen network be 
increased?

There are several options that can help to increase the bandwidth. 

As the maximum possible bit rate depends on the maximum bus length, see if you can 
make your network shorter - and thus faster. Still, the maximum is about 1Mbps.

If you need the longer distance, see if a bridge/gateway can solve the problem. An 
existing 125kbps bus layout stretching to the maximum possible length can usually be 
doubled in speed if a bridge/gateway is introduced - separating the bus into two seg-
ments of 250kbps each. 

Finally, there are several microcontrollers with multiple CAN interfaces. Consider 
using multiple CAN/CANopen networks to multiply the overall bandwidth.
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A.4 Physical Layer

A.4.1 What is the difference between base frame format (CAN 2.0A) and 
extended frame format (CAN2.0B)?

Base frame format/CAN 2.0A uses an 11-bit ID in the CAN message identifier field 
allowing for 2048 different message IDs.

Extended frame format /CAN 2.0B uses a 29-bit ID in the CAN message identifier 
field allowing for more than 500 million different CAN IDs.

Extended frame format compatible devices can typically handle both the 11-bit and 
the 29-bit identifiers, even at the same time.

Both types of identifiers can be mixed on the same network. For the arbitration pro-
cess the 11 most significant bits of the CAN 2.0B ID are arbitrated against the 11-bits 
of the CAN 2.0A.

Also see Section A.2.3.

A.4.2 What is the difference between “Basic CAN” and “Full CAN”?

Today these terms can be regarded as historic, as CAN interface implementations are 
continuously modified and updated by chip manufacturers adding more and more 
functionality that can no longer be accurately be described using the terms “Basic” or 
“Full”.

Basic CAN: 
The first "Basic CAN" implementation was made with Philips 82C200 CAN controller. 
Basic CAN controllers have primarily one message buffer each to transmit and receive 
messages. Unfortunately the microprocessor or microcontroller operating a Basic 
CAN interface needs to deal with many high-priority interrupts, since it gets an inter-
rupt for every message received in the receive buffer. It then needs to decide in soft-
ware if this message is of interest or not and, if it is, start the processing of the 
message.

The worst-case scenario for a Basic CAN controller is a CAN network running at 
1Mbps with back-to back messages. In this scenario the shortest message on the bus is 
about 50 microseconds. That means that once a receive interrupt occurs, the receive 
buffer needs to be processed within 50 microseconds, otherwise the next message 
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could potentially be received, overwriting the one previously received. For more 
details about Basic CAN, see Section 5.3.3.

“Full” CAN: 
The “Full” CAN controller as first implemented by the Intel 82526 CAN controller 
eases the burden on the host microprocessor or microcontroller by offering extended 
hardware filtering capabilities. The “traditional” Full CAN controller has a total of 15 
message buffers (called message objects) each of which can be configured to either 
transmit or receive. Thus each buffer can be configured to listen for exactly one spe-
cific CAN message identifier.

If the total number of CAN message IDs that a node needs to listen to can be kept 
below the number of message buffers available, the CAN controller will only issue a 
receive interrupt if a message is received that matches one of the specified CAN mes-
sage IDs.

While this improves overall interrupt behavior (interrupts are not issued on messages 
that do not match any of the configured receive filters), the worst-case scenario for 
back-to-back messages does not change (compared to the Basic CAN controller). If 
back-to-back messages occur, an overrun can still occur within about 50 microsec-
onds. For more details about Full CAN, see Section 5.3.3.

A.4.3 What is PeliCAN?

Philips came up with a solution to the back-to-back message problem as described in 
the previous paragraphs. The PeliCAN interface as implemented in the SJA1000 
stand-alone CAN controller and the 8xC591 and LPC99x microcontrollers use a true 
FIFO buffer to receive messages. 

This solves the back-to-back problem, as the worst-case timing for a potential buffer 
overrun is now about 500 microseconds instead of 50. This relieves the host processor, 
because the CAN receive interrupt does not need to be of the highest priority any-
more. For more details about Philips’ PeliCAN, see section Section 5.3.3.3.

A.4.4 How do I connect a CAN controller to the bus?

The most common form is to use a differential transceiver. One of the most popular 
transceivers is the Philips PCA82C251 high-speed, differential signal transceiver. See a 
datasheet at:

www.semiconductors.philips.com/pip/PCA82C251T 
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Notes:

The "Tx" pin of the CAN controller goes to the "Tx" pin of the transceiver. 

The "Rx" pin of the CAN controller goes to the "Rx" pin of the transceiver. 

The "Rs" (slope) control of the transceiver is set to GND (high speed mode) in most 
applications. If EMI is a problem in your application, consider other operating modes. 

The "Vref" is an output of the transceiver that in many applications can be left uncon-
nected.

A.4.5 How do I calculate the CAN bit timing of my CAN controller?

Either carefully read the data sheet of your CAN controller and go from there...

...or take a shortcut and use the program CANtime from Mike Schofield:

www.mjschofield.com/cantime.htm 

CANtime is a shareware program that supports the following CAN controllers:

Intel 82527 
Intel 87C196CA and 87C196CB (both variants) 
Motorola 68HC08 (and all devices that use the msCAN08 module) 
Motorola 68HC12 (and all devices that use the msCAN12 module) 
Philips 82C200, 80C592, 80C598 and SJA1000 (all four devices) 
Infineon C164CI and C167CR (both devices) 
Infineon C505C and C515C (both devices) 
ST Microelectronics ST10F168
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 B Physical Layer

B.1 Recommended Bit Timings

Objective

This section gives you a quick reference to the CAN Physical Layer require-
ments for CANopen. For complete details please refer to the relelated CAN 
and CANopen specifications [CiADRP3031].

Bit 
Rate

Maximum 
Bus 
Length

Bit 
Time

Time 
Quanta 
per bit

Length 
of 1 Time 
Quanta

Sample 
Point

1Mbps 25m 1µs 8 125ns 6 TQ (75%)

800kbps 50m 1.25µs 10 125ns 8 TQ (80%)

500kbps 100m 2µs 16 125ns 14 TQ (87.5%)

250kbps 250m 4µs 16 250ns 14 TQ (87.5%)

Table B.1  CANopen Recommended Bit Timings
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125kbps 500m 8µs 16 500ns 14 TQ (87.5%)

50kbps 1km 20µs 16 1.25µs 14 TQ (87.5%)

20kbps 2.5km 50µs 16 3.125µs 14 TQ (87.5%)

10kbps 5km 100µs 16 6.25µs 14 TQ (87.5%)

Bit 
Rate

Maximum 
Bus 
Length

Bit 
Time

Time 
Quanta 
per bit

Length 
of 1 Time 
Quanta

Sample 
Point

Table B.1  (Continued) CANopen Recommended Bit Timings
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 C Data Types

C.1 Basic Data Types

Basic Data Types are the simplest types defined in CANopen. They can be used to 
construct Extended and Complex Data Types, and they may be stored in a single sub-
entry of the Object Dictionary.

C.1.1 Boolean

Definition: A single bit value. The value zero indicates a false condition and 
the value one indicates a true condition.

Name Notation: BOOLEAN

Objective

The data types form the basis of the data storage in the Object Dictionary. This 
appendix provides a quick reference to the data types used in CANopen and 
examples of their usage. It can also be used to determine which types are right 
for manufacturer-specific entries.
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Range: 0 to 1

Examples: 0 
1

OD Location: 0001h

C.1.2 Void

Definition: A bit sequence of varying length. The value that a void type may 
have is undefined, and this type is commonly used as a place 
holder for reserved fields in complex data types or in the Object 
Dictionary.

Name Notation: VOIDn represents a Void type with a bit sequence of n bits.

Range: Undefined

OD Location: Not defined in the Object Dictionary

C.1.3 Unsigned Integer

Definition: An non-negative integer value.

Name Notation: UNSIGNEDn represents an unsigned integer value stored in n 
bits.

Range: 0 to 2n – 1 where n is the number of bits used to store the value.

Examples: 0 
45 
5611

OD Location: 0005h UNSIGNED8 
0006h UNSIGNED16 
0016h UNSIGNED24 
0007h UNSIGNED32 
0018h UNSIGNED40 
0019h UNSIGNED48 
001Ah UNSIGNED56 
001Bh UNSIGNED64
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C.1.4 Signed Integer

Definition: An integer value.

Name Notation: INTEGERn represents an integer value stored in n bits.

Range: -2n-1 to 2n-1 – 1

Examples: -45 
6234 
-182

OD Location: 0002h INTEGER8 
0003h INTEGER16 
0010h INTEGER24 
0004h INTEGER32 
0012h INTEGER40 
0013h INTEGER48 
0014h INTEGER56 
0015h INTEGER64

C.1.5 Floating Point (Real)

Definition: A floating point/real value conforming to the IEEE 754-1985 stan-
dard.

Name Notation: REAL32 represents a 32-bit value, usually called “single preci-
sion.”

REAL64 represents a 64-bit value, usually called “double preci-
sion.”

Range: - (2 – 2-23)127 to (2 – 2-23)127 single precision

- (2 – 2-52)1023 to (2 – 2-52)1023 double precision

Examples: -23.643732 
0.117774 
34562.545324



Embedded Networking with CAN and CANopen

332

OD Location: 0008h REAL32 
0011h REAL64

C.1.6 Visible Character

Definition: A non-negative integer value in the range 20h to 7Eh inclusive, 
corresponding to the non-control (printable) characters in the 
ASCII character set. Stored in eight bits (i.e. it is a limited value 
range UNSIGNED8).

Name Notation: VISIBLE_CHAR

Range: 20h to 7Eh

Examples: 45h (ASCII ‘E’) 
7Ah (ASCII ‘z’) 
21h (ASCII ‘!’)

OD Location: Not defined in the Object Dictionary

C.2 Extended Data Types

Extended Data Types are types constructed from a collection of more than one Basic 
Data Type. They may be stored in a single subentry of the Object Dictionary.

C.2.1 Octet String

Description: A sequential collection (array) of UNSIGNED8 values of varying 
length. This allows sequences of 8-bit values to be used, for exam-
ple storing binary data.

Note that although the word “string” appears in the name, the 
stored value may not be printable in the ASCII character set, 
which is limited to seven bits.

Name Notation: OCTET_STRINGn where n is the number of UNSIGNED8 values 
in the array.
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Examples: 9Ah,3Bh,11h 
4, 251,45

OD Location: 000Ah

Note that although the Octet String type may have varying length, only one version of 
the type is stored in the Object Dictionary, omitting length indication. This is because 
an Octet String can be any length and it is simply not possible to store every possible 
length in the Object Dictionary.

C.2.2 Visible String

Description: A sequential collection (array) of VISIBLE_CHAR values of vary-
ing length. This allows sequences of printable characters from the 
ASCII character set to be used, for example storing names, 
descriptions, versions, etc.

Note that unlike C, a null terminator is not required on the end of 
the array.

Name Notation: VISIBLE_STRINGn where n is the number of VISIBLE_CHAR val-
ues in the array.

Examples: Version 1.00 
Embedded Systems Academy, Inc. 
CANopen

OD Location: 0009h

Note that although the Visible String type may have varying length, only one version 
of the type is stored in the Object Dictionary, omitting length indication. This is 
because a Visible String can be any length and it is simply not possible to store every 
possible length in the Object Dictionary.

C.2.3 Unicode String

Description: A sequential collection (array) of UNSIGNED16 values of varying 
length. This allows sequences of 16-bit values to be used, for 
example storing text in languages that do not use the Roman 
alphabet such as Hebrew, Russian, Greek, etc.
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Name Notation: UNICODE_STRINGn where n is the number of UNSIGNED16 
values in the array.

OD Location: 000Bh

Note that although the Unicode String type may have varying length, only one ver-
sion of the type is stored in the Object Dictionary, omitting length indication. This is 
because a Unicode String can be any length and it is simply not possible to store every 
possible length in the Object Dictionary.

C.2.4 Time of Day

Description: The Time of Day type is a collection of basic types grouped 
together to store the date and time to the nearest millisecond since 
the epoch, which is midnight January 1, 1984.

The type is stored in 48 bits arranged as follows:

UNSIGNED28 ms 
VOID4 reserved 
UNSIGNED16 days

ms stores the current time in milliseconds since midnight of the 
day specified with the days value

days stores the number of whole days since the epoch

Note the void type forces the days value to be aligned on a 16-bit boundary and there-
fore for the Time of Day type to fit exactly into six bytes. Also note that the Time of 
Day type does not make any provision for time zones, therefore the epoch used is the 
local epoch.

Name Notation: TIME_OF_DAY

OD Location: 000Ch

Examples: ms = 20040000, days = 3 January 4th 1984, 5:34am 
ms = 43320000, days = 8 Janurary 9th 1984, 12:02pm
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C.2.5 Time Difference

Description: The Time Difference type is a collection of basic types grouped 
together to store a length of time to the nearest millisecond.

The type is stored in 48 bits arranged as follows:

UNSIGNED28 ms 
VOID4 Reserved 
UNSIGNED16 days

ms stores the current time in milliseconds since midnight of the 
day specified with the days value.

Days stores the number of whole days.

Note the void type forces the days value to be aligned on a 16-bit boundary and there-
fore for the Time Difference type to fit exactly into six bytes.

Name Notation: TIME_DIFFERENCE

OD Location: 000Dh

Examples: ms = 20040000, days = 3, 3 days, 5 hours, 34 minutes 
ms = 43320000, days = 8, 8 days, 12 hours, 2 minutes

C.2.6 Domain

Description: A block of data of arbitrary length. The contents, size and format 
of the block of data are not defined in the CANopen specification. 
This type is especially useful for application specific data where 
the length of data may vary each time it is used, for example to 
store firmware.

Name Notation: DOMAIN

OD Location: 000Fh

Note that although the Domain type may have arbitary length, only one version of the 
type is stored in the Object Dictionary, omitting length indication. This is because a 
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Domain can be any length and it is simply not possible to store every possible length 
in the Object Dictionary.

C.3 Complex Data Types

Complex Data Types are types constructed from a collection of more than one Basic or 
Extended Data Type. They are stored in multiple entries of the Object Dictionary, with 
each Basic or Extended Data Type used occupying one Subentry in the Object Diction-
ary.

The first value in a Complex Data Type always indicates the number of types that fol-
low for a specific value, i.e. the highest Subindex used to store the value of the type in 
the Object Dictionary.

C.3.1 PDO Communication Parameter Record

Description: This type contains a description of the communication characteris-
tics for a PDO. It is constructed as follows:

UNSIGNED8 Number of Entries 
UNSIGNED32 COB ID 
UNSIGNED8 Transmission Type 
UNSIGNED16 Inhibit Time 
UNSIGNED8 Reserved 
UNSIGNED16 Event Timer

COB ID stores the COB ID used for the PDO.

Transmission Type indicates how and when the PDO is transmit-
ted.

Inhibit Time indicates if there is a limit on the maximum transmis-
sion frequency of the PDO.

Event Timer is used to determine a specific frequency of transmis-
sion of the PDO.

OD Location: 0020h
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Name Notation: PDO_COMMUNICATION_PARAMETER

C.3.2 PDO Mapping Parameter Record

Description: The PDO Mapping Parameter type stores the mapping of process 
data into a specific PDO. It is constructed as follows:

UNSIGNED8 Number of Entries 
UNSIGNED32 1st Object Mapped 
UNSIGNED32 2nd Object Mapped 
UNSIGNED32 3rd Object Mapped 
UNSIGNED32 63rd Object Mapped 
UNSIGNED32 64th Object Mapped

Up to 64 objects may be mapped into a PDO. There is one entry in 
the type for each mapped object, therefore the number of entries 
used for a value for this type depends on the number of objects 
mapped into a specific PDO.

OD Location: 0021h

Name Notation: PDO_MAPPING

C.3.3 SDO Parameter Record

Description: This type stores details of a specific SDO server implemented in a 
CANopen node. It is constructed as follows:

UNSIGNED8 Number of Entries 
UNSIGNED32 COB ID Client to Server 
UNSIGNED32 COB ID Server to Client 
UNSIGNED8 Node ID of SDO Client/Server

The COB ID fields describe the COB IDs used for SDO communi-
cation in both directions to and from the node. The Node ID is the 
ID of the other node involved in the SDO communications.

OD Location: 0022h

Name Notation: SDO_PARAMETER
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C.3.4 Identity Record

Description: The Identity Record type stores basic information about who 
manufactured the node, the product, revision and serial number. 
It is constructed as follows:

UNSIGNED8 Number of Entries 
UNSIGNED32 Vendor ID 
UNSIGNED32 Product Code 
UNSIGNED32 Revision Number 
UNSIGNED32 Serial Number

OD Location: 0023h

Name Notation: IDENTITY

C.3.5 Debugger Parameter Record

Description: This type defines a method of providing a command interface to a 
node, and allows the node to return responses to commands.

UNSIGNED8 Number of Entries 
OCTET_STRING Command 
UNSIGNED8 Status 
OCTET_STRING Reply

OD Location: 0024h

Name Notation: DEBUGGER_PAR

C.3.6 Command Parameter Record

Description: This type defines a method of providing a command interface to a 
node, and allows the node to return responses to commands.

UNSIGNED8 Number of Entries 
OCTET_STRING Command 
UNSIGNED8 Status 
OCTET_STRING Reply

OD Location: 0025h
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Name Notation: COMMAND_PAR

C.4 Transfer Format

C.4.1 Basic Data Types

Data is transmitted in bytes. If the data is not a whole number of bytes, then it must be 
grouped with enough bits to construct a whole number of bytes. The other bits may 
be unused but must be present in the transmission.

Bits in a byte are transmitted with the most significant bit first.

Bytes are transmitted using the little-endian format with the least significant byte 
being transmitted first.

For a set of bits grouped into bytes the transmission format is as follows:

For example, the UNSIGNED32 value 1A2B3C4Dh is transmitted as:

4Dh, 3Ch, 2Bh, 1Ah

The INTEGER16 value –266 (= FEF6h) is transmitted as:

Byte Contents Order of Transmission
0 Bits 7 to 0 First

1 Bits 15 to 8 Second

2 Bits 23 to 16 Third

3 Bits 31 to 24 Fourth

4 Bits 39 to 32 Fifth

5 Bits 47 to 40 Sixth

6 Bits 55 to 48 Seventh

7 Bits 63 to 56 Eighth

Table C.1 Basic Data Type Transmission Order
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F6h, FEh

The BOOLEAN value TRUE is transmitted as:

01h

C.4.2 Extended Data Types

The bit sequence for transmitting an Extended Data Type is formed by concatenating 
the bit sequences of each Basic Type used. The order of concatenation is from the first 
listed type to the last listed type in the definition.

For example, the Time of Day type is defined as:

UNSIGNED28 ms 
VOID4 reserved 
UNSIGNED16days

The bits used are shown in Table C.2.

The transmission order is shown in Table C.3.

Value Bits Used
ms Bits 27 to 0

reserved Bits 31 to 28

days Bits 47 to 32

Table C.2 Bit Allocation for Time of Day Type

Byte Contents Order of Transmission
0 Bits 7 to 0 First

1 Bits 15 to 8 Second

2 Bits 23 to 16 Third

3 Bits 31 to 24 Fourth

Table C.3  Transmission Order for Time of Day Type
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Thus, if a Time of Day entry had the value:

ms = 1122334h 
reserved = 0 
days = 8899h

Then the value would be transmitted as:

34h, 23h, 12h, 01h, 99h, 88h

4 Bits 39 to 32 Fifth

5 Bits 47 to 40 Sixth

Byte Contents Order of Transmission

Table C.3  (Continued) Transmission Order for Time of Day Type
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 D The Object Dictionary

D.1 Object Dictionary Organization

The Object Dictionary is divided into the sections shown in Table D.1.

Objective

CANopen is based primarily around the Object Dictionary. Because of this the 
entries are numerous and varied. This appendix aims to provide a quick refer-
ence to many basic Object Dictionary entries and indicate how they are used.

Indexes Used Description
0000h Reserved

0001h – 025Fh Data Type Definitions

0260h – 0FFFh Reserved

1000h – 1FFFh Communication Profile

Table D.1  Object Dictionary Sections
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2000h – 5FFFh Manufacturer Specific

6000h – 9FFFh Standardized Device Profile

A000h – BFFFh Standardized Interface Profile

C000h – FFFFh Reserved

Indexes Used Description

Table D.1  (Continued) Object Dictionary Sections
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D.2 Data Type Definitions

D.2.1 Object Dictionary Sections

The Data Type Definitions area of the Object Dictionary is subdivided into the sec-
tions  shown in Table D.2:

Indexes Used Description
0001h – 001Fh Basic and Extended Data Types

0020h – 003Fh Complex Data Types

0040h – 005Fh Manufacturer Specific Complex Data Types

0060h – 007Fh Device Profile 0 Basic and Extended Data Types

0080h – 009Fh Device Profile 0 Complex Data Types

00A0h – 00BFh Device Profile 1 Basic and Extended Data Types

00C0h – 00DFh Device Profile 1 Complex Data Types

00E0h – 00FFh Device Profile 2 Basic and Extended Data Types

0100h – 011Fh Device Profile 2 Complex Data Types

0120h – 013Fh Device Profile 3 Basic and Extended Data Types

0140h – 015Fh Device Profile 3 Complex Data Types

0160h – 017Fh Device Profile 4 Basic and Extended Data Types

0180h – 019Fh Device Profile 4 Complex Data Types

01A0h – 01BFh Device Profile 5 Basic and Extended Data Types

01C0h – 01DFh Device Profile 5 Complex Data Types

01E0h – 01FFh Device Profile 6 Basic and Extended Data Types

0200h – 021Fh Device Profile 6 Complex Data Types

0220h – 023Fh Device Profile 7 Basic and Extended Data Types

0240h – 025Fh Device Profile 7 Complex Data Types

Table D.2  Data Type Object Dictionary Sections
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D.2.2 Object Dictionary Implementation

Any data type may optionally be implemented in the Object Dictionary of a node.

Basic or Extended Data Types are implemented as follows:

The following example shows how the Time Of Day type would be implemented in 
the Object Dictionary.

Complex Data Types are implemented as follows:

Index Subindex Type Value Access

See Table D.2 00h UNSIGNED32
Bit size of 
type or zero 
for variable

Read 
Only

Table D.3 Basic and Extended Data Type Implementation

Index Subindex Type Value Access
000Ch 00h UNSIGNED32 30h (48) Read Only

Table D.4 Example Implementation of an Extended Data Type

Index Subindex Type Value Access

See 
Table D.2

00h UNSIGNED8 Highest Subindex 
used by type (= n) Read Only

01h UNSIGNED16 OD Index of Suben-
try type Read Only

n UNSIGNED16 OD Index of Suben-
try type Read Only

Table D.5  Complex Data Type Implementation
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The following example shows how the PDO Communication Parameter Record 
would be implemented in the Object Dictionary.

Index Subindex Type Value Access

0020h

00h UNSIGNED8 05h Read Only

01h UNSIGNED16 0007h Read Only

02h UNSIGNED16 0005h Read Only

03h UNSIGNED16 0006h Read Only

04h UNSIGNED16 0005h Read Only

05h UNSIGNED16 0006h Read Only

Table D.6 Example Implementation of a Complex Data Type



Embedded Networking with CAN and CANopen

348

D.3 Communication Profile

D.3.1 Object Dictionary Entries

The following table gives an overview of all Object Dictionary entries in the Commu-
nication Profile section of the Object Dictionary.

Index Name Type Access

1000h Device Type UNSIGNED32 Read 
Only

1001h Error Register UNSIGNED8 Read 
Only

1002h Manufacturer Status Register UNSIGNED32 Read 
Only

1003h Pre-defined Error Field UNSIGNED32 Read 
Only

1004h Reserved - -

1005h SYNC COB ID UNSIGNED32 Read/
Write

1006h Communication Cycle Period UNSIGNED32 Read/
Write

1007h Synchronous Window Length UNSIGNED32 Read/
Write

1008h Manufacturer Device Name VISIBLE_STRING Read 
Only

1009h Manufacturer Hardware Ver-
sion VISIBLE_STRING Read 

Only

100Ah Manufacturer Software Ver-
sion VISIBLE_STRING Read 

Only

100Bh Reserved - -

100Ch Guard Time UNSIGNED16 Read/
Write

Table D.7   Communication Profile Object Dictionary Entries
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100Dh Life Time Factor UNSIGNED8 Read/
Write

100Eh Reserved - -

100Fh Reserved - -

1010h Store Parameters UNSIGNED32 Read/
Write

1011h Restore Default Parameters UNSIGNED32 Read/
Write

1012h TIME COB ID UNSIGNED32 Read/
Write

1013h High Resolution Time Stamp UNSIGNED32 Read/
Write

1014h Emergency COB ID UNSIGNED32 Read/
Write

1015h Emergency Inhibit Time UNSIGNED16 Read/
Write

1016h Consumer Heartbeat Time UNSIGNED32 Read/
Write

1017h Producer Heartbeat Time UNSIGNED16 Read/
Write

1018h Identity IDENTITY (0023h) Read 
Only

1019h Reserved - -

1020h Verify Configuration UNSIGNED32 Read/
Write

1021h Store EDS DOMAIN Read/
Write

1022h Storage Format UNSIGNED8 Read/
Write

1023h OS Command COMMAND_PAR (0025h) Read/
Write

Index Name Type Access

Table D.7   (Continued) Communication Profile Object Dictionary Entries
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1024h OS Command Mode UNSIGNED8 Write 
Only

1025h OS Debugger Interface DEBUGGER_PAR (0024h) Read/
Write

1026h OS Prompt UNSIGNED8 Read/
Write

1027h Module List UNSIGNED16 Read 
Only

1028h Emergency Consumer UNSIGNED32 Read/
Write

1029h Error Behavior UNSIGNED8 Read/
Write

102Ah 
to 
11FFh

Reserved - -

1200h 1st SDO Server Parameters SDO_PARAMETER 
(0022h)

Read 
Only

1201h 
to 
127Fh

Additional SDO Server 
Parameters

SDO_PARAMETER 
(0022h)

Read/
Write

1280h 1st SDO Client Parameters SDO_PARAMETER 
(0022h)

Read/
Write

1281h 
to 
12FFh

Additional SDO Client 
Parameters

SDO_PARAMETER 
(0022h)

Read/
Write

1300h 
to 
13FFh

Reserved - -

1400h 1st Receive PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1401h 2nd Receive PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

Index Name Type Access

Table D.7   (Continued) Communication Profile Object Dictionary Entries
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1402h 3rd Receive PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1403h 4th Receive PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1404h 
to 
15FFh

Additional Receive PDO 
Parameters

PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1600h 1st Receive PDO Mapping PDO_MAPPING (0021h) Read/
Write

1601h 2nd Receive PDO Mapping PDO_MAPPING (0021h) Read/
Write

1602h 3rd Receive PDO Mapping PDO_MAPPING (0021h) Read/
Write

1603h 4th Receive PDO Mapping PDO_MAPPING (0021h) Read/
Write

1604h 
to 
17FFh

Additional Receive PDO 
Mappings

PDO_MAPPING (0021h) Read/
Write

1800h 1st Transmit PDO Parameter PDO_MAPPING (0020h) Read/
Write

1801h 2nd Transmit PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1802h 3rd Transmit PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1803h 4th Transmit PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1804h 
to 
19FFh

Additional Transmit PDO 
Parameters

PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1A00h 1st Transmit PDO Mapping PDO_MAPPING(0021h) Read/
Write

1A01h 2nd Transmit PDO Mapping PDO_MAPPING (0021h) Read/
Write

Index Name Type Access

Table D.7   (Continued) Communication Profile Object Dictionary Entries



Embedded Networking with CAN and CANopen

352

D.3.2 Device Type (1000h)

1A02h 3rd Transmit PDO Mapping PDO_MAPPING (0021h) Read/
Write

1A03h 4th Transmit PDO Mapping PDO_MAPPING (0021h) Read/
Write

1A04h 
to 
1BFFh

Additional Transmit PDO 
Mappings PDO_MAPPING (0021h) Read/

Write

1C00h 
to 
1F9Fh

Reserved - -

1FA0h 
to 
1FCFh

Object Scanner List UNSIGNED32 Read/
Write

1FD0h 
to 
1FFFh

Object Dispatching List UNSIGNED64 Read/
Write

Index 1000h
Name Device Type

Mandatory Yes

Subindex 00h
Type UNSIGNED32

Default Value Determined by device profile used

Access Read Only

Mandatory Yes

Map to PDO No

Index Name Type Access

Table D.7   (Continued) Communication Profile Object Dictionary Entries
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Description: This entry indicates the number of the device profile used and often 
provides some additional basic information about which features of 
the device profile are used in the node. The entry value is constructed 
as follows:

The Additional Information that may be provided in this entry is 
defined in the Device Profile specification.

If the node does not use a device profile then the Device Profile Num-
ber is zero and the Additional Information value is undefined, but 
often set to zero as well.

If the node uses more than one device profile, then the Device Profile 
Number is the number of the first Device Profile used by the node, 
and Additional Information is FFFFh.

This entry is mandatory and must be implemented in all CANopen 
nodes. Because of this it is often used as a way of dynamically scan-
ning for nodes connected to the network.

Example: 00030191h

Digital input/output module 191h = 401, which is the number of the 
digital input/output device profile. 0003h = the module implements 
both digital inputs and outputs.

Bit Description
0 – 15 Device Profile Number

16 - 31 Additional Information

Table D.8  Device Type Contents
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D.3.3 Error Register (1001h)

Description: The error register value indicates if various types of errors have 
occurred. The following table indicates the bits used. Bit zero must be 
implemented. All other bits are optional.

A set bit indicates the specified error has occurred.

The Generic Error bit is set when any type of error occurs.

Index 1001h
Name Error Register

Mandatory Yes

Subindex 00h
Name Error Register

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes

Map to PDO Yes

Bit Description Mandatory
0 Generic Error Yes

1 Current No

2 Voltage No

3 Temperature No

4 Communication Error No

5 Device Profile Defined Error No

6 Reserved (always zero) No

7 Manufacturer Specific Error No

Table D.9  Error Register Contents
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The Error Register is included in byte two of the Emergency object, 
but may also be mapped into PDOs.

Example: 05h 
Voltage error has occurred

D.3.4 Manufacturer Status Register (1002h)

Description: The Manufacturer Status register contents are undefined in the CAN-
open specification. Manufacturers may use this entry for any purpose 
desired.

Index 1002h
Name Manufacturer Status Register

Mandatory No

Subindex 00h
Name Manufacturer Status Register

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO Yes
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D.3.5 Pre-Defined Error Field (1003h)

Description: This entry contains up to 254 of the most recent errors that occurred 
in the node and resulted in the transmission of the Emergency Object.

Subentries 01h to FEh store information about the errors, with entry 
[1003h,01h] storing the most recent error and entry [1003h,FEh] stor-
ing the oldest error.

When a new error occurs it is stored in entry [1003h,01h] and any cur-
rently existing Subentries are shuffled down. For example, the error 
previously stored at [1003h,01h] will be moved to [1003h,02h], and 

Index 1003h
Name Pre-Defined Error Field

Mandatory No

Subindex 00h
Name Number of Errors

Type UNSIGNED8

Default Value 0

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – FEh
Name Standard Error Field

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No
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the error previously stored at [1003h,02h] will be moved to 
[1003h,03h], etc.

Entry [1003h,00h] can be read to determine the number of errors cur-
rently stored. Writing zero to [1003h,00h] erases the error history.

Each entry is constructed as follows:

Example: 00003000h 
Voltage error occurred

D.3.6 SYNC COB ID (1005h)

Bit Description
0 – 15 Error Code as transmitted in the Emergency Object

16 - 31 Manufacturer Specific Additional Information

Table D.10 Pre-Defined Error Field Contents

Index 1005h
Name SYNC COB ID

Mandatory
Yes if the node transmits or receives synchronous PDOs or if any 
PDO supports changing the transmission type to a synchronous 
type

Subindex 00h
Name SYNC COB ID

Type UNSIGNED32

Default Value 00000080h or 40000080h

Access Read/Write

Mandatory
Yes if the node transmits or receives synchronous PDOs or if any 
PDO supports changing the transmission type to a synchronous 
type

Map to PDO No
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Description: Contains the COB ID used by the SYNC Object along with a flag to 
indicate if the node generates the SYNC Object or not.

If the PDOs supported by the node permit a changing of transmission 
type to one of the synchronous transmission types, then this entry 
must be implemented.

For an 11-bit COB ID, the value of the entry is constructed as follows:

For a 29-bit COB ID, the value of the entry is constructed as follows:

A node can optionally make bits 29 and 30 read only.

If a device cannot generate the SYNC Object, then attempting to set 
bit 30 can result in an abort message.

Bit Description
0 – 10 COB ID for SYNC Object

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30
Set to 0 if the node does not generate the SYNC 
Object.
Set to 1 if the node does generate the SYNC Object.

31 Not used. Recommendation: set to 0

Table D.11 SYNC COB ID Contents for 11-bit COB ID

Bit Description
0 – 28 COB ID for SYNC Object

29 Set to 1 to select 29-bit COB ID

30
Set to 0 if the node does not generate the SYNC 
Object.
Set to 1 if the node does generate the SYNC Object.

31 Not used. Recommendation: set to 0

Table D.12 SYNC COB ID Contents for 29-bit COB ID
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If a device cannot use 29-bit COB IDs, then it may either ignore an 
attempt to set bit 29 or generate an abort message in response.

In order to change the COB ID for the node that is currently generat-
ing the SYNC Object, bit 30 must first be set to 0.

Example: 000007FAh 
11-bit SYNC COB ID of 7FAh

D.3.7 Communication Cycle Period (1006h)

Description: This entry defines the period between transmission of the SYNC 
Object by the node in µs, if the node is currently the SYNC Object 
producer.

A value of zero results in no transmission of the SYNC Object. There-
fore writing the value zero to this entry of the SYNC Object producer 
will stop transmission of the SYNC Object.

Example: 00152622h = 1386018 
Transmit every 1.386018 seconds

Index 1006h
Name Communication Cycle Period

Mandatory Mandatory if the node generates the SYNC Object or allows bit 
30 in entry 1005h to be set

Subindex 00h
Name Communication Cycle Period

Type UNSIGNED32

Default Value 0

Units µs

Access Read/Write

Mandatory Mandatory if the node generates the SYNC Object or allows bit 
30 in entry 1005h to be set

Map to PDO No
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D.3.8 Synchronous Window Length (1007h)

Description: The Synchronous Window Length is the period of time in µs after a 
SYNC Object has been transmitted on the bus in which synchronous 
PDOs must be transmitted.

This period must be shorter than the Communication Cycle Period of 
the SYNC Object producer.

Each node using the same COB ID for the SYNC Object must use the 
same Synchronous Window Length. For example, if the network has 
two SYNC Objects and nodes 02h, 04h and 05h use COB ID 80h for 
the SYNC Object, and nodes 01h and 07h use COB ID 7Fh for the 
SYNC Object, then nodes 02h, 04h and 05h must use the same Syn-
chronous Window Length and nodes 01 and 07h must use the same 
Synchronous Window Length. However, the two Synchronous Win-
dow Lengths used in the network may be different from each other.

If a node attempts to transmit a Synchronous PDO within the Syn-
chronous Window Length but fails to do so (if, for example, higher 
priority messages were on the bus), then the node must not transmit 
the PDO. That is, synchronous PDOs must never be transmitted out-
side of the Synchronous Window Length.

Index 1007h
Name Synchronous Window Length

Mandatory No

Subindex 00h
Name Synchronous Window Length

Type UNSIGNED32

Default Value 0

Units µs

Access Read/Write

Mandatory No

Map to PDO No
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Example: 00001432h = 5170 
PDOs transmit within 5.17ms of SYNC occurance

D.3.9 Manufacturer Device Name (1008h)

Description: Stores the name of the manufacturer of the node as an ASCII string. 
The length of the string is not limited by the CANopen specification, 
however minimal CANopen implementions that only support expe-
dited SDO transfers limit the length to four characters.

Example: Embedded Systems Academy, Inc.

Index 1008h
Name Manufacturer Device Name

Mandatory No

Subindex 00h
Name Manufacturer Device Name

Type VISIBLE_STRING

Default Value Not defined

Access Read only

Mandatory No

Map to PDO No
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D.3.10 Manufacturer Hardware Version (1009h)

Description: Stores the hardware version of the node as an ASCII string. The 
length of the string is not limited by the CANopen specification, how-
ever minimal CANopen implementions that only support expedited 
SDO transfers limit the length to four characters.

Example: Version 1.01

D.3.11 Manufacturer Software Version (100Ah)

Index 1009h
Name Manufacturer Hardware Version

Mandatory No

Subindex 00h
Name Manufacturer Hardware Version

Type VISIBLE_STRING

Default Value Not defined

Access Read only

Mandatory No

Map to PDO No

Index 100Ah
Name Manufacturer Software Version

Mandatory No

Subindex 00h
Name Manufacturer Software Version

Type VISIBLE_STRING

Default Value Not defined

Access Read only
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Description: Stores the software version of the node as an ASCII string. The length 
of the string is not limited by the CANopen specification, however 
minimal CANopen implementions that only support expedited SDO 
transfers limit the length to four characters.

Example: Version 2.6.3 pre-release 5

D.3.12 Guard Time (100Ch)

Description: Specifies how long the period should be in milliseconds between 
node guarding requests sent to the node. If the NMT Master imple-
ments node guarding, then it should read this entry and send the 
node guarding requests to the node at the frequency indicated by the 
value of this entry.

Mandatory No

Map to PDO No

Index 100Ch
Name Guard Time

Mandatory Yes if the node does not support heartbeats

Subindex 00h
Name Guard Time

Type UNSIGNED16

Default Value 0

Units ms

Access
Read/Write if node guarding is supported
Read Only if node guarding is not supported

Mandatory Yes if the node does not support heartbeats

Map to PDO No

Subindex 00h
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If a response to a node guarding request is not transmitted within the 
node life time, then a node guarding event occurs, indicating that the 
node may have possibly stopped working. If a node guarding request 
from the NMT Master is not received within the node life time, then 
the node knows that the NMT Master may have possibly stopped 
working.

The node life time is the guard time multiplied by the life time factor 
(100Dh).

If the node does not support heartbeats then this entry must be 
implemented.

If this entry is implemented and the node does not support node 
guarding, then the access is read only and the value is zero to disable 
node guarding.

Note that a node must implement either heartbeats or node guarding 
or both heartbeats and node guarding.

Example: 1122h = 4386 
Requests every 4.386 seconds

D.3.13 Life Time Factor (100Dh)

Index 100Dh
Name Life Time Factor

Mandatory Yes if the node does not support heartbeats

Subindex 00h
Name Life Time Factor

Type UNSIGNED8

Default Value 0

Access
Read/Write if node guarding is supported
Read Only if node guarding is not supported
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Description: Specifies the number of multiples of the guard time to wait for a 
response from the node to a node guarding request.

If a response to a node guarding request is not transmitted within the 
node life time, then a node guarding event occurs, indicating that the 
node may have possibly stopped working. If a node guarding request 
from the NMT Master is not received within the node life time, then 
the node knows that the NMT Master may have possibly stopped 
working.

The node life time is the guard time multiplied by the life time factor 
(100Ch). 

If the node does not support heartbeats then this entry must be 
implemented.

If this entry is implemented and the node does not support node 
guarding, then the access is read only and the value is zero to disable 
node guarding.

Note that a node must implement either heartbeats, node guarding or 
both heartbeats and node guarding.

Example: 04h 
Wait guard time x 4

Mandatory Yes if the node does not support heartbeats

Map to PDO No

Subindex 00h
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D.3.14 Store Parameters (1010h)

Index 1010h
Name Store Parameters

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Save All Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Save Communication Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No
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Description: If a node contains non-volatile memory that can be used to store the 
settings, then this entry may optionally be implemented.

By writing to the Subentries, the node can be instructed to immedi-
ately store all or some of the settings in non-voltatile memory.

By reading the Subentries, non-volatile storage capabilities of the 
node may be determined.

By writing the value 65766173h (ASCII "save" transmitted with the "e" 
first) to a Subentry of 1010h, the related section of the Object Diction-
ary is stored in non-volatile memory, if the node supports this fea-
ture.

If a value other than "save" is written, or if the parameter storing fails 
for some reason, an SDO Abort message is transmitted.

Subindex 03h
Name Save Application Parameters

Type UNSIGNED32

Default Value None specified

Access Read/Write

Mandatory No

Map to PDO No

Subindex 04h – 7Fh
Name Save Manufacturer Defined Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No
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The following table shows which sections of the Object Dictionary are saved when the 
different Subentries are written to.

Reading a Subentry returns a value that indicates if the node can save parameters 
without manual intervention and if the node can save parameters manually. The 
returned value is structured as follows:

For example, if the value 00000003h is read from [1010h,02h], then the node can 
autonomously (and when requested) save application specific parameters to non-vol-
atile memory. It is then known that writing the value “save” to [1010h,03h] will imme-
diately cause the application specific parameters to be saved.

Subindex Object Dictionary Entries Saved
01h All entries that can be saved

02h
All communication parameters that can be 
saved. Entries 1000h – 1FFFh and any manu-
facturer specific communication parameters

03h All application specific parameters that can be 
saved. Entries 6000h – 9FFFh

04h – 7Fh Writing to these entries saves manufacturer 
defined parameters.

Table D.13 Save Parameters Subentries

Bit Description

0

Set to 1 if the device can save the parameters by writing 
to the Subentry
Set to 0 if the device cannot save the parameters by 
writing to the Subentry

1

Set to 1 if the device can save the parameters autono-
mously
Set to 0 if the device cannot save the parameters auton-
omously

2 - 31 Reserved. Set to 0

Table D.14 Store Parameters Read Value Contents
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The CANopen specification does not define what will happen if an attempt is made to 
store parameters when that Subindex does not support writing "save." Therefore the 
entry with that Subindex should always be read first to ensure the operation is sup-
ported.

D.3.15 Restore Default Parameters (1011h)

Index 1011h
Name Restore Default Parameters

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Restore All Default Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Restore Communication Default Parameters

Type UNSIGNED32
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Description: This entry provides a means to restore some or all of the default val-
ues for parameters in the Object Dictionary. By writing the value 
64616F6Ch (ASCII "load" transmitted with the "d" first) to a Subindex, 
the parameters corresponding to the entry will be restored to their 
default values on the next reset of the node or the next power cycle, 
depending on which parameters were restored.

If a value other than "load" is written, or the restoring of the default 
parameters fails, then an SDO Abort message is transmitted.

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 03h
Name Restore Application Default Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 04h – 7Fh
Name Restore Manufacturer Defined Default Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 02h
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The following table lists the parameters which will be restored when the value "load" 
is written, and which type of reset will cause the default values to be used by the 
node.

By reading the Subentries, information regarding the capabilities of the node to 
restore default values can be determined. The value read is constructed as shown in 
Table D.16:   

For example, if the value 00000001h is read from Subindex 01h, then the node is able 
to restore all default parameters that can be restored. If the value 00000000h is read 
from Subindex 03h, then the node is not able to restore application default parame-
ters.

The CANopen specification does not define what will happen if an attempt is made to 
restore default parameters when that Subindex does not support writing "load", 
therefore the entry with that Subindex should always be read first to ensure the oper-
ation is supported.

Subindex
Object Dictionary Entry 
Defaults Restored 

Default values 
used after

01h All entries that can be restored Node reset

02h

All communication entries that can be 
restored. Entries 1000h – 1FFFh and 
any manufacturer specific communica-
tion entries.

Communication reset

03h All application entries that can be 
restored. Entries 6000h – 9FFFh. Node reset

04h – 7Fh Manufacturer defined entries that can be 
restored. Node reset

Table D.15 Restore Parameters Subentries

Bit Description

0
Set to 1 if node can restore default parameters.
Set to 0 if node cannot restore default parameters.

1 - 31 Reserved. Set to 0.

Table D.16 Restore Parameters Read Value Contents
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D.3.16 TIME COB ID (1012h)

Description: This entry specifies the COB ID for the Timestamp Object. It also 
specifies whether the node does or does not use the Timestamp 
Object and whether the node does or does not produce the Time-
stamp Object.

For an 11-bit COB ID the value of the entry is constructed as follows:

Index 1012h
Name TIME COB ID

Mandatory No

Subindex 00h
Name TIME COB ID

Type UNSIGNED32

Default Value 00000100h

Access Read/Write

Mandatory No

Map to PDO No

Bit Description
0 – 10 COB ID for TIME Object

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30
Set to 0 if the node does not generate the TIME Object.
Set to 1 if the node does generate the TIME Object.

31
Set to 0 if the node does not use the TIME Object.
Set to 1 if the node does use the TIME Object.

Table D.17 TIME COB ID Contents for 11-bit COB ID
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For a 29-bit COB ID the value of the entry is constructed as follows:

Optionally a node may not allow the values of bits 29 and 30 to be changed if it does 
not support dynamic configuration of how the node uses the TIME Object.

If the node does not support generating the TIME Object or does not support 29-bit 
COB IDs, then attempts to set bits 29 and 30 will result in SDO Abort messages being 
transmitted by the node.

Example: 400001A4h 
Node generates TIME Object with 11-bit ID 1A4h. Node does not use 
the TIME Object.

D.3.17 High Resolution Timestamp (1013h)

Bit Description
0 – 28 COB ID for TIME Object

29 Set to 1 to select 29-bit COB ID

30
Set to 0 if the node does not generate the TIME Object.
Set to 1 if the node does generate the TIME Object.

31
Set to 0 if the node does not use the TIME Object.
Set to 1 if the node does use the TIME Object.

Table D.18 TIME COB ID Contents for 29-bit COB ID

Index 1013h
Name High Resolution Timestamp

Mandatory No

Subindex 00h
Name High Resolution Timestamp

Type UNSIGNED32

Default Value 0

Units µs
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Description: This entry contains a high resolution timestamp in µs, which may be 
mapped into a PDO. The high resolution timestamp allows for local 
clock synchronization with great precision. If only the SYNC signal is 
used for the synchronization of local clocks the deviation between the 
clocks could be several hundreds of microseconds, because even the 
high priority SYNC message can be delayed (for example because it 
has to wait until a message currently on the bus is transmitted).

When the SYNC Producer finishes transmitting the SYNC Object a 
local CAN message transmit complete interrupt is generated. In the 
interrupt service routine the high resolution timestamp is taken of 
that moment in time. This timestamp is then transmitted in a PDO 
after the SYNC Object.

When a SYNC Consumer receives the SYNC Object (recognized by a 
CAN message received interrupt) it also takes a high resolution time-
stamp of that moment in time. Shortly afterwards the SYNC Con-
sumer will receive the PDO containing the high resolution timestamp 
from the SYNC Producer. The SYNC Consumer compares the two 
timestamps, which should be identical if the local clocks of the pro-
ducer and the consumer are perfectly synchronized. If they are not 
identical, the SYNC consumer has to start a process of synchronizing 
itself with the clock of the SYNC producer.

Note however that there is still an error in the synchronization. It 
takes some time for the SYNC Producer to react to the SYNC Object 
transmission complete interrupt and generate the timestamp. Also it 
takes some time for the SYNC Consumer to react to the SYNC Object 
being received and generate a timestamp. These delays are typically 
different, however they can be calculated in advance based on the 
code executed and used to adjust the high resolution timestamps 
accordingly. This behavior, however, is application specific.

The timestamp allows for a maximum delay of 72 minutes before it is 
reset back to zero.

Access Read/Write

Mandatory No

Map to PDO Yes

Subindex 00h
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Example: 00152242h = 1385026 
A time stamp of 1.385026 seconds

D.3.18 Emergency COB ID (1014h)

Description: The Emergency COB ID entry defines the Identifier used for the 
Emergency Object transmitted by the node. The node may allow the 
COB ID to be changed by writing to this entry, or it may be fixed and 
unchangeable.

The value stored in the entry also determines if the Emergency Object 
exists or not and whether an 11-bit or 29-bit Identifier is used.

For an 11-bit COB ID the value of the entry is constructed as follows:

Index 1014h
Name Emergency COB ID

Mandatory Yes if the Emergency Object is supported by the node

Subindex 00h
Name Emergency COB ID

Type UNSIGNED32

Default Value Node ID + 00000080h

Access Read Only or Read/Write

Mandatory Yes if the Emergency Object is supported by the node

Map to PDO No

Bit Description
0 - 10 COB ID for Emergency Object

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

Table D.19  Emergency COB ID Contents for 11-bit COB ID
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For a 29-bit COB ID the value of the entry is constructed as follows:

If the node does not support 29-bit COB IDs and an attempt is made to write a 1 to bit 
29, then the node will respond with an SDO Abort message.

In order to change the COB ID on nodes that support writing to this entry, the Emer-
gency Object must first be disabled by writing a 1 to bit 31. Once the COB ID has been 
changed, bit 31 can be set back to 0.

Example: 80000082h 
Emergency COB ID of 82h used by the node

30 Reserved. Set to 0

31
Set to 0 if the node does use the Emergency Object.
Set to 1 if the node does not use the Emergency 
Object.

Bit Description
0 – 28 COB ID for Emergency Object

29 Set to 1 to select 29-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the Emergency Object.
Set to 1 if the node does not use the Emergency 
Object.

Table D.20 Emergency COB ID Contents for 29-bit COB ID

Bit Description

Table D.19  (Continued) Emergency COB ID Contents for 11-bit COB ID
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D.3.19 Inhibit Time Emergency (1015h)

Description: This entry specifies the inhibit time for the Emergency Object trans-
mitted by the node in multiples of 100µs. If used, once the Emergency 
Object has been transmitted the next Emergency Object cannot be 
transmitted until the time specified by this entry has elapsed, even if 
another emergency occurs.

Implementation of this entry is optional. If this entry is not imple-
mented then the Emergency Object does not have an inhibit time and 
can transmit messages as frequently as desired. If the entry is imple-
mented then it must be writeable, allowing dynamic changing of the 
inhibit time.

Example: 023Ah = 570 
The Emergency Object may be transmitted at most once every 57ms

Index 1015h
Name Inhibit Time Emergency

Mandatory No

Subindex 00h
Name Inhibit Time Emergency

Type UNSIGNED16

Default Value 0

Units 100µs

Access Read/Write

Mandatory No

Map to PDO No
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D.3.20 Consumer Heartbeat Time (1016h)

Index 1016h
Name Consumer Heartbeat Time

Mandatory Yes if the node consumes at least one heartbeat

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if the node consumes at least one heartbeat

Map to PDO No

Subindex 01h
Name Consumer Heartbeat Time

Type UNSIGNED32

Default Value 0

Units ms

Access Read/Write

Mandatory Yes if the node consumes at least one heartbeat

Map to PDO No

Subindex 02h – 7Fh
Name Consumer Heartbeat Time

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write
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Description: The node may listen to the heartbeat messages generated by other 
nodes on the network. This entry specifies the maximum time to wait 
for a heartbeat from a specific node before generating an internal 
heartbeat event in milliseconds (called the Heartbeat Consumer 
Time). Measurement begins after reception of the first heartbeat mes-
sage. It does not begin after reception of a bootup message.

Each Subindex specifies the Heartbeat Consumer Time for a specific 
node. The value of the entry is constructed as follows:

The Heartbeat Consumer Time of a specific node must be greater than the Heartbeat 
Producer Time of the node. The Producer Time can be read from entry 1017h.

Specifying a Heartbeat Consumer Time of zero for a specific Node ID disables the 
heartbeat monitoring of that node.

For a specific Node ID there may be more than one Subindex specifying a Heartbeat 
Consumer Time of zero, however attempts to set more than one of those entries to a 
non-zero value will result in the node transmitting an SDO Abort message.

Example: 005A1122h (1122h = 4386) 
Heartbeat Consumer Time of 4.386 seconds for node 5Ah

Mandatory No

Map to PDO No

Bit Description
0 – 15 Heartbeat Consumer Time

16 – 23 Node ID

24 - 31 Reserved. Set to 0

Table D.21 Heartbeat Consumer Time Value

Subindex 02h – 7Fh
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D.3.21 Producer Heartbeat Time (1017h)

Description: A node must support either node guarding or heartbeat generation. If 
the node generates heartbeats then this entry must be implemented. 
The value of the entry specifies in milliseconds the time between 
transmission of heartbeat messages. A value of zero disables trans-
mission of heartbeat messages by the node.

Because the entry is writeable, the value of the entry may change at 
any time.

Note that a node must implement either heartbeats, node guarding or 
both heartbeats and node guarding.

Example: 4455h = 17493 
The node will transmit a heartbeat message every 17.493 seconds

Index 1017h
Name Producer Heartbeat Time

Mandatory Yes if node guarding is not supported

Subindex 00h
Name Producer Heartbeat Time

Type UNSIGNED16

Default Value 0

Units ms

Access Read/Write

Mandatory Yes if node guarding is not supported

Map to PDO No
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D.3.22 Identity (1018h)

Index 1018h
Name Identity

Mandatory Yes

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes

Map to PDO No

Subindex 01h
Name Vendor ID

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory Yes

Map to PDO No

Subindex 02h
Name Product Code

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No
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Description: The Identity entry provides some basic information about the node in 
order to provide a standard way of differentiating between different 
versions of a node.

All nodes must implement Subindexes 00h and 01h. The remaining 
Subindexes are optional.

The Vendor ID is a unique ID assigned to each CANopen vendor by 
CAN in Automation. This allows the source of the node to be identi-
fied.

Subindex 03h
Name Revision Number

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Subindex 04h
Name Serial Number

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No
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The product code and serial number formats are manufacturer specific, however the 
revision number has the following format:

For example, if a new version of the node is produced with any difference in the 
CANopen messages, transmission types, Object Dictionary entries, etc., then the 
major revision number must be increased, otherwise the minor revision number must 
be increased.

Example: 00050001h 
Revision number 5.1

D.3.23 Verify Configuration (1020h)

Bits Description

0 – 15
Minor Revision Number
Identifies different versions of the node where the CANopen behav-
ior has not changed.

16 – 31
Major Revision Number
Identifies different versions of the node where the CANopen behav-
ior has changed.

Table D.22 Revision Number Format

Index 1020h
Name Verify Configuration

Mandatory No, but recommended when 1010h and 1011h are implemented

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 02h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No
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Description: This entry allows an NMT Master to determine if the configuration of 
the device matches a known Device Configuration File.

When storing a new configuration for the node by writing to entry 
1010h, the NMT Master can first write the current date and time to 
this entry along with storing the current date and time in a local copy 
of the Device Configuration File. The values in this entry will be 
saved along with the other parameters when entry 1010h is written.

Whenever any new values are written to the Object Dictionary of the 
node, it must set the current date and time stored in this entry to zero 
to indicate that the configuration has changed.

The next time the node is started, the NMT Master can read this entry 
and compare the date and time with the date and time stored in the 

Subindex 01h
Name Configuration Date

Type UNSIGNED32

Default Value Not defined

Units days

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Configuration Time

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No 



385

Appendix D: The Object Dictionary          

Device Configuration File. If the times match, the NMT Master 
knows the current configuration of the node without having to read 
any further Object Dictionary entries.

The date value is the number of whole days since January 1, 1984. The 
time value is the number of milliseconds since midnight.

Example: 23 in Subentry 01h, 6212000 in Subentry 02h 
January 24, 1984, 1:43:32 am

D.3.24 Store EDS (1021h)

Description: The Store EDS entry allows the Electronic Datasheet for the node to 
be stored in the node. This removes the requirement that the Elec-
tronic Datasheet files are supplied separately and removes any possi-
ble confusion as to which version of an Electronic Datasheet is to be 
used for the node.

The Electronic Data Sheet is read and written according to the format 
specified in entry 1022h.

Index 1021h
Name Store EDS

Mandatory No

Subindex 00h
Name Store EDS

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No
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D.3.25 Storage Format (1022h)

Description: This entry defines the format that the Electronic Datasheet is read 
from and written to entry 1021h Store EDS. The following table lists 
the supported formats and values.

Index 1022h
Name Storage Format

Mandatory Yes if entry 1021h Store EDS is implemented

Subindex 00h
Name Storage Format

Type UNSIGNED16

Default Value Not defined

Access Read/Write

Mandatory Yes if entry 1021h Store EDS is implemented

Map to PDO No

Value Description
0000h Uncompressed ASCII

0001h – FFFFh Reserved

Table D.23 EDS Read and Write Formats
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D.3.26 OS Command (1023h)

Index 1023h
Name OS Command

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 03h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Command

Type OCTET_STRING

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Status

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No
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Description: This entry allows a node to provide a command based interface. The 
command is written to the Command Subentry. The Status Subentry 
is then polled to determine the status of the command. Once the com-
mand has been processed the Status will indicate if there is a reply. 
The reply can be read from the Reply entry.

The format of the commands and replies are manfacturer specific and 
may be ASCII or binary.

Table D.24 lists the possible values for the Status Subentry.

Subindex 03h
Name Reply

Type OCTET_STRING

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Value Description

00h Last command completed. No error occurred. 
No reply.

01h Last command completed. No error occurred. 
The reply can now be read.

02h Last command completed. Error occured. No 
reply.

03h Last command completed. Error occurred. The 
reply can now be read.

04h – FEh Reserved

FFh Command is executing

Table D.24  OS Command Status Values
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D.3.27 OS Command Mode (1024h)

Description: This entry controls whether the node buffers the OS Commands writ-
ten to entry 1023h or not, and provides some degree of control over 
the buffer. Table D.25 describes the possible values that may be writ-
ten to this entry, and their effect.

Index 1024h
Name OS Command Mode

Mandatory No

Subindex 00h
Name OS Command Mode

Type UNSIGNED8

Default Value Not defined

Access Write Only

Mandatory No

Map to PDO No

Value Description

00h Execute the next command immediately (no 
buffering of commands)

01h Buffer the next command

02h Execute the commands in the buffer

03h Abort the current command and flush the buffer

04h – FFh Manufacturer specific

Table D.25 OS Command Modes
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D.3.28 OS Debugger Interface (1025h)

Index 1025h
Name OS Debugger Interface

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 03h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Command

Type OCTET_STRING

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Status

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No
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Description: This entry allows a node to provide a debugger interface. The com-
mand is written to the Command Subentry. The Status Subentry is 
then polled to determine the status of the command. The reply can be 
read from the Reply entry.

The format of the commands and replies are manfacturer specific and may be ASCII 
or binary. Table D.26 lists the possible values for the Status Subentry.

Subindex 03h
Name Reply

Type OCTET_STRING

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Value Description
00h Last command completed. No error occurred.

01h Last command completed. Error occurred.

02h – FEh Reserved

FFh Command is executing

Table D.26  OS Debugger Interface Status Values
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D.3.29 OS Prompt (1026h)

Index 1026h
Name OS Prompt

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name StdIn

Type UNSIGNED8

Default Value Not defined

Access Write Only

Mandatory Yes if this entry is implemented

Map to PDO Yes

Subindex 02h
Name StdOut

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO Yes
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Description: This entry provides a command prompt type interface, where charac-
ters are sent and received one at a time. Characters are written to 
StdIn either by SDO or PDO, and the response is read from StdOut 
either by SDO or PDO. The error output appears on StdErr.

D.3.30 Module List (1027h)

Subindex 03h
Name StdErr

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO Yes

Index 1027h
Name Module List

Mandatory Yes if modular devices are supported

Subindex 00h
Name Number of Connected Modules

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if modular devices are supported

Map to PDO No

Subindex 01h
Name Module 2

Type UNSIGNED16

Default Value Not defined
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Description: This entry allows modules to be dynamically added to a node. A 
module can consist of the device profile sections of the Object Dic-
tionary, or manfacturer specific entries. Each module type must have 
a unique number, although a specific module may be added to a node 
multiple times, effectively allowing scaling of the node's capabilities. 
To add a module, the modules' unique identifying number must be 
written to a Subentry.

D.3.31 Emergency Consumer (1028h)

Access Read/Write

Mandatory Yes if modular devices are supported

Map to PDO No

Subindex 02h – FEh
Name Module 3 – 255

Type UNSIGNED16

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Index 1028h
Name Emergency Consumer

Mandatory No

Subindex 00h
Name Number of Consumed Emergency Objects

Type UNSIGNED8

Default Value Not defined

Subindex 01h
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Description: Specifies which Emergency Objects the node consumes. For each 
Emergency Object consumed by the node a Subentry is implemented 
specifying the COB ID of the Emergency Object. The Subindex of the 
Subentry specifies which node generates the Emergency Object. For 
example, Subentry 4Ah contains the COB ID of the Emergency Object 
generated by node 4Ah.

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Emergency Consumer 1

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h – 7Fh
Name Emergency Consumer 2 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 00h
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For an 11-bit COB ID the value of the Subentries are constructed as 
follows:

For a 29-bit COB ID the value of the Subentries are constructed as fol-
lows:

To change a COB ID, bit 31 must first be set to 1 to disable consuming of the Emer-
gency Object. Once the COB ID has been changed the entry can be reenabled by clear-
ing bit 31.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, will result in 
the node transmitting an SDO Abort message.

Bit Description
0 - 10 COB ID

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30 Reserved. Set to 0

31

Set to 0 if the node does consume the Emergency 
Object.
Set to 1 if the node does not consume the Emergency 
Object.

Table D.27 Emergency Consumer COB ID Contents for 11-bit COB ID 

Bit Description
0 – 28 COB ID

29 Set to 1 to select 29-bit COB ID

30 Reserved. Set to 0

31

Set to 0 if the node does consume the Emergency 
Object.
Set to 1 if the node does not consume the Emergency 
Object.

Table D.28 Emergency Consumer COB ID Contents for 29-bit COB ID
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Example: 0000073Ch 
Node consumes the Emergency Object 73Ch

D.3.32 Error Behavior (1029h)

Index 1029h
Name Error Behavior

Mandatory No

Subindex 00h
Name Number of Error Classes

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Communication Error

Type UNSIGNED8

Default Value 00h

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h – FEh
Name Device Profile or Manufacturer Specific Error

Type UNSIGNED8

Default Value 00h

Access Read/Write
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Description: When a node encounters a serious internal error while in the Opera-
tional state, it must switch to the Pre-operational state. By implement-
ing this entry the node may be configured to enter the Stopped state 
instead of Pre-operational, or may not change states at all.

Subentry 01h defines the behavior of the node when a communica-
tion error is encountered. Communication errors include Bus Off, 
node guarding events and heartbeat events.

Subentries 02H to FFh define the behavior for other severe errors and 
the exact errors are manufacturer-specific.

The following table shows the allowed values that may be stored in 
the Subentries to configure the node behavior.

Mandatory No

Map to PDO No

Value Node Behavior When an Error is Encountered
00h Switches to Pre-operational

01h Does not change states

02h Switches to Stopped

03h - FFh Reserved

Table D.29 Error Behavior Values

Subindex 02h – FEh
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D.3.33 Server SDO Parameters (1200h)

Index 1200h
Name Server SDO Parameter

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name COB ID Client to Server (Receive SDO)

Type UNSIGNED32

Default Value Node ID + 00000600h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name COB ID Server to Client (Transmit SDO)

Type UNSIGNED32

Default Value Node ID + 00000580h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No
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Description: This entry describes the mandatory default SDO communication 
channel for the node. Because all entries are read only, it is optional 
for a node to implement this entry. Often it is omitted.

Subentry 01h holds the COB ID of the SDO used to access the Object 
Dictionary of the node.

Subentry 02h holds the COB ID of the SDO used by the node to 
respond to Object Dictionary requests.

Example: 00000611h in Subentry 01h 
Receive SDO is 611h for Node 11h

D.3.34 Server SDO Parameters (1201h – 127Fh)

Index 1201h – 127Fh
Name Server SDO Parameter

Mandatory Yes for each additional Server SDO Channel supported by the 
node

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for each additional Server SDO Channel supported by the 
node

Map to PDO No

Subindex 01h
Name COB ID Client to Server (Receive SDO)

Type UNSIGNED32

Default Value 00000000h

Access Read/Write
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Description: If a node implements more than one SDO channel for access to the 
Object Dictionary, then for each additional channel one Server SDO 
Parameter entry must be implemented. For example, if a node imple-
ments two SDO channels, then entry 1201h must be implemented. If a 
node implements three SDO channels, then entries 1201h and 1202h 
must be implemented.

The entry defines the COB IDs used for the SDO channel along with 
(optionally) the Node ID of the client which will use the channel.

Mandatory Yes for each additional Server SDO Channel supported by the 
node

Map to PDO No

Subindex 02h
Name COB ID Server to Client (Transmit SDO)

Type UNSIGNED32

Default Value 00000000h

Access Read/Write

Mandatory Yes for each additional Server SDO Channel supported by the 
node

Map to PDO No

Subindex 03h
Name Node ID of the SDO Client

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 01h
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Subentry 01h holds the COB ID of the SDO used to access the Object 
Dictionary of the node.

Subentry 02h holds the COB ID of the SDO used by the node to 
respond to Object Dictionary requests.

For an 11-bit COB ID the value of Subentries 01h and 02h are con-
structed as follows:

For a 29-bit COB ID the value of Subentries 01h and 02h are con-
structed as follows:

To change a COB ID, bit 31 must first be set to 1 to disable the SDO. Once the COB ID 
has been changed the SDO can be reenabled by clearing bit 31.

Bit Description
0 - 10 COB ID for SDO

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the SDO.
Set to 1 if the node does not use the SDO.

Table D.30 SDO Parameters COB ID Contents for 11-bit COB ID 

Bit Description
0 – 28 COB ID for SDO

29 Set to 1 to select 29-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the SDO.
Set to 1 if the node does not use the SDO.

Table D.31  SDO Parameters COB ID Contents for 29-bit COB ID
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Each SDO is only valid and usable if bit 31 in Subentry 01h and Subentry 02h are 
cleared. For example, the receive SDO cannot be used if bit 31 of the transmit SDO is 
set to 1.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, will result in 
the node transmitting an SDO Abort message.

Subentry 03h stores the Node ID of the client, which is the node that will send the 
Transmit SDO and process the Receive SDO. This Subentry is optional.

Note that this entry is usually written to by a CANopen Manager during the alloca-
tion of dynamic SDO channels.

Example: 0000051Eh in Subentry 01h 
Node uses Receive SDO 51Eh

D.3.35 Client SDO Parameters (1280h – 12FFh)

Index 1280h – 12FFh
Name Client SDO Parameter

Mandatory Yes for each supported SDO Client Channel

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 03h

Access Read Only

Mandatory Yes for each supported SDO Client Channel

Map to PDO No

Subindex 01h
Name COB ID Client to Server (Transmit SDO)

Type UNSIGNED32

Default Value 00000000h
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Description: If the node accesses the Object Dictionary of another node then it is 
an SDO Client. For each SDO Client Channel the node supports 
(transmit and receive SDO pair) a Client SDO Parameter entry must 
be implemented. The Subentries define the COB IDs used for the 
transmit and receive SDOs along with the Node ID of the node con-
taining the Object Dictionary.

Subentry 01h stores the COB ID of the SDO used to access the Object 
Dictionary of the node specified in Subentry 03h.

Subentry 02h stores the COB ID of the SDO returned from the node 
specified in Subentry 03h.

Access Read/Write

Mandatory Yes for each supported SDO Client Channel

Map to PDO No

Subindex 02h
Name COB ID Server to Client (Receive SDO)

Type UNSIGNED32

Default Value 00000000h

Access Read/Write

Mandatory Yes for each supported SDO Client Channel

Map to PDO No

Subindex 03h
Name Node ID of the SDO Server

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes for each supported SDO Client Channel

Map to PDO No

Subindex 01h
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For an 11-bit COB ID the value of Subentries 01h and 02h are con-
structed as follows:

For a 29-bit COB ID the value of Subentries 01h and 02h are con-
structed as follows:

To change a COB ID, bit 31 must first be set to 1 to disable the SDO. Once the COB ID 
has been changed the SDO can be reenabled by clearing bit 31.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, will result in 
the node transmitting an SDO Abort message.

Note that this entry is usually written to by a CANopen Manager during the alloca-
tion of dynamic SDO channels.

Example: 000004EDh in SubentrySubentry 01h 
Node uses Transmit SDO 4EDh

Bit Description
0 - 10 COB ID for SDO

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the SDO.
Set to 1 if the node does not use the SDO.

Table D.32 SDO Parameters COB ID Contents for 11-bit COB ID 

Bit Description
0 – 28 COB ID for SDO

29 Set to 1 to select 29-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the SDO.
Set to 1 if the node does not use the SDO.

Table D.33 SDO Parameters COB ID Contents for 29-bit COB ID
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D.3.36 Receive PDO Parameters (1400h – 15FFh)

Index 1400h - 15FFh
Name Receive PDO Parameter

Mandatory Yes for each supported Receive PDO

Subindex 00h
Name Highest Subindex Supported

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for each supported Receive PDO

Map to PDO No

Subindex 01h
Name COB ID used by PDO

Type UNSIGNED32

Default Value See description

Access Read Only or Read/Write

Mandatory Yes for each supported Receive PDO

Map to PDO No

Subindex 02h
Name Transmission Type

Type UNSIGNED8

Default Value Determined by the device profile used

Access Read Only or Read/Write

Mandatory Yes for each supported Receive PDO

Map to PDO No
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Description: This entry must be implemented for each Receive PDO supported by 
the node. The entry describes the communication configuration of the 
PDO.

Subindex 03h
Name Inhibit Time

Type UNSIGNED16

Default Value Determined by the device profile used

Units 100µs

Access Read/Write

Mandatory No

Map to PDO No

Subindex 04h
Name Compatibility Entry

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 05h
Name Event Timer

Type UNSIGNED16

Default Value Determined by the device profile used

Units ms

Access Read/Write

Mandatory No

Map to PDO No
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Subentry 01h defines the COB ID of the PDO. The default value 
depends on the Index of the entry, as shown in the following table.

The COB ID entry also indicates if the PDO is used or not, the size of 
the identifier and whether remote transmit requests are allowed for 
the PDO.

For an 11-bit COB ID the value of the Subentry is constructed as fol-
lows:

Index Default Value
1400h Node ID + 00000200h

1401h Node ID + 00000300h

1402h Node ID + 00000400h

1403h Node ID + 00000500h

1404h – 
15FFh 80000000h

Table D.34 Receive PDO Default COB IDs

Bit Description
0 - 10 COB ID for PDO

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30 Set to 1

31
Set to 0 if the node does use the PDO
Set to 1 if the node does not use the PDO

Table D.35  PDO Parameters COB ID Contents for 11-bit COB ID
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For a 29-bit COB ID the value of the Subentry is constructed as fol-
lows:

To change a COB ID, bit 31 must first be set to 1 to disable the SDO. Once the COB ID 
has been changed the SDO can be reenabled by clearing bit 31.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, or attempting 
to clear bit 30 on a node that does not support remote transmission requests, will 
result in the node transmitting an SDO Abort message.

Subentry 02h specifies the transmission type of the Receive PDO. The following table 
lists the available transmission types for a Receive PDO.

If the PDO is a Destination Addressing Mode Multiplexed PDO then it must have 
transmission type 254. If the PDO is a Source Addressing Mode Multiplexed PDO 
then it must have transmission type 254 or 255.

Bit Description
0 – 28 COB ID for PDO

29 Set to 1 to select 29-bit COB ID

30 Set to 1

31
Set to 0 if the node does use the PDO
Set to 1 if the node does not use the PDO

Table D.36 PDO Parameters COB ID Contents for 29-bit COB ID

Transmission Type Description

0 – 240
The Receive PDO is synchronous. The data in the PDO is 
processed on reception of the next SYNC Object. The 
actual value of the transmission type is not relevant.

241 – 253 Not used for Receive PDOs

254 The transmission type of the Receive PDO is manufacturer 
specific.

255 The Recieve PDO is asynchronous. As soon as the PDO 
arrives the data is processed by the node.

Table D.37  Receive PDO Transmission Types
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Subentries 03h and 04h are not used and any attempt to read or write to these entries 
will return an SDO Abort message from the node.

Subentry 05h may optionally be implemented. It is an event timer which configures 
an event to occur after the specified number of milliseconds. A value of zero disables 
the event timer. The functionality of the event timer with regard to Receive PDOs is 
not described in the CANopen specification, however it may be used for several pur-
poses, including generating an error if the PDO has not been received within a spe-
cific time.

Example: 00000201h in Subindex 01h, 0h in Subindex 02h 
Node uses Receive PDO 201h with the data applied to the outputs 
upon reception of a SYNC message.

D.3.37 Receive PDO Mapping (1600h – 17FFh)

Index 1600h – 17FFh
Name Receive PDO Mapping

Mandatory Yes for each supported Receive PDO

Subindex 00h
Name Number of Entries (Number of objects mapped into the PDO)

Type UNSIGNED8

Default Value Defined in the device profile

Access
Read Only if dynamic mapping is not supported.
Read/Write if dynamic mapping is supported.

Mandatory Yes for each supported Receive PDO

Map to PDO No

Subindex 01h – 40h
Name PDO Mapping for an application object

Type UNSIGNED32

Default Value Defined in the device profile
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Description: This entry defines which process data is stored in a single PDO, along 
with the position of the process data in the eight data bytes of the 
PDO.

Each Receive PDO supported by the node must have a corresponding 
Receive PDO Mapping parameter entry implemented. The entry at 
1600h is for the first Receive PDO whose communication parameters 
are defined at 1400h. The entry at 1601h is for the second Receive 
PDO whose communication parameters are defined at 1401h, etc.

A PDO may have 1 to 64 process data variables mapped to it, with 
each variable having any length from 1 to 64 bits, however the total 
size of all the process data mapped to a single PDO may not exceed 
64 bits (eight bytes). Each Subentry defines a process data variable, 
therefore Subentry 00h holds the total number of process data vari-
ables mapped to the PDO.

The value of each Subentry defines the process data variable to be 
mapped and the size of the process data variable in bits. The process 
data variable is defined by specifying the Object Dictionary location 
where the data is stored. The value is constructed as follows:

Access Read/Write

Mandatory No

Map to PDO No

Bit Description
0 – 7 Data length in bits

8 – 15 Subindex data can be read at in Object Dictionary 

16 - 31 Index data can be read at in Object Dictionary

Table D.38 PDO Mapping Entry Value

Subindex 01h – 40h
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For example, if a 16-bit process data variable was stored in the Object Dictionary at 
Index 6001h, Subindex 04h, then it can be mapped into a PDO using the value 
60010410h.

The Subentry number indicates the process data variable position in the eight bytes of 
the PDO. The process data variable at Subentry 01h is located in the first bits of the 
PDO. Table D.39 shows a mapping example and the location of the data in the PDO.

It is possible to create gaps in the mapping by using dummy entries. A dummy entry 
is created by mapping one of the data types located at indexes 0001h – 0007h into the 
PDO. For example, to create a gap of 16 bits in the PDO, the UNSIGNED16 data type 
must be defined in a Subentry. This is achieved using the UNSIGNED16 Object Dic-
tionary location of Index 0006h Subindex 00h, giving a value for the Subentry of 
00060010h.

If Subentry 00h contains the value zero (i.e. no process data variables), then the PDO 
is disabled. In order to change the current mapping of a PDO, the PDO must first be 
disabled by writing zero to Subentry 00h. Once the new values for the Subentries have 
been written, Subentry 00h can be written with the number of process data variables 
mapped to the PDO. Attempting to write a non-zero value to Subentry 00h will cause 
the node to check and ensure that the entire mapping is valid. For example, the total 
number of bits mapped to the PDO does not exceed 64, each mapped process data 
variable exists in the Object Dictionary and can be mapped to a PDO. If the mapping 
is not valid, then the node will return an SDO Abort message in response to any 
attempt to set Subentry 00h to a non-zero value.

Each time a mapping entry is written, the node will check and ensure that the process 
data exists and can be mapped. If it does not exist or cannot be mapped then an SDO 
Abort message will be returned.

Subentry Contents Description Location in PDO
01h 20010008h 8 bits of entry [2001h,00h] Bits 0 – 7

02h 2002000Ch 12 bits of entry [2002h,00h] Bits 8 – 19

03h 20030008h 8 bits of entry [2003h,00h] Bits 20 - 27

04h 20040004h 4 bits of entry [2004h,00h] Bits 28 - 31

Table D.39 PDO Mapping Example
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If Subentry 00h contains the value FEh then the PDO is a Source Addressing Mode 
Multiplexed PDO (SAM-MPDO). Subentries 01h – 40h are not used for SAM-MPDOs 
and any values stored there are ignored.

If Subentry 00h contains the value FFh then the PDO is a Destination Addressing 
Mode Multiplexed PDO (DAM-MPDO). For DAM-MPDOs only Subentry 01h is used 
and must be implemented. It defines the Object Dictionary entry that the DAM-
MPDO data will be written to upon reception.

Example: 62000108h 
8-bit digital output entry located at Index 6200h, Subindex 01h is 
mapped to the PDO

D.3.38 Transmit PDO Parameters (1800h – 19FFh)

Index 1800h – 19FFh
Name Transmit PDO Parameter

Mandatory Yes for each supported Transmit PDO

Subindex 00h
Name Highest Subindex Supported

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for each supported Transmit PDO

Map to PDO No

Subindex 01h
Name COB ID used by PDO

Type UNSIGNED32

Default Value See description

Access Read Only or Read/Write
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Mandatory Yes for each supported Transmit PDO

Map to PDO No

Subindex 02h
Name Transmission Type

Type UNSIGNED8

Default Value Determined by the device profile used

Access Read Only or Read/Write

Mandatory Yes for each supported Transmit PDO

Map to PDO No

Subindex 03h
Name Inhibit Time

Type UNSIGNED16

Default Value Determined by the device profile used

Units 100µs

Access Read/Write

Mandatory No

Map to PDO No

Subindex 04h
Name Compatibility Entry

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 01h
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Description: This entry must be implemented for each Transmit PDO supported 
by the node. The entry describes the communication configuration of 
the PDO.

Subentry 01h defines the COB ID of the PDO. The default value 
depends on the Index of the entry, as shown in the following table.

The COB ID entry also indicates if the PDO is used or not, size of the identifier and 
whether remote transmit requests are allowed for the PDO.

Subindex 05h
Name Event Timer

Type UNSIGNED16

Default Value Determined by the device profile used

Units ms

Access Read/Write

Mandatory No

Map to PDO No

Index Default Value
1400h Node ID + 00000180h

1401h Node ID + 00000280h

1402h Node ID + 00000380h

1403h Node ID + 00000480h

1404h – 
15FFh 80000000h

Table D.40 Transmit PDO Default COB IDs
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For an 11-bit COB ID the value of the Subentry is constructed as fol-
lows:

For a 29-bit COB ID the value of the Subentry is constructed as fol-
lows:

To change a COB ID, bit 31 must first be set to 1 to disable the SDO. Once the COB ID 
has been changed the SDO can be reenabled by clearing bit 31.

Bit Description
0 - 10 COB ID for PDO

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30

Set to 0 if remote transmit requests are allowed for the 
PDO.
Set to 1 if remote transmit requests are not allowed for 
the PDO.

31
Set to 0 if the node does use the PDO.
Set to 1 if the node does not use the PDO.

Table D.41  PDO Parameters COB ID Contents for 11-bit COB ID

Bit Description
0 – 28 COB ID for PDO

29 Set to 1 to select 29-bit COB ID

30

Set to 0 if remote transmit requests are allowed for the 
PDO.
Set to 1 if remote transmit requests are not allowed for 
the PDO.

31
Set to 0 if the node does use the PDO.
Set to 1 if the node does not use the PDO.

Table D.42 PDO Parameters COB ID Contents for 29-bit COB ID
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Attempting to set bit 29 on a node that does not support 29-bit COB IDs, or attempting 
to clear bit 30 on a node that does not support remote transmission requests, will 
result in the node transmitting an SDO Abort message.

Subentry 02h specifies the transmission type of the Transmit PDO. Table D.43 lists the 
available transmission types for a Transmit PDO.

If the PDO is a Destination Addressing Mode Multiplexed PDO then it must have 
transmission type 254. If the PDO is a Source Addressing Mode Multiplexed PDO 
then it must have transmission type 254 or 255.

Subindex 03h is optional and defines the inhibit time for the PDO. The inhibit time 
specifies the minimum time between transmissions of the PDO. Once the PDO is 
transmitted, any additional transmissions of the PDO will not take place during the 
inhibit time.

Transmission 
Type Description

0

The Transmit PDO is synchronous. Which specific SYNC Object 
occurrence triggers the transmission is given in the device profile. 
Additional details of the PDO transmission are given in the device 
profile.

1 – 240

The Transmit PDO is synchronous. It is transmitted after every 
nth SYNC Object within the Synchronous Window Length, where 
n is the transmission type. For example, when using transmission 
type 34, the PDO is transmitted after every 34th SYNC Object.

241 – 251 Not used for Transmit PDOs

252
The data for the PDO is updated on reception of a SYNC Object, 
but the PDO is not transmitted. The PDO is only transmitted on 
reception of a Remote Transmission Request.

253 The data for the PDO is updated and the PDO is transmitted on 
reception of a Remote Transmission Request.

254 The conditions that cause the Transmit PDO to be transmitted are 
manufacturer specific.

255 The Transmit PDO is asynchronous. Details of when the PDO is 
transmitted is given in the device profile.

Table D.43 Transmit PDO Transmission Types
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The inhibit time is a multiple of 100µs. For example, a value of 173Ah would give an 
inihibit time of 594.6ms. A value of zero disables the inhibit time functionality.

Note that the inhibit time is measured from the time when the node first attempts to 
send the PDO. If the PDO is blocked from being sent because of higher priority mes-
sages on the bus, then the delay before the PDO is actually transmitted is included in 
the inhibit time. Therefore the inhibit time must be greater than the worst case trans-
mission time of the PDO.

The inhibit time may not be changed while the PDO is being used by the node. To 
change the inhibit time the PDO must first be disabled by setting bit 31 of Subentry 
01h.

Subentry 04h is not used. It may optionally be implemented, but if it is not imple-
mented then any attempt to read or write the entry will return an SDO Abort message 
from the node. If the Subentry is not implemented, Subentry 05h may still be imple-
mented if desired.

Subentry 05h defines the optional event time for a Transmit PDO. A value of zero dis-
ables the event timer.

If the event timer is used, then the PDO is periodically transmitted. The value of the 
event timer entry is the number of milliseconds between transmissions. Each time the 
PDO is transmitted as a result of the event timer expiring, the event timer is reset.

Example: 00000181h in Subentry 01h, 100 in Subentry 02h, 1000 in Subentry 
03h, 3000 in Subentry 04h 
The PDO is transmitted with a COB ID of 181h every 100 SYNC mes-
sages, sampling the data to be transmitted in the PDO at the SYNC. 
The PDO will be transmitted at most every 1 second and transmitted 
every 3 seconds if 100 SYNCS have not occurred.
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D.3.39 Transmit PDO Mapping (1A00h – 1BFFh)

Description: This entry defines which process data is stored in a single PDO, along 
with the position of the process data in the eight data bytes of the 
PDO.

Each Transmit PDO supported by the node must have a correspond-
ing Transmit PDO Mapping parameter entry implemented. The entry 
at 1A00h is for the first Transmit PDO whose communication param-
eters are defined at 1800h. The entry at 1A01h is for the second Trans-
mit PDO whose communication parameters are defined at 1801h, etc.

Index 1A00h – 1BFFh
Name Transmit PDO Mapping

Mandatory Yes for each supported Transmit PDO

Subindex 00h
Name Number of Entries (Number of objects mapped into the PDO)

Type UNSIGNED8

Default Value Defined in the device profile

Access
Read Only if dynamic mapping is not supported.
Read/Write if dynamic mapping is supported.

Mandatory Yes for each supported Transmit PDO

Map to PDO No

Subindex 01h – 40h
Name PDO Mapping for a process data variable

Type UNSIGNED32

Default Value Defined in the device profile

Access Read/Write

Mandatory No

Map to PDO No
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A PDO may have 1 to 64 process data variables mapped to it, with 
each variable having any length from 1 to 64 bits, however the total 
size of all the process data mapped to a single PDO may not exceed 
64 bits (eight bytes). Each Subentry defines a process data variable, 
therefore Subentry 00h holds the total number of variables mapped to 
the PDO.

The value of each Subentry defines the process data variable to be 
mapped and the size of the variable in bits. The process data variable 
is defined by specifying the Object Dictionary location where the data 
is stored. The value is constructed as follows:

For example, if a 16-bit process data variable was stored in the Object Dictionary at 
Index 6001h, Subindex 04h, then it can be mapped into a PDO using the value 
60010410h.

The Subentry number indicates the process data variable position in the eight bytes of 
the PDO. The process data variable at Subentry 01h is located in the first bits of the 
PDO. For example, the following table shows an example mapping and the location of 
the data in the PDO.

Mapping dummy entries to a Transmit PDO is not permitted. No gaps may appear in 
the mapped data in a Transmit PDO.

Bit Description
0 – 7 Data length in bits

8 – 15 Subindex data can be read at in Object Dictionary 

16 - 31 Index data can be read at in Object Dictionary

Table D.44 PDO Mapping Entry Value

Subentry Contents Description Location in PDO
01h 20010008h 8 bits of entry [2001h,00h] Bits 0 – 7

02h 2002000Ch 12 bits of entry [2002h,00h] Bits 8 – 19

03h 20030008h 8 bits of entry [2003h,00h] Bits 20 - 27

04h 20040004h 4 bits of entry [2004h,00h] Bits 28 - 31

Table D.45 PDO Mapping Example
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If Subentry 00h contains the value zero (i.e. no process data variables), then the PDO 
is disabled. In order to change the current mapping of a PDO, the PDO must first be 
disabled by writing zero to Subentry 00h. Once the new values for the Subentries have 
been written, Subentry 00h can be written with the number of process data variables 
mapped to the PDO. Attempting to write a non-zero value to Subentry 00h will cause 
the node to check and ensure that the entire mapping is valid. For example, the total 
number of bits mapped to the PDO does not exceed 64, each mapped process data 
variable exists in the Object Dictionary and can be mapped to a PDO. If the mapping 
is not valid, then the node will return an SDO Abort message in response to any 
attempt to set Subentry 00h to a non-zero value.

Each time a mapping entry is written, the node will check and ensure that the process 
data exists and can be mapped. If it does not exist or cannot be mapped then an SDO 
Abort message will be returned.

If Subentry 00h contains the value FEh then the PDO is a Source Addressing Mode 
Multiplexed PDO (SAM-MPDO). Subentries 01h – 40h are not used for SAM-MPDOs 
and any values stored there are ignored.

If Subentry 00h contains the value FFh then the PDO is a Destination Addressing 
Mode Multiplexed PDO (DAM-MPDO). For DAM-MPDOs only Subentry 01h is used 
and must be implemented. It defines the Object Dictionary entry that the DAM-
MPDO data will contain when transmitted. DAM-MPDOs also contain the Node ID 
of the DAM-MPDO consumer and the Index and Subindex of the Consumer's Object 
Dictionary entry where the data will be stored. How these values are specified is man-
fuacturer-specific and not covered by the CANopen specification.

Example: 60000108h 
Transmit the 8-bit digital input located at Index 6000h, Subindex 01h 
in the PDO.
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D.3.40 Object Scanner List (1FA0h – 1FCFh)

Index 1FA0h – 1FCFh
Name Object Scanner List

Mandatory Yes if Source Address Mode Multiplexed PDOs are transmitted 
by the node

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if Source Address Mode Multiplexed PDOs are transmitted 
by the node

Map to PDO No

Subindex 01h
Name Scan 1

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if Source Address Mode Multiplexed PDOs are transmitted 
by the node

Map to PDO No

Subindex 02h – FEh
Name Scan 2 – 254

Type UNSIGNED32

Default Value Not defined

Access Read/Write
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Description: If a node transmits Source Address Mode Multiplexed PDOs (SAM-
MPDOs) then it must implement the Object Scanner List to specify 
which process data is transmitted in the SAM-MPDO.

The scanner list specifies the Object Dictionary Index and Subindex of 
the process data, and may optionally specify ranges of Subindexes. 
This allows for a large range of data to be specified in the Object Scan-
ner List.

An entry in the Object Scanner List is constructed as shown in the fol-
lowing table:

A SAM-MPDO producer scans the Object Scanner List and decides on a specific 
Object Dictionary entry to transmit in a SAM-MPDO. The transmission type of a 
SAM-MPDO is manufacturer-specific, therefore the method of determining which 
process data to transmit is not covered by the CANopen specification. When the 
SAM-MPDO is transmitted, the SAM-MPDO contains the process data along with the 
Index and Subindex of where in the node's Object Dictionary the process data is 
located.

Example: 03600102h 
Entry 6001h, Subentries 02h to 04h

Mandatory No

Map to PDO No

Bit Description
0 – 7 Subindex

8 – 23 Index

24 - 31 Number of Subindexes

Table D.46 Object Scanner List Entry

Subindex 02h – FEh
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D.3.41 Object Dispatching List (1FD0h – 1FFFh)

Index 1FD0h – 1FFFh
Name Object Dispatching List

Mandatory Yes if Source Address Mode Multiplexed PDOs are received by 
the node

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if Source Address Mode Multiplexed PDOs are received by 
the node

Map to PDO No

Subindex 01h
Name Dispatch 1

Type UNSIGNED64

Default Value Not defined

Access Read/Write

Mandatory Yes if Source Address Mode Multiplexed PDOs are received by 
the node

Map to PDO No

Subindex 02h – FEh
Name Dispatch 2 – 254

Type UNSIGNED64

Default Value Not defined

Access Read/Write
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Description: If a node receives Source Address Mode Multiplexed PDOs (SAM-
MPDOs) then it must implement the Object Dispatching List to spec-
ify which process data is received in the SAM-MPDO.

Each entry in the Object Dispatching List specifies where in the 
Object Dictionary the received process data should be stored. It is 
cross referenced with the Object Dictionary entry of the node that 
produces the SAM-MPDO. The following table shows the contents of 
an entry in the Object Dispatching List.

When a SAM-MPDO is received, the Index, Subindex and sender Node ID in the 
SAM-MPDO are looked up in the Object Dispatching List. When an entry is found, 
the node can then determine in which local Object Dictionary entry to store the data.

It is possible for ranges of entries to be specified allowing more complex mapping of 
the sender (SAM-MPDO producer) to the local (SAM-MPDO consumer) Object Dic-
tionary.

For example, assume the following value is used for an Object Dispatching List entry:

Mandatory No

Map to PDO No

Bit Description
0 – 7 Sender Node ID

8 – 15 Sender Subindex

16 – 31 Sender Index

32 – 39 Local Subindex

40 – 55 Local Index

56 - 63 Number of Subindexes

Table D.47  Object Dispatching List Entry

Sender Node ID 0Ah

Sender Subindex 01h

Subindex 02h – FEh
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Then the sender's Object Dictionary entry 6001h Subindexes 01h to 03h are mapped to 
the local Object Dictionary entry 2101h Subindexes 06h to 08h.

Sender Index 6001h

Local Subindex 2101h

Local Index 06h

Number of Subindexes 03h
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D.4 CANopen Managers and Programmable 
CANopen Devices

D.4.1 Object Dictionary Entries

The following table gives an overview of all Object Dictionary entries in the Program-
mable CANopen Devices section of the Object Dictionary.

Index Name Type Access
1F00h Request SDO UNSIGNED32 Write Only

1F01h Release SDO UNSIGNED32 Write Only

1F02h SDO Manager COB IDs UNSIGNED32 Read/Write

1F03h SDO Connections Part 1 UNSIGNED32 Read Only

1F04h SDO Connections Part 2 UNSIGNED32 Read Only

1F05h SDO Connections Part 3 UNSIGNED32 Read Only

1F06h SDO Connections Part 4 UNSIGNED32 Read Only

1F10h Dynamic SDO Connection State UNSIGNED32 Read/Write

1F11h Slave Failed UNSIGNED16 Read Only

1F20h Store DCF DOMAIN Read/Write

1F21h Storage Format UNSIGNED8 Read/Write

1F22h Concise DCF DOMAIN Read/Write

1F23h Store Slave EDS DOMAIN Read/Write

1F24h Slave EDS Storage Format UNSIGNED8 Read/Write

1F25h Configure Slave UNSIGNED32 Read/Write

1F26h Expected Configuration Date UNSIGNED32 Read/Write

1F27h Expected Configuraton Time UNSIGNED32 Read/Write

1F50h Download Program Data DOMAIN Read/Write

1F51h Program Control UNSIGNED8 Read/Write

1F52h Verify Application Software UNSIGNED32 Read/Write

Table D.48  Programmable CANopen Devices Object Dictionary Entries
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D.4.2 Request SDO (1F00h)

1F53h Expected Application SW Date UNSIGNED32 Read/Write

1F54h Expected Application SW Time UNSIGNED32 Read/Write

1F70h Process Picture RECORD Read/Write

1F80h NMT Startup UNSIGNED32 Read/Write

1F81h Slave Assignment UNSIGNED32 Read/Write

1F82h Request NMT UNSIGNED8 Read/Write

1F83h Request Guarding UNSIGNED8 Read/Write

1F84h Device Type Identification UNSIGNED32 Read/Write

1F85h Vendor Identification UNSIGNED32 Read/Write

1F86h Product Code UNSIGNED32 Read/Write

1F87h Revision Number UNSIGNED32 Read/Write

1F88h Serial Number UNSIGNED32 Read/Write

1F89h Boot Time UNSIGNED32 Read/Write

1F90h Flying Master Timing Parameters UNSIGNED16 Read/Write

1F91h Startup-capable Device Timing UNSIGNED16 Read/Write

Index 1F00h
Name Request SDO

Mandatory Yes for SDO Managers

Subindex 00h
Name Request SDO

Type UNSIGNED32

Default Value Not defined

Access Write Only

Index Name Type Access

Table D.48  (Continued) Programmable CANopen Devices Object Dictionary 
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Description: If a node referred to in this process as the SDO Requesting Device 
(SRD) wishes to request an SDO channel to another node (called the 
slave), then it must write to this entry on the SDO Manager. Section 
D.5.4 shows the sequence of Object Dictionary accesses involved. 

The value of the entry is constructed as follows:

Example: 12800612h 
The SRD with Node ID 06h wishes to request an SDO channel to 
Node ID 12h. Client SDO entry 1280h is free to be used.

D.4.3 Release SDO (1F01h)

Mandatory Yes for SDO Managers

Map to PDO No

Bit Description
0 – 7 Slave Node ID

8 – 15 SRD Node ID

16 – 31 Index of a free Client SDO Entry in the SRD's Object 
Dictionary (1280h – 12FFh)

Table D.49  Request SDO Entry

Index 1F01h
Name Release SDO

Mandatory Yes for SDO Managers

Subindex 00h
Name Release SDO

Type UNSIGNED32

Default Value Not defined

Access Write Only

Subindex 00h
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Description: If a node referred to in this process as the SDO Requesting Device 
(called the SRD) wishes to release the SDO channels it is using to con-
nect to another node (called the slave) or release all SDO channels, 
then it writes to this entry on the SDO Manager. Section D.5.4  shows 
the sequence of Object Dictionary accesses involved. 

The value of the entry is constructed as follows:

Example: 12800612h 
The SRD with Node ID 06h wishes to release the SDO channel it used 
to communicate with Node 12. The Client SDO at 1280h is being 
used.

Mandatory Yes for SDO Managers

Map to PDO No

Bit Description

0 – 7 Slave Node ID or zero to release all connections and 
un-register as an SRD

8 – 15 SRD Node ID

16 – 31
Index of a Client SDO Entry in the SRD's Object Dic-
tionary (1280h – 12FFh) being used to connect to the 
Slave or zero to release all SDO channels to the Slave

Table D.50 Request SDO Entry

Subindex 00h
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D.4.4 SDO Manager COB IDs (1F02h)

Description: This entry allows a Configuration Tool to specify to the SDO Manager 
which COB IDs are available to be used for SDO channels, and also 
for reading which COB IDs are currently in use for SDO channels.

Index 1F02h
Name SDO Manager COB IDs

Mandatory Yes for SDO Managers

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes for SDO Managers

Map to PDO No

Subindex 01h - FEh
Name COB ID 1 - 254

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No
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For an 11-bit COB ID the value of the Subentries are constructed as 
follows:

For a 29-bit COB ID the value of the Subentries are constructed as fol-
lows:

To change a COB ID, bit 31 must first be set to 1 to disable the Subentry. Once the COB 
ID has been changed the entry can be reenabled by clearing bit 31.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, will result in 
the node transmitting an SDO Abort message.

Note that when writing to this entry, it must be ensured that there are no dynamic 
SDO connections being used at the time.

Bit Description
0 - 10 COB ID

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30
Set to 0 if the COB ID is free to be used for an SDO channel
Set to 1 if the COB ID is currently in use for an SDO channel

31
Set to 0 if the COB ID is valid. i.e. this Subentry is being used.
Set to 1 if the COB ID is not valid. i.e. this Subentry is not used.

Table D.51 SDO Manager COB ID Contents for 11-bit COB ID 

Bit Description
0 – 28 COB ID

29 Set to 1 to select 29-bit COB ID

30
Set to 0 if the COB ID is free to be used for an SDO channel
Set to 1 if the COB ID is currently in use for an SDO channel

31
Set to 0 if the COB ID is valid. i.e. this Subentry is being used.
Set to 1 if the COB ID is not valid. i.e. this Subentry is not used.

Table D.52  SDO Manager COB ID Contents for 29-bit COB ID
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Example: 00000412h 
COB ID 412h is available and free to be used

D.4.5 SDO Connections Part 1 (1F03h)

Description: This entry describes the first 254 dynamic SDO connections between 
nodes in the CANopen network. This entry is implemented on the 
SDO Manager. 

Index 1F03h
Name SDO Connections Part 1

Mandatory Yes for SDO Managers

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for SDO Managers

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 1 - 254

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No
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The Subentries are constructed as follows:

Each entry specifies the Server and Client Node IDs.

The Server Offset is added to 1200h to obtain the Index of the Server SDO in the 
Server's Object Dictionary.

The Client Offset is added to 1280h to obtain the Index of the Client SDO in the Cli-
ent's Object Dictionary.

If either the Client or Server Node ID is zero, then the connection described is not 
valid and not in use.

Section D.5.4 shows the sequence of Object Dictionary accesses used for dynamic SDO 
channel assignment.

Example: 03060112h 
Node 06h using client SDO 1283h has established an SDO connection 
with node 12h using server SDO 1201h.

Bit Description
0 – 7 Server Node ID

8 – 15 Server Offset

16 – 23 Client Node ID

24 - 31 Client Offset

Table D.53 SDO Connection Entry
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D.4.6 SDO Connections Part 2 (1F04h)

Description: This entry describes up to 254 dynamic SDO connections between 
nodes in the CANopen network. This entry is implemented on the 
SDO Manager. 

Index 1F04h
Name SDO Connections Part 2

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 255 - 508

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No
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The Subentries are constructed as follows:

Each entry specifies the Server and Client Node IDs.

The Server Offset is added to 1200h to obtain the Index of the Server SDO in the 
Server's Object Dictionary.

The Client Offset is added to 1280h to obtain the Index of the Client SDO in the Cli-
ent's Object Dictionary.

If either the Client or Server Node ID is zero, then the connection described is not 
valid and not in use.

Section D.5.4 shows the sequence of Object Dictionary accesses used for dynamic SDO 
channel assignment.

Example: 03060112h 
Node 06h using client SDO 1283h has established an SDO connection 
with node 12h using server SDO 1201h.

Bit Description
0 – 7 Server Node ID

8 – 15 Server Offset

16 – 23 Client Node ID

24 - 31 Client Offset

Table D.54 SDO Connection Entry
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D.4.7 SDO Connections Part 3 (1F05h)

Description: This entry describes up to 254 dynamic SDO connections between 
nodes in the CANopen network. This entry is implemented on the 
SDO Manager. 

Index 1F05h
Name SDO Connections Part 3

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 509 - 762

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No
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The Subentries are constructed as follows:

Each entry specifies the Server and Client Node IDs.

The Server Offset is added to 1200h to obtain the Index of the Server SDO in the 
Server's Object Dictionary.

The Client Offset is added to 1280h to obtain the Index of the Client SDO in the Cli-
ent's Object Dictionary.

If either the Client or Server Node ID is zero, then the connection described is not 
valid and not in use.

Section D.5.4 shows the sequence of Object Dictionary accesses used for dynamic SDO 
channel assignment.

Example: 03060112h 
Node 06h using client SDO 1283h has established an SDO connection 
with node 12h using server SDO 1201h.

Bit Description
0 – 7 Server Node ID

8 – 15 Server Offset

16 – 23 Client Node ID

24 - 31 Client Offset

Table D.55  SDO Connection Entry
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D.4.8 SDO Connections Part 4 (1F06h)

Description: This entry describes up to 254 dynamic SDO connections between 
nodes in the CANopen network. This entry is implemented on the 
SDO Manager. 

Index 1F06h
Name SDO Connections Part 4

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 763 - 1016

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No
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The Subentries are constructed as follows:

Each entry specifies the Server and Client Node IDs.

The Server Offset is added to 1200h to obtain the Index of the Server SDO in the 
Server's Object Dictionary.

The Client Offset is added to 1280h to obtain the Index of the Client SDO in the Cli-
ent's Object Dictionary.

If either the Client or Server Node ID is zero, then the connection described is not 
valid and not in use.

Section D.5.4 shows the sequence of Object Dictionary accesses used for dynamic SDO 
channel assignment.

Example: 03060112h 
Node 06h using client SDO 1283h has established an SDO connection 
with node 12h using server SDO 1201h.

Bit Description
0 – 7 Server Node ID

8 – 15 Server Offset

16 – 23 Client Node ID

24 - 31 Client Offset

Table D.56 SDO Connection Entry
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D.4.9 Dynamic SDO Connection State (1F10h)

Description: This entry is implemented in a node (SDO Requesting Device - SRD) 
that wishes to obtain an SDO channel to another node (slave). It 
allows the SRD to provide information to the SDO Manager as well as 
receive configuration data back from the SDO Manager. Therefore, 
during the process of obtaining dynamic SDO channels, the SRD 
must make specific values available for reading at this entry, and 
operate on values written to this entry by the SDO Manager.

This entry is constructed as follows:

Index 1F10h
Name Dynamic SDO Connection State

Mandatory Yes for nodes using dynamic SDO channels

Subindex 00h
Name Dynamic SDO Connection State

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes for nodes using dynamic SDO channels

Map to PDO No

Bit Description
0 Rq Indication

1 - 2 Cnxn State

3 Req. EC

4 - 7 Reserved. Always zero

8 - 15 Error code

16 - 31 Index

Table D.57 Dynamic SDO Connection State Entry
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The SRD sets the Rq Indication flag when it wishes to be registered with the SDO 
Manager as an SRD. It sets this bit before sending the Dynamic SDO Request message. 
The Request Message has the COB ID 6E0h and contains no data. When the SDO 
Manager successfully recognizes the node as an SRD by scanning the Rq Indication 
Flag of all nodes on the network, it writes a zero to this bit. Note that the SDO Man-
ager only scans until it finds the first node with the Rq Indication Flag set. Therefore if 
there is more than one node wishing to set up a dynamic SDO channel, each node 
may have to send the Request Message repeatedly until the SDO Manager recognizes 
the node as an SRD.

If the SRD wishes to establish a connection with a slave using a single SDO channel, 
then the Cnxn State value is set to 0h before the Dynamic SDO Request message is 
transmitted.

If the SRD wishes to obtain all default SDO channels that are currently unused, then it 
sets the Cnxn State to 1h instead.

The SDO Manager writes various values to the Cnxn State to indicate the result of 
operations.

A value of 0h indicates that the SDO Manager failed to establish an SDO connection 
between the SRD and SDO Manager or failed to establish an SDO connection between 
the SRD and slave. The reason for the failure is given in the Error code field.

A value of 1h indicates that the SDO Manager has successfully established an SDO 
connection between the SRD and SDO Manager.

A value of 2h indicates that the SDO Manager is allowing the SRD to obtain all default 
SDO Channels that are currently unused.

A value of 3h indicates that the SDO connection between the SRD and slave has been 
established.

The Req EC value must be set to 1h if the SRD wishes the SDO Manager to perform 
error control on the slave. This will result in the SDO Manager using either heartbeat 
or node guarding to determine that the slave node is present and operational while 
the SRD has an SDO channel to the slave.

If the SDO Manager does not support error control on slaves then it will write 0h to 
this bit, otherwise it will write 1h.
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The error code field is only used if the SDO Manager fails to establish an SDO connec-
tion between itself and the SRD or between the SRD and slave. It has one of the fol-
lowing values:

The SRD specifies the Index (1280h – 12FFh) of the Client SDO to use to communicate 
with the SDO Manager in the Index field. If all unused default SDOs are being 
requested then the Index field is ignored by the SDO Manager.

The SDO Manager writes the Client SDO Index of the Client SDO that will actually be 
used to communicate with the SDO Manager.

Section D.5.4 lists the sequence of Object Dictionary accesses used for dynamic SDO 
channel assignment.

D.4.10 Slave Failed (1F11h)

Error Code Description
00h Unspecified error

01h There was no free SDO channel to create a connection between 
the SDO Manager and SRD

02h There were no more free SDO channels in the CANopen network

03h The Slave does not have any free Server SDOs

04h The Slave node is not available

05h – FFh Reserved

Table D.58 Dynamic SDO Connection Error Codes

Index 1F11h
Name Slave Failed

Mandatory No

Subindex 00h
Name Slave Failed

Type UNSIGNED16
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Description: If a node (SDO Requesting Device - SRD) has established an SDO 
Connection with another node (slave) and specified that the SDO 
Manager should use error control, then this entry which is imple-
mented on the SRD will be written to by the SDO Manager should a 
heartbeat or node guarding event occur.

If this entry is written to, then the SRD must assume that the SDO 
connection it has with the slave is no longer valid. The SDO Manager 
will automatically take steps to release the SDO Connection between 
the SRD and the slave.

The value written is the Node ID of the slave.

D.4.11 Store DCF (1F20h)

Default Value Not defined

Access Write Only

Mandatory No

Map to PDO No

Index 1F20h
Name Store DCF

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 00h
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Description: This entry is implemented on a Configuration Manager and allows 
the Device Configuration Files (DCF) to be written to and read from 
the manager. Each Subentry corresponds to a node on the network, 
with the Subindex specifying the Node ID. For example, to store the 
DCF for node 3Ah in the Configuration Manager, the DCF is written 
to Subentry 3Ah.

The format that the DCF is read and written is specified by OD entry 
1F21h.

D.4.12 Storage Format (1F21h)

Subindex 01h – 7Fh
Name Store DCF Node 1 – 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F21h
Name Storage Format

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No
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Description: This entry specifies the storage format of the DCF when read to and 
written from OD entry 1F20h. Currently the following values are 
implemented. All other values are reserved.

Note that the internal storage format of the DCFs is manufacturer-specific and may be 
compressed if desired.

D.4.13 Concise DCF (1F22h)

Subindex 01h – 7Fh
Name Storage Format Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Value Format
00h Non-compressed ASCII

Table D.59 DCF Storage Formats

Index 1F22h
Name Concise DCF

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only
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Description: If a Configuration Manager does not have enough disk or non-vola-
tile memory space to store the full Device Configuration Files (DCFs), 
then it may optionally implement this entry to store concise versions 
of the DCFs.

There is one Subentry for each possible node on the network, allow-
ing a DCF to be read or written for each node. For example, to store 
the DCF for node 3Ah on the Configuration Manager, the Concise 
DCF is written to Subentry 3Ah.

The concise version of the DCF is stored as a stream of data contain-
ing information about where the Object Dictionary data is stored and 
how large it is. 

The data stream is structured as follows:

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Concise DCF Node 1 - 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Number of supported entries n (UNSIGNED32)

Entry 1

Entry 2

…

Entry n

Table D.60 Concise DCF Data Stream

Subindex 00h
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Where each entry has the following data format:

The first item of data indicates the number of entries that are contained in the data 
stream and has the type UNSIGNED32. Each entry then follows.

In order to simplify the operation of the Configuration Manager when using the con-
cise DCF to configure nodes, the Configuration Manager writes to the Object Diction-
ary of the node by processing each entry in the data stream one at a time. For example, 
if entry 1 in the data stream specifies the value 12h for entry [2001h,04h] and entry 2 
specifies the value 6Ah for entry [25AFh,00h] then the Configuration Manager will 
first write 12h to [2001h,04h] then write 6Ah to [25AFh,00h]. This means that when 
writing to entries that require a flag to be set or cleared before the contents can be 
changed (for example COB ID entries), multiple entries in the data stream must be 
used. For example to change the COB ID of a PDO there must be two entries specified 
in the data stream. The first only sets bit 31 to 1 to disable the PDO. The second sets 
the new COB ID and clears bit 31 to enable the PDO.

An empty stream can be written by specifying zero for the number of entries in the 
stream. Reading an unused entry will result in a stream with zero for the number of 
entries.

Name Type
Index UNSIGNED16

Subindex UNSIGNED8

Data size UNSIGNED32

Data DOMAIN

Table D.61 Concise DCF Entry
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D.4.14 Store Slave EDS (1F23h)

Description: This entry is implemented on a Configuration Manager, and allows 
the Electronic Datasheets (EDSs) to be written to and read from the 
manager, usually by a configuration tool. Each Subentry corresponds 
to a node on the network, with the Subindex specifying the Node ID. 
For example, to store the EDS for node 3Ah in the Configuration 
Manager, the EDS is written to Subentry 3Ah.

The format in which the EDS is read and written is specified by OD 
entry 1F24h.

Index 1F23h
Name Store Slave EDS

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Store Slave EDS Node 1 - 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No
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D.4.15 Slave EDS Storage Format (1F24h)

Description: This entry specifies the storage format of the Electronic Datasheet 
(EDS) when read to and written from OD entry 1F23h. Currently the 
following values are implemented. All other values are reserved.

Index 1F24h
Name Slave EDS Storage Format

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Slave EDS Storage Format Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Value Format
00h Non-compressed ASCII

Table D.62 EDS Storage Formats
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Note that the internal storage format of the EDSs is manufacturer-specific and may be 
compressed if desired.

D.4.16 Configure Slave (1F25h)

Index 1F25h
Name Configure Slave

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 80h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Configure Slave 1 - 127

Type UNSIGNED32

Default Value Not Defined

Access Write Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 80h
Name Configure All Slaves

Type UNSIGNED32

Default Value Not Defined

Access Write Only
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Description: Nodes may write to this entry, implemented on the Configuration 
Manager, to request that the manager configure a specific node or all 
nodes. By writing the value "conf" (666E6F63h) to Subentries 01h – 
7Fh, the corresponding node whose Node ID matches the Subindex 
will be subsequently configured by the Configuration Manager. By 
writing "conf" to Subentry 80h, all nodes will be configured.

D.4.17 Expected Configuration Date (1F26h)

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F26h
Name Expected Configuration Date

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Configuration Date Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Units Days

Access Read/Write

Subindex 80h
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Description: This entry is implemented on the Configuration Manager and stores 
the expected configuration date of each node. Each Subentry corre-
sponds to a node on the network, with the Subindex indicating the 
Node ID.

When the Configuration Manager wishes to check if the node is using 
the currently known configuration it may read this entry to deter-
mine if an expected configuration date exists. This is indicated by a 
non-zero value. If an expected configuration date exists then it is 
compared with the date stored in the corresponding node in OD 
entry 1020h. If the two dates match (along with the expected configu-
ration time) then the configuration of the node is known to match 
with the Device Configuration File stored in the Configuration Man-
ager. If the dates (or times) do not match or entry 1020h could not be 
read, or if there is no expected configuration date (or time) stored, 
then the Configuration Manager can proceed to download the config-
uration to the node using the DCF.

The date is stored as the number of whole days since January, 1984.

Example: 23 
January 24, 1984

D.4.18 Expected Configuration Time (1F27h)

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F27h
Name Expected Configuration Time

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Subindex 01h – 7Fh
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Description: This entry is implemented on the Configuration Manager and stores 
the expected configuration time of each node. Each Subentry corre-
sponds to a node on the network, with the Subindex indicating the 
Node ID.

When the Configuration Manager wishes to check if the node is using 
the currently known configuration it may read this entry to deter-
mine if an expected configuration time exists. This is indicated by a 
non-zero value. If an expected configuration time exists then it is 
compared with the time stored in the corresponding node in OD 
entry 1020h. If the two times match (along with the expected configu-
ration date) then the configuration of the node is known to match 
with the Device Configuration File stored in the Configuration Man-
ager. If the times (or dates) do not match or entry 1020h could not be 
read, or if there is no expected configuration time (or date) stored, 
then the Configuration Manager can proceed to download the config-
uration to the node using the DCF.

The date is stored as the number of milliseconds since midnight.

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Configuration Time Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 00h
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Example: 6212000 
1:43:32 am

D.4.19 Download Program Data (1F50h)

Description: This entry allows firmware to be programmed into a node. Each node 
may support up to 254 programs. This can be used, for example, to 
re-program individual tasks. The firmware is written to the appropri-
ate Subentry and the data format used is not defined by the CANo-
pen specification. For example, raw binary, Intel HEX File, etc. could 
be used.

Program execution is controlled by Object Dictionary entry 1F51h.

Index 1F50h
Name Download Program Data

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – FEh
Name Program 1 – 254

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No
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D.4.20 Program Control (1F51h)

Description: By writing values to this entry, the corresponding program is con-
trolled. Programs are written using Object Dictionary entry 1F50h. 
Once a program has been written, it may be stopped, started or reset 

Index 1F51h
Name Program Control

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – FEh
Name Control Program 1 – 254

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No
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by writing to the program control Subentry for that program. The fol-
lowing table lists the values that may be written.

When the Subentries are read, information is given on the current state of the corre-
sponding program. The following table lists the meanings of the values that can be 
read.

D.4.21 Verify Application Software (1F52h)

Value Description
00h Stop program

01h Start program

02h Reset Program

Table D.63  Program Control Values

Value Description
00h Program is stopped

01h Program is running

02h Program is stopped

Table D.64 Program Control States

Index 1F52h
Name Verify Application Software

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 02h

Access Read Only
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Description: This entry allows the date and time of program 1 to be stored. Pro-
gram 1 is loaded into the node by writing to Object Dictionary entry 
[1F50h,01h]. It allows another node to determine the current version 
of a programmable portion of the firmware for the node.

The date is the number of days since January 1, 1984. The time is the 
number of milliseconds since midnight.

Example: 23 in Subentry 01h, 6212000 in Subentry 02h 
January 24, 1984, 1:43:32 am

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Application Software Date

Type UNSIGNED32

Default Value Not defined

Units Days

Access Read/Write

Mandatory No

Map to PDO No

Subindex 02h
Name Application Software Time

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

Mandatory No

Map to PDO No

Subindex 00h
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D.4.22 Expected Application SW Date (1F53h)

Description: This entry is implemented on the CANopen Manager and stores the 
expected application software date of each node. Each Subentry cor-
responds to a node on the network, with the Subindex indicating the 
Node ID. When the CANopen Manager wishes to check if the node is 
using the currently known software version, it is compared with the 
date stored in the corresponding node in OD entry 1F52h.

The date is stored as the number of whole days since January 1, 1984.

Index 1F53h
Name Expected Application SW Date

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Application SW Date Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Units Days

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No
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Example: 23 
January 24, 1984

D.4.23 Expected Application SW Time (1F54h)

Description: This entry is implemented on the CANopen Manager and stores the 
expected application software time of each node. Each Subentry cor-
responds to a node on the network, with the Subindex indicating the 
Node ID. When the CANopen Manager wishes to check if the node is 
using the currently known software version, it is compared with the 
time stored in the corresponding node in OD entry 1F52h.

Index 1F54h
Name Expected Application SW Time

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Application SW Time Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No
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The time is stored as the number of milliseconds since midnight.

Example: 6212000 
1:43:32 am

D.4.24 Process Picture / Process Image (1F70h)

Index 1F70h
Name Process Picture / Process Image

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 02h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Selected Range

Type UNSIGNED32

Default Value 0h

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Process Picture Domain / Process Image Domain

Type DOMAIN
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Description: This entry allows Object Dictionary entries to be treated like vari-
ables. By writing to this entry the Object Dictionary containing these 
variables can be configured.

Sections of the Object Dictionary are grouped together into segments. 
The segment to read or write is first specified by writing to the 
Selected Range Subentry. Once the segment has been specified, the 
segment data can be read and written using the Process Image 
Domain Subentry.

The following table shows the structure of the value written to the Selected Range 
Subentry.

The Object Segment is the Index of the segment to read or write. The Data Length is 
the number of bytes to read or write. If a Data Length of zero is used then the com-
plete segment may be accessed.

The segment is written as a stream of bytes.

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Bit Description
0 – 15 Object Segment

16 – 31 Data Length

Table D.65 Process Image Selected Range Value

Subindex 02h
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D.4.25 NMT Startup (1F80h)

Description: This entry configures the startup of a device that is able to operate as 
an NMT Master. Each bit is writable unless the node does not support 
that particular feature, in which case that bit is read only. The follow-
ing table describes the meaning of each bit.

Index 1F80h
Name NMT Startup

Mandatory No

Subindex 00h
Name NMT Startup

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Bit Description

0
If 0 the device is not the NMT Master.
If 1 the device is the NMT Master.

1
If 0 then start only explicitly assigned nodes.
If 1 then start all nodes.
If bit 3 is 1 then this bit is ignored.

2
If 0 then automatically enter the Operational state on bootup.
If 1 then do not automatically enter the Operational state on bootup.

3
If 0 then the NMT Master may automatically start nodes. The behavior is 
configured using bit 1.
If 1 then the NMT Master not not automatically start nodes. Bit 1 is ignored.

Table D.66  NMT Master Startup
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Bit 0 indicates if the node is an NMT Master or not. If the node also participates in the 
Flying Master process (bit 5 is set to 1), but loses out in the process it should not clear 
bit 0.

Bit 2 determines if the node should automatically enter the operational state on boo-
tup, or whether it should wait until it is told to enter the operational state. This feature 
is useful for networks without NMT Masters as it allows the node to startup autono-
mously.

Bit 3 controls whether or not the node may start nodes automatically. If it may, then 
the behavior of this functionality is configured using bit 1.

Bits 4 and 6 configure how the node should operate in the event of a node guarding or 
heartbeat event, whether it should only handle the node that failed to transmit a 
heartbeat or respond to a node guarding request, or whether all nodes on the network 
should be reset or stopped.

Bit 5 indicates if the node should participate in the Flying Master process and attempt 
to become the NMT Master for the network.

Example: 00000017h 
NMT Master, starts all nodes, resets all nodes if node guarding or 
heartbeat event occurs, not a flying master.

4

If 0 and a node fails to respond to node guarding or heartbeat, only handle 
that node.
If 1 and a node fails to respond to node guarding or heartbeat, reset all 
nodes.
If bit 6 is 1 then this bit is ignored.

5
If 0 then the NMT Master will not participate in the Flying Master process.
If 1 then the NMT Master will participate in the Flying Master process.

6
If 0 then use the configuaration specified by bit 4.
If 1 then ignore bit 4 and if a node fails to respond to node guarding or 
heartbeat, stop all nodes.

7 – 31 Reserved. Always zero.

Bit Description

Table D.66  (Continued) NMT Master Startup
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D.4.26 Slave Assignment (1F81h)

Description: This entry defines which slaves are assigned to the NMT Master and 
how the NMT Master controls the slave.

Each entry corresponds to one node on the network, with the Subin-
dex indicating the Node ID. For example, Subentry 1Ah contains 
information relating to Node 1Ah.

Index 1F81h
Name Slave Assignment

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Slave Assigment Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No
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The values stored in this entry are constructed as shown in the following table.

If the NMT Master does not support specific features, then those bits are read only.

If the NMT Master transmits a node guarding request to a node and does not receive a 
reply it will keep retrying until it has sent the request the number of times specified 
by the Retry Factor. The interval between transmission of node guarding request is 
specified by the Guard Time value for the node. If either Retry Factor or Guard Time 
are zero for a specific node, then the NMT Master will not perform node guarding on 
that node.

Bit Description

0
Set to 0 if the node is not a slave for this NMT Master.
Set to 1 if the node is a slave for this NMT Master.

1 Reserved.

2

Set to 0 if the node should not be automatically configured and started 
when a bootup message is detected being transmitted from the node.
Set to 1 if the node should be automatically configured and started when a 
bootup message is detected being transmitted from the node.

3

Set to 0 if the node is an optional slave. The network may be started if this 
node cannot be contacted.
Set to 1 if the node is a mandatory slave. Do not start the network if this 
node cannot be contacted.

4

Set to 0 if the node may be reset regardless of the current state of the 
node.
Set to 1 if the node may only be reset if the node is currently not opera-
tional.

5
Set to 0 if application software version verification is not required for the 
node.
Set to 1 if application software version verification is required for the node.

6
Set to 0 if automatic software update of the node is not allowed.
Set to 1 if automatic software update of the node is allowed.

7 Reserved.

8 – 15 Retry Factor.

16 – 31 Guard Time.

Table D.67  Slave Assignment Entry
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Example: 03E80101h 
Node is an optional slave, not automatically configured and started, 
may be reset regardless of state, no software verification, no auto-
matic update, 1 second guard time, 1 retry.

D.4.27 Request NMT (1F82h)

Index 1F82h
Name Request NMT

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 80h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Request NMT for Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 80h
Name Request NMT for All Nodes

Type UNSIGNED8
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Description: A CANopen network only allows one NMT Master at any one time. 
This ensures that only one node transmits messages with ID 000h. If 
another node wishes to perform NMT operations then it must write 
to this entry on the NMT Master requesting an NMT operation take 
place. The NMT Master will then transmit the NMT command.

Writing to Subentries 01h – 7Fh will result in the NMT Master send-
ing the NMT command to the node whose ID matches the Subindex 
written to. For example, writing to Subentry 5Ah will result in the 
NMT Master sending an NMT command to node 5Ah.

Writing to Subentry 80h sends an NMT command to all nodes.

The following table lists the values that may be written to this entry.

Default Value Node defined

Access Write Only

Mandatory Yes if this entry is implemented

Map to PDO No

Value NMT Command
04h Stop

05h Enter Operational

06h Reset

07h Reset Communication

7Fh Enter Pre-operational

Table D.68 Request NMT Commands

Subindex 80h
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Subentries 01h – 7Fh may be read to find out the current state of a node. The following 
table lists the values that may be read from these Subentries.

D.4.28 Request Guarding (1F83h)

Value NMT State
00h State not known

01h Node missing

04h Stopped

05h Operational

7Fh Pre-operational

Table D.69  Request NMT Read Values

Index 1F83h
Name Request Guarding

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 80h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Request Guarding for Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write
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Description: A CANopen network only allows one NMT Master at any one time. 
This ensures that only one node transmits the node guarding mes-
sages. If another node wishes to perform node guarding then it must 
write to this entry on the NMT Master requesting that node guarding 
take place. The NMT Master will then perform the node guarding.

Writing to Subentries 01h – 7Fh will result in the NMT Master send-
ing the node guarding requests to the node whose ID matches the 
Subindex written to. For example, writing to Subentry 5Ah will result 
in the NMT Master sending node guarding requests to node 5Ah.

Writing to Subentry 80h sends node guarding requests to all nodes.

The following table lists the values that may be written to this entry.

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 80h
Name Request Guarding for All Nodes

Type UNSIGNED8

Default Value Node defined

Access Write Only

Mandatory Yes if this entry is implemented

Map to PDO No

Value NMT Command
00h Stop node guarding

01h Start node guarding

Table D.70 Request Guarding Commands

Subindex 01h – 7Fh
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Subentries 01h – 7Fh may be read to find out whether a node is being 
guarded or not. The following table lists the values that may be read 
from these Subentries.

D.4.29 Device Type Identification (1F84h)

Value NMT State
00h Node is not being guarded

01h Node is being guarded

Table D.71 Request Guarding Read Values

Index 1F84h
Name Device Type Identification

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Device Type Identification for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No
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Description: This entry lists the expected Device Type values for slave nodes. Each 
Subentry correponds to the node with an ID the same as the Subin-
dex. For example, Subindex 31h holds the expected Device Type for 
Node 31h.

If the value stored is zero, then the Device Type of the node is marked 
as "don't care." If the value stored is not zero, then the Device Type 
read from the node must match the expected value stored in this 
entry. If the values do not match then the node bootup is not com-
pleted.

The Subentry that corresponds to the NMT Master is ignored.

D.4.30 Vendor Identification (1F85h)

Index 1F85h
Name Vendor Identification

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Vendor Identification for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write
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Description: This entry lists the expected Vendor ID values for slave nodes. Each 
Subentry correponds to the node with an ID the same as the Subin-
dex. For example, Subindex 31h holds the expected Vendor ID for 
Node 31h.

If the value stored is zero, then the Vendor ID of the node is marked 
as "don't care." If the value stored is not zero, then the Vendor ID read 
from the node must match the expected value stored in this entry. If 
the values do not match then the node bootup is not completed.

The Subindex that corresponds to the NMT Master is ignored.

D.4.31 Product Code (1F86h)

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F86h
Name Product Code

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Product Code for Node 1 - 127

Type UNSIGNED32

Subindex 01h – 7Fh



Embedded Networking with CAN and CANopen

474

Description: This entry lists the expected Product Code values for slave nodes. 
Each Subentry correponds to the node with an ID the same as the 
Subindex. For example, Subindex 31h holds the expected Product 
Code for Node 31h.

If the value stored is zero, then the Product Code of the node is 
marked as "don't care." If the value stored is not zero, then the Prod-
uct Code read from the node must match the expected value stored in 
this entry. If the values do not match then the node bootup is not com-
pleted.

The Subindex that corresponds to the NMT Master is ignored.

D.4.32 Revision Number (1F87h)

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F87h
Name Revision Number

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
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Description: This entry lists the expected Revision Number values for slave nodes. 
Each Subentry correponds to the node with an ID the same as the 
Subindex. For example, Subindex 31h holds the expected Revision 
Number for Node 31h.

If the value stored is zero, then the Revision Number of the node is 
marked as "don't care." If the value stored is not zero, then the Revi-
sion Number read from the node must match the expected value 
stored in this entry. If the values do not match then the node bootup is 
not completed.

The Subindex that corresponds to the NMT Master is ignored.

D.4.33 Serial Number (1F88h)

Subindex 01h – 7Fh
Name Revision Number for Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F88h
Name Serial Number

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only
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Description: This entry lists the expected Serial Number values for slave nodes. 
Each Subentry corresponds to the node with an ID the same as the 
Subindex. For example, Subindex 31h holds the expected Serial Num-
ber for Node 31h.

If the value stored is zero, then the Serial Number of the node is 
marked as "don't care." If the value stored is not zero, then the Serial 
Number read from the node must match the expected value stored in 
this entry. If the values do not match then the node bootup is not com-
pleted.

The Subindex that corresponds to the NMT Master is ignored.

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Serial Number for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 00h
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D.4.34 Boot Time (1F89h)

Description: This entry defines the maximum time the NMT Master will wait 
when trying to read the Device Type of a mandatory slave. The time 
is in milliseconds. A value of zero indicates that the NMT Master 
should wait forever. The timing starts from the first attempt to read 
the Device Type of the slave. If the time elapses without a successful 
read of the Device Type then the NMT Master will give up on 
attempting to start the network, enter an error state and inform the 
application.

Example: 3000 
NMT Master will wait 3 seconds

Index 1F89h
Name Boot Time

Mandatory No

Subindex 00h
Name Boot Time

Type UNSIGNED32

Default Value 0h

Units ms

Access Read/Write

Mandatory No

Map to PDO No
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D.4.35 Flying Master Timing Parameters (1F90h)

Index 1F90h
Name Flying Master Timing Parameters

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 06h

Access Read Only

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 01h
Name Timeout for Detection of an Active NMT Master

Type UNSIGNED16

Default Value 100

Units ms

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 02h
Name NMT Master Negotiation Time Delay

Type UNSIGNED16

Default Value 500

Units ms

Access Read/Write
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Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 03h
Name Master Priority Level

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 04h
Name Priority Time Slot

Type UNSIGNED16

Default Value 1500

Units ms

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 05h
Name Node Time Slot

Type UNSIGNED16

Default Value 10

Units ms

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 02h
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Description: This entry must be implemented if the NMT Master supports the Fly-
ing Master functionality. It specifies the timing parameters and prior-
ity to be used in the Flying Master protocol.

All values except for the Master Priority Level are times given in mil-
liseconds.

The Timeout for Detection of an Active NMT Master is the timeout 
period in which any currently active NMT Master must respond to 
the request for the NMT Master Priority Level.

The NMT Master Negotiation Time Delay is the time which NMT 
Master capable devices must wait after a cold or warm boot. This is 
used to ensure that other devices have completed resets and initial-
ization before an NMT Master capable device proceeds with the 
negotiation.

The Master Priority Level, Priority Time Slot and Node Time Slot are 
combined with the Node ID of the NMT capable device to calculate a 
wait time. After receiving the Trigger Timeslot message, each NMT 
Master capable device transmits an identification message after the 
wait time has elapsed. This ensures that the NMT Master capable 
device with the lowest wait time will transmit an identification mes-
sage first. The wait time is calculated as follows:

Wait time = (Master Priority Level x Priority Time Slot) + (Node ID X Node Time Slot)

Subindex 06h
Name Multiple Master Detect Cycle Time

Type UNSIGNED16

Default Value (4000 + Node ID) x 10

Units ms

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No
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The Priority Time Slot must be greater than the the Node Time Slot 
multiplied by 127.

Priority time slot > 127 x Node Time Slot

The Master Priority level may have the value 0 to 2, with 0 being the 
highest priority level and 2 being the lowest priority level.

To allow an NMT Master to detect the presence of other NMT Mas-
ters, they each must periodically transmit the Forcing New NMT 
Master Negotiation Protocol message. The period between transmis-
sion of these messages is the Multiple Master Detect Cycle Time. 

D.4.36 Startup-capable Device Timing (1F91h)

Index 1F91h
Name Startup-capable Device Timing

Mandatory Yes if the node is Startup Capable

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 03h

Access Read Only

Mandatory Yes if the node is Startup Capable

Map to PDO No

Subindex 01h
Name Timeout for selection of an NMT Master Capable Device

Type UNSIGNED16

Default Value 100

Units ms

Access Read/Write
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Description: This entry specifies timing for a node that is capable of starting up 
without an NMT Master. Nodes that are Startup Capable automati-
cally enter the operational state and optionally start a group of nodes.

All values are times given in milliseconds.

After initialization of a startup capable node, it must wait before 
starting the protocol to determine if there is a NMT Master capable 
node on the bus. This delay is configurable and stored in Subentry 
02h – Delay time for an NMT Master Capable Device Request.

Mandatory Yes if the node is Startup Capable

Map to PDO No

Subindex 02h
Name Delay time for an NMT Master Capable Device Request

Type UNSIGNED16

Default Value 500

Units ms

Access Read/Write

Mandatory Yes if the node is Startup Capable

Map to PDO No

Subindex 03h
Name Node Time Slot

Type UNSIGNED16

Default Value 15

Units ms

Access Read/Write

Mandatory Yes if the node is Startup Capable

Map to PDO No

Subindex 01h
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Once the node has transmitted the request for any NMT Master capa-
ble devices to identify themselves, it waits for a timeout period speci-
fied in Subentry 01h - Timeout for selection of an NMT Master 
Capable Device.

If no NMT Master capable devices have been found on the bus then 
the node should wait for a delay period before transmitting the NMT 
message to start all nodes. In order to avoid multiple nodes transmit-
ting the message at the same time, the delay is configurable and 
dependent on the Node ID. It is calculated as follows.

Delay = Node ID x Node Time Slot

The Node Time Slot is specified in Subentry 03h.
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D.5 Object Dictionary Access Sequences

D.5.1 PDO Communication Parameters

When changing the PDO Communication Parameters (Transmit or Receive) the fol-
lowing procedure is used.

1. Write to Subentry 01h setting bit 31 to disable the PDO.

2. Perform writes to the Subentries that should be changed (02h, 03h and 05h).

3. Write to Subentry 01h specifying the new COB ID to be used, ensuring bit 31 is cleared to 
enable the PDO.

D.5.2 PDO Mapping Parameters

To change the PDO Mapping Parameters (Transmit or Receive) the following proce-
dure is used.

1. Write to Subentry 01h of the PDO Communication Parameters setting bit 31 to disable the 
PDO.

2. Write 00h to Subentry 00h of the Mapping Parameters to disable the mapping.

3. Write the new mapping to the Mapping Parameters.

4. Write the highest Subindex used in the mapping to Subentry 00h of the Mapping Parame-
ters to enable the mapping.

5. Write to Subentry 01h of the PDO Communication Parameters clearing bit 31 to enable the 
PDO and specifying the desired COB ID to use for the PDO.

D.5.3 Dynamic SDO Channel Request – All Channels

The following procedure is used for a node (referred to as the SDO Requesting Device 
– SRD) to obtain all available SDO channels from the SDO Manager.

1. SRD sends Dynamic SDO Request (COB ID 6E0h, no data).

2. SDO Manager reads [1F10h,00h] of each node in turn until the SRD is found.

3. Upon read from [1F10h,00h] SRD response is 00000003h.

4. SDO Manager writes 00000004h to [1F10h,00h] of SRD to confirm.
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5. SRD can use all SDO channels.

6. When done, SRD writes 0000xx00h (xx being the SRD Node ID) to [1F01h,00h] of SDO 
Manager .

D.5.4 Dynamic SDO Channel Request – Single Channel

The following procedure is used for a node (referred to as the SDO Requesting Device 
– SRD) to obtain SDO channels from the SDO Manager to a slave node.

Register as an SRD

1. SRD sends Dynamic SDO Request (COB ID 6E0h, no data).

2. SDO Manager reads [1F10h,00h] of each node in turn until the SRD is found.

3. Upon read from [1F10h,00h] SRD response is aaaa0001h, with aaaa being the Index of an 
SDO client communication parameter record in the SRD.

4. SDO Manager configures an SDO client channel in SRD at aaaa with the SDO Manager 
itself being the server to that client.

5. SDO Manager writes 00000002h to [1F10h,00h] of SRD to confirm that SDO channel to 
SDO Manager is established.

Request a Channel

6. Using the new SDO channel, SRD writes xxxxyyzzh to [1F00h,00h] of SDO Manager with 
xxxx being another SDO client communication parameter record (must be different than 
previous one), yy the Node ID of the SRD and zz the Node ID of the slave node.

7. SDO Manager now sets up an additional SDO server in zz. If the slave node only has one 
SDO channel, then the SDO Manager sets up the additional SDO server on itself and acts 
as a relay to the slave.

8. SDO Manager now sets up the SDO client xxxx in SRD.

9. The SDO Manager writes 00000006h to [1F10h,00h] of SRD to confirm that the SDO 
channel to the slave is established. The channel is not valid until this value is written. If 
there was an error in configuring the SDO channel, then the SDO Manager writes 
0000xx00h to [1F10h,00h] to notify the SRD of the error.

To Release the Channel
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10. The SRD still owns the SDO client channel aaaa to SDO Manager and can use it to send a 
release request to [1F01h,00h] using the same value as used in 6.

11. SDO Manager now releases the SDO client xxxx in SRD.

12. SDO Manager now releases the SDO server in zz

To De-register as an SRD

13. The SRD still owns the SDO client channel aaaa to SDO Manager and can use it to send a 
release request to [1F01h,00h] using 0000yy00h.

14. SDO Manager accesses the SRD and removes the SDO client aaaa.
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 E Minimal Object Dictionaries

E.1 Standard Object Dictionary Entries

It is recommended that the Object Dictionary entries listed below be available in all 
CANopen nodes.

Objective

One of the first questions that comes up when developing a CANopen node is 
Which Object Dictionary entries should I implement? This appendix gives you gen-
eral guidelines about particular I/O functionality and which entries are recom-
mended for implementation.

Important: All numbers in this section are hexadecimal. For a more detailed 
description of some of the individual entries, see the Object Dictionary entry 
reference section.
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E.2 Digital Input Entries

The Object Dictionary entries listed here are those that need to be implemented for 
DS401 compliant generic digital input.

Index Description
[1000h,00h] Device Type Information

[1001h,00h] Error Register

[1008h,00h]
Device Name 
Although not mandatory, this ASCII-string entry is read by many config-
uration tools and managers and displayed to their users.

[1016h,xxh]
Heartbeat: Consumer Time 
This entry is only needed if the local node needs to be able to monitor 
the heartbeats of other nodes.

[1017h,00h]
Heartbeat: Producer Time 
Node guarding or heartbeat or both must be supported by all CANopen 
compliant nodes.

[1018h,xxh] Identity Object 
Only the Subentry with the Vendor ID must be implemented

[1F80h,00h]
NMT Startup 
Nodes that autostart (go to operational without waiting for the NMT 
startup message) should report 0 in this entry.

Index Description
[1800h,xxh] 1st TPDO Communication Parameters

[180xh,xxh] Additional TPDOs as required by the application

[1A00h,xxh] 1st TPDO Mapping Parameters

[1A0xh,xxh] Additional TPDOs as required by the application

[6000h,xxh] Read Digital Input (8bit)

[6002h,xxh] Polarity Digital Input 
Only if needed by the application.
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E.3 Digital Output Entries

The Object Dictionary entries listed here are those that need to be implemented for 
DS401 compliant generic digital output.

E.4 Analog Input Entries

The Object Dictionary entries listed here are those that need to be implemented for 
DS401 compliant generic analog input.

Index Description
[1400h,xxh] 1st RPDO Communication Parameters

[140xh,xxh] Additional RPDOs as required by the application

[1600h,xxh] 1st RPDO Mapping Parameters

[160xh,xxh] Additional RPDOs as required by the application

[6200h,xxh] Write Digital Output (8 bit)

[6202h,xxh] Polarity Digital Output 
Only if needed by the application.

[6206h,xxh]
Error Mode Output 
Although not mandatory, this is a useful entry to enable default output 
values to be used when an error occurs.

[6207h,xxh]
Error Value Output 
Although not mandatory, this is a useful entry to set the default output 
values to be used when an error occurs.

Index Description

[180xh,xxh]

TPDO Communication Parameters 
Per default TPDO 2, 3 and 4 are used for analog data. However, if a 
node does not have digital inputs TPDO 1 may be used for analog 
inputs, too.

[1A0xh,xxh] TPDOs Mapping Parameters

[6401h,xxh] Read Analog Input (16 bit)



Embedded Networking with CAN and CANopen

490

E.5 Analog Output Entries

The Object Dictionary entries listed here are those that need to be implemented for 
DS401 compliant generic analog output.

E.6 Encoder Input Entries

The Object Dictionary entries listed here are those that need to be implemented for 
DS406 compliant encoders.

Index Description

[140xh,xxh]

RPDO Communication Parameters 
Per default RPDO 2, 3 and 4 are used for analog data. However, if a 
node does not have digital outputs, RPDO 1 may be used for analog 
outputs, too.

[160xh,xxh] RPDOs Mapping Parameters

[6411h,xxh] Write Analog Output (16 bit)

[6443h,xxh]
Error Mode Output 
Although not mandatory, this is a useful entry to enable default output 
values to be used when an error occurs.

[6444h,xxh]
Error Value Output 
Although not mandatory, this is a useful entry to set the default output 
values to be used when an error occurs.

Index Description
[1801h,xxh] 1st TPDO Communication Parameters

[1A01h,xxh] 1st TPDO Mapping Parameters

[6000h,00h] Operating Parameters

[6003h,00h]
Preset Value 
This entry is not mandatory but very useful to many applications, as it 
allows to set the mechanical zero point of the encoder.

[6004h,00h] Position Value
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E.7 Support of Code Download

The Object Dictionary entries listed here are those that need to be implemented if a 
node is to receive code updates through the CANopen interface.

[6500h,00h] Operating Status

[6501h,00h] Resolution

[6502h,00h] Number of Revolutions 
Only needed for rotary encoders

Index Description

[1F50h,xxh] Download Program Data 
In general it is sufficient to implement Subentry 00h and 01h.

[1F51h,xxh] Program Control 
In general it is sufficient to implement Subentry 00h and 01h.

Index Description
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 F Communication Object Identifiers 
(COB IDs)

F.1 Pre-defined Connection Set

The following table lists the default COB IDs used for the various CANopen commu-
nication objects. This collection of defaults is referred to as the Pre-defined Connec-
tion Set.

Objective

Each message transmitted must have a Communications Object Identifier 
(COB ID). This appendix lists both the default COB IDs used in CANopen, and 
the reserved COB IDs, providing at a glance what may need to be configured 
and what cannot be configured.

COB ID Used For Constructed Using
000h NMT (Network Management) -

001h Global Failsafe Command -

Table F.1 Pre-defined Connection Set
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071h – 076h Flying Master Protocol -

080h SYNC -

081h – 0FFh Emergency 80h + Node ID

100h Time Stamp -

101h – 180h Safety Relevent Data Objects 100h + Node ID

181h – 1FFh Transmit PDO 1 180h + Node ID

201h – 27Fh Receive PDO 1 200h + Node ID

281h – 2FFh Transmit PDO 2 280h + Node ID

301h – 37Fh Receive PDO 2 300h + Node ID

381h – 3FFh Transmit PDO 3 380h + Node ID

401h – 47Fh Receive PDO 3 400h + Node ID

481h – 4FFh Transmit PDO 4 480h + Node ID

501h – 57Fh Receive PDO 4 500h + Node ID

581h – 5FFh Transmit SDO 580h + Node ID

601h – 67Fh Receive SDO 600h + Node ID

6E0h Dynamic SDO Request -

701h – 77Fh NMT Error Control (Heartbeat and 
Node Guarding) 700h + Node ID

COB ID Used For Constructed Using

Table F.1 Pre-defined Connection Set
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F.2 Reserved COB IDs

The following table lists the COB IDs that may not be used by objects which allow the 
COB ID to be configured.

COB ID Used For
000h NMT

001h Reserved

101h – 180h Reserved

581h – 5FFh Transmit SDOs

601h – 67Fh Receive SDOs

6E0h Reserved

701h – 77Fh NMT Error Control

780h – 7FFh Reserved

Table F.2 Reserved COB IDs
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 G Emergency Objects

G.1 Emergency Object Error Codes

The following table lists the standard error codes that may be transmitted in Emer-
gency Objects. Several Device Profiles define additional error codes.

Objective

It is often useful when working with CANopen to be able to interpret values in 
the CAN messages. This appendix lists the codes that may be transmitted in 
Emergency Objects, along with their meanings

Error Code Description
0000h – 00FFh No error (or Error reset)

1000h – 10FFh Generic

2000h – 20FFh Current

Table G.1  Emergency Message Error Codes
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2100h – 21FFh Current – device inputs

2200h – 22FFh Current – inside the device

2300h – 23FFh Current – device outputs

3000h – 30FFh Voltage

3100h – 31FFh Voltage – mains voltage

3200h – 32FFh Voltage – inside the device

3300h – 33FFh Voltage – output

4000h – 40FFh Temperature

4100h – 41FFh Temperature – Ambient

4200h – 42FFh Temperature – Device

5000h – 50FFh Device Hardware

6000h – 60FFh Device Software

6100h – 61FFh Device Software – internal

6200h – 62FFh Device Software – user

6300h – 63FFh Device Software – data set

7000h – 70FFh Additional Modules

8000h – 80FFh Monitoring

8100h – 81FFh Monitoring - communication

8110h Monitoring – CAN Overrun (objects lost)

8120h Monitoring – CAN in error passive mode

8130h Monitoring – Node Guarding or Heartbeat Error

8140h Monitoring – recovering from bus off

8150h Monitoring – COB ID

8200h – 82FFh Protocol

8210h Protocol – PDO not processed due to length error

8220h Protocol – PDO length exceeded

9000h – 90FFh External

Error Code Description

Table G.1  (Continued) Emergency Message Error Codes
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F000h – F0FFh Additional functions

FF00h – FFFFh Device specific

Error Code Description

Table G.1  (Continued) Emergency Message Error Codes
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 H SDO Abort Messages

H.1 SDO Abort Codes

The following table lists the abort codes that may be transmitted by Clients and Serv-
ers when implementing the SDO Protocol.

Objective

This appendix provides a quick reference to the SDO Abort codes and their 
meanings.

Abort Code Description
05030000h Toggle bit not alternated

05040000h SDO Protocol timed out

05040001h Client/Server command specifier not valid or unknown

05040002h Invalid block size (block mode)

Table H.1  SDO Abort Codes
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05040003h Invalid sequence number (block mode)

05040004h CRC error (block mode)

05040005h Out of memory

06010000h Unsupported access to an object

06010001h Attempt to read a write-only object

06010002h Attempt to write a read-only object

06020000h Object does not exist in the Object Dictionary

06040041h Object cannot be mapped to the PDO

06040042h The number and length of the objects to be mapped would 
exceed PDO length

06040043h General parameter incompatibility

06040047h General internal incompatibility in the device

06060000h Access failed due to a hardware error

06070010h Data type does not match. Length of service parameter does not 
match.

06070012h Data type does not match. Length of service parameter is too 
high.

06070013h Data type does not match. Length of service parameter is too 
low.

06090011h Subindex does not exist

06090030h Value range of parameter exceeded (write access only)

06090031h Value of parameter written is too high

06090032h Value of parameter written is too low

06090036h Maximum value is less than the minimum value

08000000h General error

08000020h Data cannot be transferred or stored to the application

08000021h Data cannot be transferred or stored to the application because 
of local control

Abort Code Description

Table H.1  (Continued) SDO Abort Codes
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08000022h Data cannot be transferred or stored to the application because 
of the present device state

08000023h Object Dictionary dynamic generation failed or no Object Dictio-
nary is present

Abort Code Description

Table H.1  (Continued) SDO Abort Codes
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 I Node States

I.1 Node State Functionality

The following table shows which communication objects a node may transmit and 
process when in the different states. A “Yes” indicates that the node may use that 
communication object.

Objective

Only certain objects may be transmitted while in specific node states. The aim 
of this appendix is to provide a description of what may be transmitted for 
each state.
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Initializing
Pre-
operational Operational Stopped

PDOs No No Yes No

SDOs No Yes Yes No

SYNC No Yes Yes No

Time Stamp No Yes Yes No

Emergency No Yes Yes No

Bootup Yes No No No

Node 
Guarding 
and Heart-
beat

No Yes Yes Yes

Table I.1 Communication Objects Used in Different States
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 K CANopen Glossary

The following Glossary is owned and copyrighted by the CAN in Automation inter-
national users' and manufacturers' group. Used by permission.

A

application layer

The application layer is the communication entity of the OSI 
(Open System Interface) reference model. It provides commu-
nication services to the application program.

application  
objects

Application objects are signals and parameters of the applica-
tion program visible at the application layer API (application 
programming interface).

application profile
Application profiles define all communication objects and appli-
cation objects in all devices that the network consists of.

asynchronous PDO

An asynchronous PDO is transmitted whenever a defined inter-
nal event occurs. This event may also be the elapsing of the 
PDO's event timer. If an asynchronous PDO is received the 
protocol software immediately updates the mapped objects in 
the Object Dictionary.
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B

boot-up message
CANopen communication service transmitted whenever a node 
enters the pre-operational state after initialization.

bus

Topology of a communication network, where all nodes are 
reached by passive links, which allows transmission in both 
directions.

bus analyzer

Tool, which monitors the bus and displays the transmitted bits. 
There are bus analyzers available on the physical layer, the 
data link layer, and different application layers (e.g. CANopen 
or DeviceNet.

bus arbitration

If at the very same moment several nodes try to access the 
bus, an arbitration process is necessary. At the end of this pro-
cess, only one node has bus access. The bus arbitration pro-
cess used in CAN protocol is CMSA/CD (Carrier Sense 
Multiple Access/Collision Detection) with AMP (Arbitration on 
Message Priority). This allows bus arbitration without destruc-
tion of messages. 

bus length

The network cable length between the both termination resis-
tors. The bus length of CANopen networks is limited by the 
used transmission rate. At 1 Mbps the maximum length is 25 m. 
When using lower transmission rates, longer bus lines may be 
used: at 50 kbps a length of 1 km is possible.

bus off state

The CAN controllers switch to bus off state when the TEC 
(transmit error counter) has reached 255. During bus off state, 
the CAN controller transmits recessive bits. When a CANopen 
device recovers from bus off state, it has to transmit the boot-
up message and it is recommended to send an Emergency 
message with the appropriate error code.

C

CAN

Controller Area Network (CAN) is a serial bus system originally 
developed by the Robert Bosch GmbH. It is internationally 
standardized by ISO 11898-1. CAN has been implemented by 
many semiconductor manufacturers.

CANopen

Family of profiles for embedded networking in industrial 
machinery, medical equipment, building automation (e.g. lift 
control systems, electronically controlled doors, integrated 
room control systems), railways, maritime electronics, truck-
based superstructures, off-highway and off-road vehicles, etc.
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CANopen  
application layer

The CANopen application layer and communication profile is 
standardized by EN 50325-4. It defines communication ser-
vices and objects. In addition, it specifies the Object Dictionary 
and the network management (NMT).

CANopen  
Manager

The CANopen manager is responsible for the management of 
the network. The CANopen manager device shall include the 
NMT (network management) master, the SDO (service data 
object) manager, and the Configuration manager.

CANopen Safety

Communication protocol allowing transmission of safety-rele-
vant data. The protocol requires just one physical CAN net-
work. Redundancy is achieved by sending each message twice 
with bit-wise inverted content using two identifiers differing at 
least in two bits.

CAN protocol 
controller

The CAN protocol controller is part of a CAN module perform-
ing data en-/de-capsulation, bit-timing, CRC, bit-stuffing, error 
handling, failure confinement, etc.

CAN transceiver

The CAN transceiver is connected to the CAN controller and to 
the bus lines. It provides the line transmitter and the receiver. 
There are high-speed, fault-tolerant, and single-wire transceiv-
ers available as well as transceivers for power-line or fiber optic 
transmissions.

Certification
Official compliance test of components or devices to a specific 
standard. CiA officially certifies CANopen devices.

CiA DR 303

Draft recommendation for CANopen cabling and connector pin 
assignments, coding of prefixes and SI unit as well as LED 
usage.

CiA DS 102
Draft standard for high-speed transmission according to ISO 
11898-2 using 9-pin D-sub connectors.

CiA DS 301

The CANopen application layer and communication profile 
specification covers the functionality of CANopen NMT (net-
work management) slave devices.

CiA DSP 302

The draft standard proposal for programmable CANopen 
devices includes CANopen manager functions, dynamic SDO 
connections, standardized boot-up procedure for NMT slaves 
as well as program download.

CiA DSP 304
The CANopen safety protocol specification is approved by Ger-
man authorities and is compliant to SIL class 3 applications.

CiA DSP 305
The Layer Setting Services (LSS) specify how to set node-ID 
and transmission rate via the CANopen network.

CiA DSP 306
This draft standard proposal defines format and content of 
Electronic Data Sheets (EDS) to be used in configuration tools.
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CiA DSP 308

The CANopen framework for maritime applications defines 
redundancy of networks including swapping mechanism for 
SDOs and PDOs.

CiA DSP 309
Set of gateway specifications for CANopen to Ethernet-based 
networks (e.g. Modbus TCP(IP).

CiA DS 401
The CANopen device profile for generic I/O modules covers the 
definition of digital and analog input and output devices.

CiA DSP 402

The CANopen device profile for drives and motion controllers 
defines the interface to frequency inverters, servo controllers 
as well as stepper motors.

CiA DS 404
The CANopen device profile for measuring devices and closed-
loop controllers supports also multi-channel devices.

CiA DSP 405

The CANopen device and interface profile for IEC 61131-3 
compatible controllers is based on the CiA DSP 302 specifica-
tion using network variables to be mapped into PDOs, and 
function blocks for SDO services, etc.

CiA DS 406
The CANopen device profile for encoders defines the commu-
nication of rotating as well as linear sensors.

CiA DSP 407

The CANopen application profile for passenger information 
systems developed in cooperation with the German VDV spec-
ifies interfaces for a range of devices including displays, ticket 
printers, passenger counting units, main onboard computer, 
etc.

CiA DSP 408

The CANopen device profile for hydraulic controllers and pro-
portional valves is compliant to the bus-independent VDMA 
device profile.

CiA DSP 410
The CANopen device profile for inclinometer supports 16-bit as 
well as 32-bit sensors.

CiA DSP 412

The CANopen device profiles for medical equipment specify 
the interfaces for x-ray collimators, x-ray generators, stands 
and tables.

CiA DSP 413

The CANopen interface profiles for in-vehicle truck gateways 
specify gateways to ISO 11992, J1939, and other in-vehicle 
networks. The CANopen network is mainly used for truck- or 
trailer-based superstructures, e.g. as in garbage trucks, truck-
mounted cranes, and concrete mixers.

CiA DSP 414
The CANopen device profile for weaving machines specifies 
the interface for feeder sub-systems.
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CiA DSP 415

The CANopen application profile for asphalt pavers specifies 
interfaces to different devices used in road construction 
machinery.

CiA DSP 416

The CANopen application profile for building doors specifies 
interfaces for locks, sensors, and other devices used in elec-
tronically controlled building doors.

CiA DSP 417

The CANopen application profile for lift control specifies the 
interfaces for car controller, door controller, call controller and 
other controllers as well as for car units, door units, input pan-
els, and display units, etc.

CiA DSP 418
The CANopen device profile for battery modules specifies the 
interface to communicate with battery chargers.

CiA DSP 419
The CANopen device profile for battery charger specifies the 
interface to communicate with the battery module.

CiA DSP 420

The CANopen device profile family for extruder downstream 
devices defines interfaces for puller, corrugator and saw 
devices.

CiA DSP 421

The CANopen device profile for railways specifies interfaces to 
sub-systems such as diesel engines, brake controllers, door 
controllers, etc.

CiA DSP 422
The CANopen application profile for municipal vehicles defines 
the communication of sub-systems used in garbage trucks.

CiA TR 308
This technical report specifies some timings for CANopen per-
formance testing tools.

Client SDO
The Client SDO initiates the SDO communication by means of 
reading or writing to the Object Dictionary of the server device.

Client/server 
communication

In a client/server communication the client initiates the commu-
nication with the server. It is always a point-to-point communi-
cation.

COB ID

The COB ID is the object specifying the CAN message identi-
fier and additional parameters such as valid/invalid and remote 
frame support.

communication object 
(COB)

A communication object is one or more CAN messages with a 
specific functionality, e.g. PDO, SDO, Emergency, Time, or 
Error Control.

communication profile

A communication profile defines the content of communication 
objects such as Emergency, Time, Sync, Heartbeat, NMT, etc. 
in CANopen.

Configuration Man-
ager

The Configuration Manager (CMT) provides mechanisms for 
configuration of CANopen devices during boot-up.
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confirmed  
communication

Confirmed communication services requires a bi-directional 
communication, meaning that the receiving node sends a con-
firmation that the message has been received successfully.

conformance test plan

Definitions of test cases that have to be passed successfully in 
order to achieve conformance to a communication standard. 
The conformance test plan for CAN is standardized by ISO 
16845.

conformance test tool
A conformance test tool is the implementation of a confor-
mance test plan.

consumer
In CAN networks a receiver of messages is called a consumer 
meaning the acceptance filter is opened.

D

data type
Object attribute in CANopen defining the format, e.g. 
UNSIGNED8, INTEGER16, BOOLEAN, etc.

data link layer

Second layer in the OSI reference model providing basic com-
munication services. The CAN data link layer defines data, 
remote, error, and overload frames.

default value
Object attribute in CANopen defining the pre-setting of not 
user-configured objects after power-on or application reset.

device profile
A device profile defines the device-specific communication ser-
vices including the configuration services in all details.

Draft  
Recommendation 
(DR)

This kind of recommendation is not fixed, but it is published. 
CiA's draft recommendations are not changed within one year.

Draft Standard (DS)
This kind of standard is not fixed, but it is published. CiA's draft 
standards are not changed within one year.

Draft Standard Pro-
posal (DSP)

This kind of standard is a proposal, but it is published. CiA's 
draft standard proposals may be changed anytime without noti-
fication.

D-sub connector

Standardized connectors. Most common in use is the 9-pin D-
sub connector (DIN 41652); its pin-assignment for CAN net-
works is specified in CiA DS 102.

E

EDS checker

Software tool that checks the conformity of electronic data 
sheets. The CANopen EDS checker is available on CiA's web-
site to be downloaded..
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EDS generator Software tool that generates CANopen electronic data sheets.

Electronic Data Sheet 
(EDS)

Electronic data sheets describe the functionality of a device in a 
standardized manner.

Emergency  
message

Pre-defined communication service in CANopen mapped into a 
single 8-byte data frame containing a 2-byte standardized error 
code, the 1-byte error register, and 5-byte manufacturer-spe-
cific information. It is used to communicate device and applica-
tion failures.

EN 50325-4
CENELEC standard defining the CANopen application layer 
(version 4.0).

Entry category
Object attribute in CANopen defining if this object is mandatory 
or optional.

Error code
CANopen specifies standardized error codes transmitted in 
emergency messages.

Error control  
message

The CANopen error control messages are mapped to a single 
1-byte CAN data frame assigned with a fixed identifier that is 
derived from the device's Node ID. It is transmitted as boot-up 
message before entering pre-operational state after inititializa-
tion, and it is transmitted if remotely requested by the NMT 
Master (node guarding) or periodically by the device (heart-
beat).

event driven

Event driven messages are transmitted when a defined event 
occurs in the node. This may be a change of input states, 
elapsing of a local timer, or any other local event.

event timer
The event timer is assigned in CANopen to one PDO. It defines 
the frequency of transmission.

expedited SDO

This is a confirmed communication service of CANopen (peer-
to-peer). It is made up by one SDO initiate message of the cli-
ent node and the corresponding confirmation message of the 
server node. Expedited SDOs are used if not more than 4 byte 
of data has to be transmitted.

F

flying master

In safety-critical applications, it may be required that a missing 
NMT Master is substituted automatically by another stand-by 
NMT Master. This concept of redundancy is called flying mas-
ter.
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form error

A corruption of one of the pre-defined recessive bits (CRC 
delimiter, ACK delimiter and EOF) is regarded as a form error 
condition that will cause the transmission of an error frame in 
the very next bit-time.

function code

First four bits of the CAN identifier in the CANopen pre-defined 
identifier set indicating the function of the communication object 
(e.g. TPDO_1 or Error Control message).

G

galvanic isolation

Galvanic isolation in CAN networks is performed by optocou-
plers or transformers placed between CAN controller and CAN 
transceiver chip.

gateway

Device with at least two network interfaces transforming all 
seven OSI (open system interconnection) protocol layers, e.g. 
CANopen-to-Ethernet gateway.

H

heartbeat
CANopen uses heartbeat message to indicate that a node is 
still alive. This message is transmitted periodically.

heartbeat  
consumer time

The heartbeat consumer time defines the time when a node is 
regarded as no longer alive due to a missing heartbeat mes-
sage.

heartbeat  
producer time

The heartbeat producer time defines the transmission fre-
quency of a heartbeat message.

I

identifier

In general, the term identifier refers to a CAN message identi-
fier. The CAN message identifier identifies the content of a data 
frame. The identifier of a remote frame corresponds to the iden-
tifier of the requested data frame. The identifier includes implic-
itly the priority for the bus arbitration.

Index
16-bit address to access the CANopen dictionary; for array and 
records the address is extended by an 8-bit Subindex.

line topology

Networks, where all nodes are connected directly to one bus 
line. CAN networks use theoretically just line topologies without 
any stub cable. However in practice you find tree and star 
topologies as well.
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inhibit timer

Object in CANopen for PDOs and Emergency messages that 
forbids for the specified time (inhibit time) a transmission of this 
communication object.

Initialization state
NMT slave state in CANopen that is reached automatically after 
power on and communication or application reset.

interface profile

CANopen profile that describes just the interface and not the 
application behavior of device, e.g. gateway and bridge 
devices.

ISO 11898-1
International standard defining the CAN data link layer includ-
ing LLC, MAC and PLS sub-layers.

ISO 11898-2 International standard defining the CAN high-speed MAU.

L

Life guarding

Method in CANopen to detect that the NMT Master does not 
guard the NMT slave anymore. This not recommended for new 
systems designs.

M

master

Communication or application entity that is allowed to control a 
specific function. In networks this is for example the initializa-
tion of a communication service.

Multiplexed PDO 
(MPDO)

The MPDO is made of 8 byte including one control byte, three 
multiplexer bytes (containing the 24-bit Index and Subindex), 
and four bytes of object data.

N

network length

Bus length. The network cable length between the both termi-
nation resistors. The bus length of CANopen networks is limited 
by the used transmission rate. At 1 Mbps the maximum length 
is 25 m. When using lower transmission rates, longer bus lines 
may be used: at 50 kbps a length of 1 km is possible.

network  
management

Entity responsible for the network boot-up procedure and the 
optional configuration of nodes. It also may include node-
supervising functions such as node guarding.

network variables

Network variables are used in programmable CANopen 
devices to be mapped into PDOs after programming the 
device.
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NMT Network management in CANopen.

NMT Master

The NMT Master device performs the network management by 
means of transmitting the NMT message. With this message, it 
controls the state machines of all connected NMT Slave 
devices.

NMT Slave

The NMT Slaves receive the NMT message, which contains 
commands for the NMT state machine implemented in CANo-
pen devices.

NMT state  
machine

The NMT state machines support different states and the high-
est prior CAN message transmitted controls the transition to the 
states by the NMT Master.

node guarding

Mechanism used in CANopen and CAL to detect bus off or dis-
connected devices. The NMT Master sends a remote frame to 
the NMT slave that is answered by the corresponding error 
control message.

Node ID

Unique identifier for a device required by different CAN-based 
higher-layer protocols in order to assign CAN identifiers to this 
device, e.g. in CANopen and DeviceNet. In the pre-defined 
connection set of CANopen some of the CAN message identi-
fier are derived from the assigned Node ID.

O

Object Dictionary
Heart of each CANopen device containing all communication 
and application objects.

operational state
In the NMT operational state all CANopen communication ser-
vices are available.

P

PDO mapping
In PDOs, there may be mapped up to 64 objects. The PDO 
mapping is described in the PDO mapping parameters.

pin assignment Definition of the use of connector pins.
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pre-defined 
connection set

The pre-defined connection set is a default assignment of CAN 
message identifiers to CANopen communication objects. Some 
CANopen communication objects are distributed in broadcast 
(NMT message, Sync message, Time message) and others are 
transmitted between NMT Master device and dedicated NMT 
slave devices (PDO, SDO, Emergency, and Error Control). This 
default assignment guarantees that the CAN message identifi-
ers are uniquely assigned in the network, if the node-ID has 
been assigned uniquely.

pre-operational state
In the NMT pre-operational state no CANopen PDO communi-
cation is allowed.

Process Data Object 
(PDO)

Communication object defined by the PDO communication 
parameter and PDO mapping parameter objects. It is an 
unconfirmed communication service without protocol overhead.

producer
In CAN networks a transmitter of messages is called a pro-
ducer.

protocol

Formal set of conventions and rules for the exchange of infor-
mation between nodes, including the specification of frame 
administration, frame transfer and physical layer.

R

receiver
A CAN node is called receiver or consumer, if it is not transmit-
ter and the bus is not idle.

redundant  
networks

In some safety-critical applications (e.g. maritime systems), 
redundant networks may be required that provide swapping 
capability in case of detected communication failures.

remote frame

With a remote frame another node is requested to transmit the 
corresponding data frame identified by the very same identifier. 
The remote frame's DLC has the value of the corresponding 
data frame DLC. The data field of the remote frame has a 
length of 0 byte.

remote  
transmission request 
(RTR)

Bit in the arbitration field indicating if the frame is a remote 
frame (recessive value) or a data frame (dominant value).

repeater

Passive component that refreshes CAN bus signals. It is used 
to increase the maximum number of nodes, or to achieve lon-
ger networks (>1 km), or to implement tree or meshed topolo-
gies.

reset application
This NMT command resets all objects in CANopen devices to 
the default values or the permanently stored configured values.
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reset  
communication

This NMT command resets only the communication objects in 
CANopen devices to the default values or the permanently 
stored configured values.

RPDO
The Receive Process Data Object (RPDO) is a communication 
object that is received by a CANopen device.

S

SDO block  
transfer

SDO block transfer is an CANopen communication services for 
increasing downloading In SDO block transfer, the confirmation 
is send after the reception of a number of SDO segments.

SDO Manager

The SDO Manager handles the dynamic establishment of SDO 
connections. It resides on the very same node as the NMT 
Master.

segmented SDO

If objects longer than 4 byte are transmitted by means of SDO 
services, a segmented transfer is used. The number of seg-
ments is theoretically not limited.

Server SDO

The Server SDO receives the SDO messages from the corre-
sponding SDO Client and responses each SDO message or a 
block of SDO messages (SDO block transfer).

Service Data Object 
(SDO)

SDOs provide the access to entries in the CANopen Object 
Dictionary. An SDO is made up of at least two CAN messages 
with different identifiers. SDOs are always confirmed point-to-
point communication services.

SI unit
International system of units for physical values as specified in 
ISO 1000:1983.

stopped state
NMT state in which only NMT messages are performed and 
under some conditions error control messages are transmitted.

sub-index

8-bit sub-address to access the sub-objects of arrays and 
records. Note: In this book Subindex is used instead of sub-
index and Subentry instead of sub-object.

suspend  
transmission

CAN controllers in error passive mode have to wait additional 8 
bit-times before the next data or remote frame may be transmit-
ted.

SYNC message

Dedicated CANopen message forcing the receiving nodes to 
sample the inputs mapped into synchronous TPDOs. Receiving 
this message causes the node to set the outputs to values 
received in the previous synchronous RPDO.
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Appendix K: CANopen Glossary         

T
termination  
resistor

In CAN high-speed networks with bus topology, both ends are 
terminated with resistors in order to suppress reflections.

TIME message

Standardized message in CANopen containing the time as a 6-
byte value given as ms after midnight and days after 1st Janu-
ary 1984.

TPDO
The Transmit Process Data Object (TPDO) is a communication 
object that is transmitted by a CANopen device.

transmission type CANopen object defining the scheduling of a PDO.

V
value definition Detailed description of the value range in CANopen profiles.

value range
Object attribute in CANopen defining the allowed values that 
this object supports.
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Index

Symbols
#define   283
#define statements   23

Numerics
11-bit identifiers   320
29-bit identifiers   320
7-Layer network model   18

A
Abort Messages (SDO)   501
aborting an SDO transmission   100
Access Attributes   55
ACK delimiter   220
acknowledgement (ACK)   220, 225
application layer   21, 513
application objects   513
application profile   514
Application Profiles, specifications   

115
arbitration   8, 221
arbitration process   221, 222
ASCII editor   59
asynchronous PDO   514
automation   6
Automation Pyramid   5

B
bandwidth calculation   248
bandwidth usage, estimate   177
Base Frame Format   204
Basic CAN   232, 323
Basic CAN interfaces   232
Bit Coding   210

Bit Stuffing   210
Bit Timing   327
Bit timing   254, 325
block transfer   63, 94, 104, 284
Boolean   329
bootloader   294
BootTime (NMT)   130
Boot-up   259
Boot-up message   514
Boot-up Process   148
buffer, controller   233
bus   514
bus analyzer   514
bus arbitration   514
bus length   515
bus length, calculating maximum   

218
Bus Off   228, 515
Byte order   254
Byte ordering   93

C
Cabling   211
CAN   515
CAN 2.0A   320, 323
CAN 2.0B   320, 323
CAN Data Frame   220
CAN ID   40, 61
CAN protocol controller   516
CAN transceiver   516
CAN_H   212
CAN_L   212
CANopen   515
CANopen application layer   515
CANopen compliant bootloader   

294
CANopen Conformance Test   59
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CANopen conformance test   289
CANopen Loader   307
CANopen Manager   119, 147, 515
CANopen node, developing   279
CANopen Safety   516
CANopen, implementing   319
Carrier Sense Multiple Access with 

Collision Detection   8, 221
Certification   516
Change-of-State   13
change-of-state transmission   68
change-of-state, see also COS   38
CiA DR 303   516
CiA DS 102   516
CiA DS 301   516
CiA DS 401   517
CiA DS 404   517
CiA DS 406   517
CiA DSP 302   516
CiA DSP 304   516
CiA DSP 305   516
CiA DSP 306   517
CiA DSP 308   517
CiA DSP 309   517
CiA DSP 402   517
CiA DSP 405   517
CiA DSP 407   517
CiA DSP 408   517
CiA DSP 410   517
CiA DSP 412   517
CiA DSP 413   518
CiA DSP 414   518
CiA DSP 415   518
CiA DSP 416   518
CiA DSP 417   518
CiA DSP 418   518
CiA DSP 419   518
CiA DSP 420   518
CiA DSP 421   518
CiA DSP 422   518
CiA TR 308   518
Client   12
Client (SDO)   61, 519
Client/server communication   519
Clients and Servers, SDO   285
COB ID   36, 40, 41, 493, 519

defined   36
COB-ID (SYNC)   73
Code memory   23
collision   221

collision avoidance   9
collisions   221
Command Parameter Record   338
Communication Cycle Period   73
communication entries   50
communication object (COB)   519
Communication Parameters 

(RPDO)   76
Communication Parameters 

(TPDO)   78
communication profile   519
communication requirements   246
Configuration Date   146
Configuration Manager   142, 519
configuration tool, using   183
confirmed communication   519
Conformance Test   59, 289, 317
conformance test plan   519
conformance test tool   519
Connection Object Identifier, see 

also COB ID   36
connections, establishing   185
Connectors   212
connectors   212

9-Pin D-Sub   213
Dual Header Row   214
RJ10 4-pin   215
RJ45 8-pin   216

consumer   13, 519
co-processor mode   280
COS, see also change-of-state   13, 

37, 38
CPU performance   237
CPU/MCU Performance   22
CRC   225
CSMA/CD   8
CSMA/CD, see also Carrier Sense 

Multiple Access with 
Collision Detection   9, 221

CSMA/CD,see also Carrier Sense 
Multiple Access with 
Collision Detection   8

Cyclic Redundancy Checksum 
(CRC)   205, 225

D
DAM-MPDO   421
data bandwidth   321
Data Frame   219
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Data Length Code (DLC)   220
Data Link Layer   18, 19, 520
Data memory   24
Data Memory Space   24
Data Types   45
data types   29, 45, 519
data types, CANopen   329
data types, complex   45, 48
data types, standard   45
DCF Storage   143
DCF, see also Device Configuration 

Files   56
Debugger Parameter Record   338
default value   520
Design Cycle example   309
Destination Addressing Mode 

Multiplexed PDO   421
development tools   240
Device Configuration File   60
device profile   30, 53, 520
device profile, manufacturer   308
device profile, specifications   114
Device Profiles, and Electronic 

Data Sheets   32
Device Type   52
DeviceNet   8
differential signal   207
distributed control   10
Domain   335
dominant signal state   207
Download (SDO)   64
Draft Recommendation (DR), see 

also headings under CiA 
for specs   520

Draft Recommendations   117
Draft Specification   117
Draft Standard (DS), see also 

headings under CiA for 
specs   520

Draft Standard Proposal (DSP), see 
also headings under CiA 
for specs   520

Draft Standard Proposals   117
driver, CANopen hardware   260
drops   217
D-Sub   213
D-sub connector   520
Dummy Entries   82
Dynamic Mapping   81

Dynamic SDO Connection State   
137

Dynamic SDO Request   131

E
EDS   56
EDS checker   520
EDS generation   181
EDS generator   520
EDS, see Electronic Data Sheets   

31, 520
EEPROM   24
Electro Magnetic Interference 

(EMI)   17
Electromagnetic Interference (EMI)   

209
Electronic Data Sheet   31, 57
Electronic Data Sheet (EDS)   520
Electronic Data Sheets

defined   31
embedded networking

defined   4
Embedded Systems   21
Emergency message   520
Emergency Objects   497
EMI   209
EN 50325-4   521
Endianess   93
entries, Object Dictionary   343
Entry category   521
Error Active   227
Error code   521
Error Codes, Emergency   497
Error control message   521
Error Counter   227
Error Detection   224
Error Frame   219, 226
Error Passive   227
Error Register   52
error statistics   228
Event   14
Event driven   13, 14, 37, 67, 521
Event driven (PDO)   68
Event timer   259, 521
expedited SDO   521
expedited SDO transfer   284
expedited transfer   63, 94
Extended Frame Format   204
extended frame format   204
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extended IDs   204

F
Fieldbuses   8
FIFO   234
filters

mask   231
match only   231

firmware   307
Floating Point (Real)   331
flying master   12, 119, 521
form error   522
Foundation Fieldbus   8
Frame   219
Frameworks, specifications   116
Full CAN   233, 323, 324
Full CAN controllers   233
function code   522

G
galvanic isolation   522
gateway   522
Generic I/O   153
group polling   67
Guard Time   52

H
Hamming Distance   229
heartbeat   52, 522
heartbeat consumer time   522
heartbeat producer time   522
higher-layer protocols   18, 24
high-speed transceivers   203

I
I   16
I/O Cycle   16, 321
I/O cycle, speed   321
I/O panels   198
I2C   26
ID, node   524
identifier   40, 522
Identity   53
Identity Object   53
Identity Record   338

Idling   210
Implementation Example   299
index   41, 523
Individual polling   67
industrial automation   5
Inhibit time   14, 260
Inhibit Timer   68, 523
Initialization state   523
Input   9
Input filter/debounce   16
Input-scan cycle   16
InstructionsPerBitTime   238
Inter Frame Space   210
Interbus   8
interface profile   523
Inter-Frame Space   227
is   12
ISO 11898   206
ISO 11898 vs. ISO 11898-X   204
ISO 11898-1   523
ISO 11898-2   523
ISO 7-Layer Reference Model   18
ISO network model   18
ISO11898   203

J
junctions   217

L
Latency   15
Layout   217
Life guarding   523
Life Time Factor   52
line drivers   206
line topology   523
Linking (PDO)   74
Little Endian   93

M
M/O   55
main trunk   217
mandatory entries   30, 50
Mapping

Dynamic vs Static   81
Mapping Parameters (PDO)   79
Master   11, 523
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master-driven communication   11
master-less communication   12
match only filter   231
memory requirements, CANopen   

319
message delay times   321
message identifiers   61
Message Triggering   13, 259
MicroCANopen   252

Bit Rate / Bit Timing   254
Byte Ordering   254
Network Management Master 

(NMT)   254
Node ID   254
Process Variables   254

MicroCANopen and CANopen, 
comparison   253

Minimal Object Dictionaries   487
Modbus   8
Multicast   13
multi-controller   5
Multi-master   8
Multiple Device Modules   45
Multiplexed PDO (MPDO)   523
multiplexor   63

N
network configuration, storing   

196
network integration cycle, example   

175
Network latency   16
Network Layer   19
Network Layout   17
network length   524
Network List   126
Network Management   38, 83, 254, 

524
Network Management Master   38
network simulation   189
Network transmit   16
Network variable   254
network variables   11, 524
NMT   524
NMT Master   119, 524
NMT Master Message   101
NMT Startup   120
NMT state machine   524
NMT states   85

NMT, see also Network 
Management   38, 83

NMTZeroMsg   192
node guarding   524
Node ID   40, 41, 254, 315, 524
Node ID claiming   318
Node ID, auto-assigned   318
node simulation, advanced   197
Node States   505
Non-Volatile   24
Non-volatile Data Storage   24

O
Object Dictionary   28, 42, 525

access via Service Data Objects   61
accessing   32
Index   41
Subindex   41

Object Dictionary, example   43
Objects   40
objects   40
Octet String   332
OD, see Object Dictionary   28
Off-the-shelf   27
operational state   84, 525
Output   9

P
PDO   34, 65

Linking   36
mapping   34
Triggering   37

PDO Communication Parameter 
Record   336

PDO linking   36, 74
PDO mapping   259, 525
PDO Mapping Parameter Record   

337
PDO mapping parameters   288
PDO Triggering   37

Event driven   37
Individual Polling   37
Synchronized   38
Time driven   37

PDO, see also Process Data Object   
34, 525

PeliCAN   324
physical   217
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Physical Layer   18, 19, 206
physical layer requirements   327
Physical Layout   217
pin assignment   525
Plug-and-play   27
Point-to-point   13
point-to-point   13
point-to-point communication   62
Polling   13, 37, 67
Polling (PDO)   70
Pre-defined connection   36
Pre-defined Connection Set   74, 

130
Pre-defined connection set   525
prefixes   187
Pre-Operational   84
Pre-Operational state   84, 525
Presentation Layer   20
Process Data Object (PDO)   34, 41, 

525
process data variables   11
Producer   13
producer   525
Producer (SYNC)   73
Producer Heartbeat Time   52
Profibus   8
Programmable Logic Controller 

(PLC)   175
proprietary setup tools   180
protocol   525

R
Real-time   15, 23
Receive Process Data Object, see 

also RPDO   526
Receive Process Data Objects, see 

also RPDO   65
receiver   526
recessive signal state   207
redundant networks   526
remote frame   526
remote transmission request (RTR)   

526
repeater   526
Request and Release SDO Channel   

135
Request NMT   124
reset application   526
reset communication   526

RJ10   215
RJ45   216
RPDO   526
RPDO, see also Receive Process 

Data Object   65
RTR, see also remote transmission 

request   526

S
Safeguard Cycle Time (SCT)   171
Safety   168
Safety-Relevant Data Object 

(SRDO)   171
Safety-Relevant Validation Time 

(SRVT)   172
SAM-MPDO   421
Scan-Cycle   16
SDO   61, 141

message identifiers   61
segmented transfer   33
specifier   63
transfers   33

SDO Abort Messages   501
SDO Block Transfer   104
SDO block transfer   526
SDO Clients, multiple   131
SDO communication   94
SDO communication, default   33
SDO Connections   141
SDO Download   64
SDO Manager   63, 527
SDO Manager COB IDs   139
SDO Parameter Record   337
SDO Read Access   64
SDO transfer modes   284
SDO Upload   64
SDO Write Access   64
SDO, see also Service Data Object   

32, 527
segmented SDO   527
segmented transfer   33, 94, 284
Serial   8
Serial Bus   8
Server   12
Server (SDO)   61, 527
Service Data Object (SDO)   33, 41, 

61, 527
Service Data Objects (SDO)

defined   33
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Session Layer   20
setup tools   180
SI unit   527
Signal levels   208
Signed Integer   331
simulation, network   189
Slave   11
Slave Assignment   122
slope control   208
Source Addressing Mode 

Multiplexed PDO   421
source code   282
Special Function Registers (SFRs)   

236
specifier   63
SRDO, OD entries   173
Static Mapping   81
Stopped state   84, 527
Store Parameters   197
Subindex   41, 527
suspend transmission   527
SYNC   70
SYNC message   527
SYNC signal   70
SYNC Terminology   73
synchronization, quality   72
Synchronized   38
Synchronized (PDO)   70
Synchronized polling   67
Synchronous Window Length   73

T
TCP/IP   25
Technical Report   117
termination resistor   528
Time Difference   335
Time driven   13, 37, 69
Time Driven (PDO)   69
Time driven   67
TIME message   528
Time of Day   334
Time Stamp   146
Time triggered   13, 14
timers

global   13
local   13

Token-ring   8
TPDO, see also Transmit Process 

Data Object   36, 65, 528

Transceiver   207
Transfer Format   339
transmission type   409, 417, 528
Transmit Process Data Object, see 

also TPDO   36, 65, 528
transmit trigger methods   67
Transport Layer   20
Trigger Options (PDO)   67
Triggering messages   259

U
UART   26
Unicode String   333
Unsigned Integer   330
Upload (SDO)   64
User interface   264

V
value definition   528
value range   528
Visible Character   332
Visible String   333
Void   330

W
Wiring   211
Wiring/Cabling   211
Working Draft   117

X-Z
XDATA   236
XML   31
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