
Embedded Networking
with CAN and CANopen

Embedded Networking
with CAN and CANopen

Copperhill Technologies Corporation
http://www.copperhillmedia.com

iv

Embedded Networking with CAN and CANopen
by Olaf Pfeiffer, Andrew Ayre and Christian Keydel

Revised First Edition

Published by
Copperhill Technologies Corporation
158 Log Plain Road, Greenfield, MA 01301
http://www.copperhillmedia.com

Formerly published by
RTC Books, San Clemente, CA

Copyright © 2008 the authors, except for Glossary copyright © 2003 CAN in Automa-
tion international users’ and manufacturers’ group. Used by permission.

All rights reserved. No part of the contents of this book may be reproduced or trans-
mitted in any form or by any means without the prior written consent of the authors,
except for the inclusion of brief quotations in a review.

Printed in the United States of America
ISBN 978-0-9765116-2-5
formerly ISBN 0-929392-78-7
First Printing November 2003

Information provided in this publication is derived from various sources, standards,
and analyses. Any errors or omissions shall not imply any liability for direct or indirect
consequences arising from the use of this information. The publisher, authors, and re-
viewers make no warranty for the correctness or for the use of this information, and
assume no liability for direct or indirect damages of any kind arising from technical in-
terpretation or technical explanations in this book, for typographical or printing errors,
or for any subsequent changes.

The publisher and authors reserve the right to make changes in this publication with-
out notice and without incurring any liability. All trademarks mentioned in this book
are the property of their respective owners. The publisher has attempted to properly
capitalize and punctuate trademarks, but cannot guarantee that it has done so properly
in every case.

We welcome your comments. Email us at author@canopenbook.com. Errata and clari-
fications will be posted to www.CANopenBook.com.

v

About this Book
“Few things in life are less efficient than a group of people trying to write

a sentence. The advantage of this method is that you end up with
something for which you will not be personally blamed.”

Scott Adams

Being three authors, we divided Embedded Networking with CAN and CANopen into
three parts so that each of us could focus on one of them.

Part One “Using CANopen” (Chapters 1 through 4) by Olaf Pfeiffer focuses on CAN-
open up to the system integrator level. Any technician or engineer that needs to be able
to configure and/or maintain a CANopen network will find the required knowledge to
do so in this part. The last chapter in this part contains a step-by-step example of a net-
work configuration and test cycle.

Part Two “CANopen Engineering” (Chapters 5 and 6) by Christian Keydel is for engi-
neers that either need to have a detailed knowledge of how CAN and CANopen work
or that will be developing their own CANopen devices. Different implementation
methods are introduced and compared with each other.

Part Three “CANopen Reference” (Appendices) by Andrew Ayre is a pure reference
section for all CANopen users. Key elements of CANopen are summarized in a way
that allows for quick look-up. The core of this part is an Object Dictionary reference list-
ing all Object Dictionary entries specified by [CiADS301] and [CiADS302].

In this book we will often use text boxes to provide the reader with additional personal
opinions, recommendations, experiences, goals and objectives. Although not always
critical to the topic under discussion these texts often provide additional insight that
might help the reader better understand how or why something was specified or im-
plemented.

Be sure to visit the companion website, www.CANopenBook.com for additional re-
sources, examples, downloads and much more.

vii

Contributions and
Acknowledgments

"Love and work are the cornerstones of our humanness."
Sigmund Freud

This project would not have been possible without the support of Cyndi, Irena, Leah
and Katja.

Furthermore, the authors would like to thank the many persons and companies that
helped with the realization of this book project. The companies Vector CANTech,
Philips Semiconductors and Schneider Electric provided us with many CAN and
CANopen related software and hardware products which enabled us to add several
real-world examples where appropriate.

Valuable contributions came from Holger Zeltwanger, William Seitz and Thilo Schu-
mann from the CiA, the CAN in Automation user's and manufacturer's group. Special
thanks to the CiA for providing the glossary of CANopen terms.

Michael B. Simmonds of Quantum Design kindly allowed us to use parts of his paper
"Customizing CANopen for Use in an Automated Laboratory Instrument" for a real-
world customized CANopen implementation example.

Additional feedback was provided by Juergen Baumgartner, John Dammeyer, Juergen
Klueser, Paul Lukowicz and Axel Wolf.

And finally we would like to thank Craig Choisser and all the others at The RTC Group
for their help and drive to turn a long-term virtual project into a real book. As Yoda
said: "Do, or do not. There is no ‘try’."

Andrew Ayre
Christian Keydel
Olaf Pfeiffer

November 2003

viii

ix

Contents

Preface xiii

History of CAN and CANopen xv

1 Understanding Embedded
Networking Requirements 3
Embedded Networking for Beginners................................ 4
Code Requirements for Embedded Systems 21
Communication Requirements for
Embedded Networking .. 25
Introduction to CANopen from the Application Level....... 28

2 The CANopen Standard 39
Using Identifiers and Objects... 40
The CANopen Object Dictionary 42
The Electronic Data Sheets (EDS)
and Device Configuration Files (DCF)............................. 56
Accessing the CANopen Object Dictionary
(OD) with Service Data Objects (SDO) 61
Handling Process Data with Process
Data Objects (PDO) .. 65
Network Management (NMT) .. 83
CANopen Example Configurations and Exercises 88
Contents of CANopen Messages 93

3 CANopen Beyond DS301 113
Frameworks and Profiles Overview................................114

x

About Masters and Managers (DS302) 118
Device Profile for Encoder (DS406)............................... 149
Device Profile for Generic I/O (DS401).......................... 153
Safety-Relevant Communication
(DSP304, DSP307).. 166

4 CANopen Configuration Example 175
Evaluating the System Requirements............................ 176
Choosing the Devices and Tools.................................... 178
Configuring Single Devices.. 180
Overall Network Configuration 183
Network Simulation .. 189
Network Commissioning .. 193
Advanced Features and Testing 197

5 Underlying Technology: CAN 203
CAN Overview ... 205
An Introduction to CAN .. 206
Selecting a CAN Controller .. 230
CAN Development Tools.. 240

6 Implementing CANopen 245
Communication Layout and Requirements.................... 246
Comparison of Implementation Methods 248
Simple Do-It-Yourself Implementation:
MicroCANopen... 252
Using CANopen Hardware Modules or Chips................ 279
Using CANopen Source Code 282
CANopen Conformance Test ... 289
Choosing an Implementation Path................................. 292
Implementing CANopen Compliant Bootloaders 294
CANopen Implementation Example............................... 299
Example of an Entire Design Cycle 309

xi

A Frequently Asked Questions 315
General.. 315
Implementation Issues... 319
Performance.. 321
Physical Layer ... 323

B Physical Layer 327
Recommended Bit Timings ... 327

C Data Types 329
Basic Data Types... 329
Extended Data Types .. 332
Complex Data Types ... 336
Transfer Format... 339

D The Object Dictionary 343
Object Dictionary Organization...................................... 343
Data Type Definitions .. 345
Communication Profile .. 348
CANopen Managers and Programmable
CANopen Devices ... 427
Object Dictionary Access Sequences............................ 484

E Minimal Object Dictionaries 487
Standard Object Dictionary Entries................................ 487
Digital Input Entries ... 488
Digital Output Entries... 489
Analog Input Entries .. 489
Analog Output Entries ... 490
Encoder Input Entries .. 490
Support of Code Download ... 491

xii

F Communication Object Identifiers (COB IDs) 493
Pre-defined Connection Set... 493
Reserved COB IDs .. 495

G Emergency Objects 497
Emergency Object Error Codes 497

H SDO Abort Messages 501
SDO Abort Codes .. 501

I Node States 505
Node State Functionality .. 505

J References 507

K CANopen Glossary 513

xiii

Preface
by William E. Seitz

General Manager, CAN in Automation North America

The Controller Area Network, commonly known as CAN, was originally designed for
use in automobiles. By virtue of its massive adoption by automakers worldwide, low-
cost microcontrollers with CAN controller interfaces are available from over twenty
manufacturers, making CAN a mainstream network technology. Moreover, CAN has
migrated into many non-automobile applications over the last ten years creating a re-
quirement for an open, standardized higher-layer protocol that provides a reliable
message exchange system along with a means to detect, configure and operate nodes.

Several higher-layer CAN protocols emerged such as SAE J1939, DeviceNet and CAN-
open. While each protocol has its own special purpose, CANopen is the most popular
higher-layer protocol for embedded networking applications – those networks that are
completely hidden within a machine or cell – and is found in over twenty vertical mar-
kets such as transportation, medical, industrial machinery, building automation and
military, just to name a few.

Embedded Networking with CAN and CANopen is one of the most useful books embedded
network designers can own – whether they are just starting out or have years of expe-
rience. Arranged in three easy-to-read parts, Embedded Networking with CAN and CAN-
open introduces the reader to CAN and characterizes its flexibility in over twenty
vertical industries. Subsequent chapters take the reader through a stepwise description
of CAN and CANopen standards from the perspective of the embedded systems engi-
neer. There are also sections devoted to a small set of mandatory functionality and a
large set of optional functions that illustrate the extent of customization available in the
CAN and CANopen standards.

Key topics include requirements for understanding embedded networking, code and
communications, underlying CAN technology, selecting CAN controllers, confor-
mance testing and application specific examples of popular device profiles used to im-
plement designs. The last part of the book is devoted to reference information and
frequently asked questions (FAQs) that facilitate quick reference to standards and
methods outlined in the book.

Written by leading CAN and CANopen technology consultants, Embedded Networking
with CAN and CANopen has been especially written for CANopen developers and inte-

xiv

grators, providing them with the ability to see ahead and even implement functionality
that is currently not available yet as CAN and CANopen standards.

This book is a must for CAN laymen, developers and integrators who want to learn
more about CAN and its wide range of applications in embedded control systems.

xv

History of CAN and CANopen
by Holger Zeltwanger

Managing Director, CAN in Automation

In February of 1986, Robert Bosch introduced the CAN (Controller Area Network) se-
rial bus system at the SAE congress in Detroit. In mid-1987, Intel delivered the first
stand-alone CAN controller chip, the 82526. Shortly thereafter, Philips Semiconductors
introduced the 82C200. Today, almost every new passenger car manufactured in Eu-
rope is equipped with at least one CAN network. Also used in other types of vehicles,
from trains to ships, as well as in industrial controls, CAN is one of the most dominat-
ing bus protocols. To date, chip manufacturers have produced and sold more than 500
million CAN devices in total.

Although CAN was originally developed to be used in passenger cars, the first appli-
cations came from other market segments. Especially in northern Europe, CAN was al-
ready very popular even in its early days. At the beginning of 1992, users and
manufacturers established the CAN in Automation (CiA) international users and man-
ufacturers association. One of the first tasks of the CiA was the specification of the
CAN Application Layer (CAL). Although the CAL approach was academically correct
and it was possible to use it in industrial applications, every user needed to design a
new profile because CAL was a true application layer. Since 1993 and within the scope
of the Esprit project ASPIC, a European consortium led by Bosch had been developing
a prototype of what would become CANopen, the CAL-based profile for embedded
networking in production cells. In 1995, CiA released the completely revised CANo-
pen communications profile. The CANopen profile family defines a framework for
programmable systems as well as different device, interface and application profiles.
This is an important reason why whole industry segments (e.g. printing machines,
maritime applications, medical systems, etc.) decided to use CANopen during the late
1990s.

In the early 1990s, engineers at the US mechanical engineering company Cincinnati Mi-
lacron started a joint venture together with Allen-Bradley and Honeywell Microswitch
regarding a control and communications project based on CAN. However, after a short
while important project members changed jobs and the joint venture fell apart. But Al-
len-Bradley and Honeywell continued the work separately. This led to the two higher
layer protocols ‘DeviceNet’ and ‘Smart Distributed System’ (SDS), which are quite sim-
ilar, at least in the lower communication layers. In early 1994, Allen-Bradley turned the
DeviceNet specification over to the Open DeviceNet Vendor Association (ODVA),

xvi

which boosted the popularity of DeviceNet. Honeywell failed to go a similar way with
SDS, which makes SDS look more like an internal solution by Honeywell Microswitch.
DeviceNet was developed especially for factory automation and therefore presents it-
self as a direct opponent to protocols like Profibus-DP and Interbus. Providing off-the-
shelf plug-and-play functionality, DeviceNet has become the leading bus system in
this particular market segment in the US.

With DeviceNet and CANopen, two standardized (EN 50325) application layers are
now available, addressing different markets. DeviceNet is optimized for factory auto-
mation and CANopen is especially well suited for embedded networks in all kinds of
machine controls. This has made proprietary application layers obsolete; the necessity
to define application-specific application layers is history (except, perhaps, for some
specialized high-volume embedded systems).

Of course, the more than 50 semiconductor vendors who have implemented CAN
modules into their micro-controllers and ASICs are mainly focused on the automotive
industry. Since the mid-1990s, Infineon Technologies (formerly Siemens) and Motorola
have shipped large quantities of CAN controllers to European passenger car manufac-
turers. As a next wave, Far Eastern semiconductor vendors have also offered CAN con-
trollers since the late 1990s. Since 1992, Mercedes-Benz has been using CAN in their
high-end passenger cars. Now nearly all new European passenger cars are equipped
with several networks, with some high-end cars implementing up to five CAN net-
works.
Although the CAN protocol is now 15 years old, it is still being enhanced. In the last
two years an ISO task force defined a protocol for a time-triggered transmission of
CAN messages. The TTCAN extension will add about five to ten years to the lifetime
of CAN. Considering CAN is still at the beginning of a global market penetration, even
conservative estimates show further growth for this bus system for the next ten to fif-
teen years. This is underlined by the fact that the US and Far Eastern car manufacturers
are just starting to use CAN in the production of their vehicles. Furthermore, new po-
tentially high-volume applications are in the pipeline – not only in passenger cars but
also entertainment, domestic appliances and automatic building doors, among many
others.

Several enhancements regarding the approval for different safety-relevant and safety-
critical applications can be expected for the higher-layer protocols (HLP). The German
professional association BIA and the German safety standards authority TÜV have al-
ready certified some of the proprietary CAN-based safety systems. CANopen-Safety
and DeviceNet Safety are the first standardized CAN solutions to earn a tentative TÜV
approval. Approval of the CANopen framework for maritime applications by one of
the leading classification societies worldwide, Germanischer Lloyd, is in preparation.
Among other things, this specification defines the automatic switchover from a CAN-

xvii

open network to a redundant bus system.

In the future, CiA members will define several CANopen application profiles. An ap-
plication profile specifies all device interfaces used in a specific application. This in-
cludes direct communication between dedicated devices overcoming the master/slave
PDO communication as usual in standard device profiles. The first CANopen applica-
tion profiles will be for automatic building doors, lift control systems, road construc-
tion machinery and light railways.

Part One: Using CANopen

3

 1 Understanding Embedded
Networking Requirements

“Everything should be as simple as it is, but not simpler.”
Albert Einstein

The intention of this first section is to lay a foundation of knowledge required to truly
understand the terminology and issues typical to embedded systems and networked
embedded systems. It was written with newcomers to embedded systems and embed-
ded networking in mind.

Readers with experience in this field should double check to see if all the terms
explained in Section 1.1.3 are familiar to them.

For additional reading material, the reference section at the end of the book lists books
about embedded systems; see in particular [Barr99], [Berger01], [Ganssle00] and
[Ganssle03]. For additional information on process control see [Stenerson02].

Embedded Networking with CAN and CANopen

4

1.1 Embedded Networking for Beginners

1.1.1 What is “Embedded Networking”?

Since the introduction of the personal computer the semiconductor components
receiving most of the attention by the media are the main processor (CPU) and the
memory. One of the first things every computer user learns is that CPU performance
and memory size continuously increase with time. Both improvements are based on
technological changes and enhancements that allow chip manufacturers to pack more
and more transistors into the same silicon area. So although chips are the same size
and same price as in the past, greater performance becomes available.

Unfortunately, the effects these technological improvements have had on the other
side of the scale receive far less attention, even though the consequences are reaching
far into our everyday lives. On this other side of the scale chip manufacturers can
build “low-performance” microcontrollers ever smaller and smaller. This not only
makes them cheaper, but also brings down their power consumption.

As a consequence, intelligent electronics get embedded into more everyday products.
Parents know that there are hardly any toys these days that do not have some elec-
tronics built in. Further examples of microcontrollers used in “embedded systems”
are kitchen appliances, any sort of audio equipment, phones, and computer peripher-
als such as modems, printers, keyboards, etc.

Objective

In this chapter we describe the basic terms and technologies involved with
“embedded networking” from a generic point of view, without getting into the
details of how CANopen relates to them. If you have a lot of experience in both
embedded systems and computer networks (preferably with real-time require-
ments), feel free to skip this chapter for now. If during further reading you
detect knowledge gaps, come back to this chapter for a “memory refresh.”

Here we cover generic networking terms such as serial networks, master,
slave, server, client, producer, consumer, point-to-point, multicast, broadcast,
message triggering, time driven, event driven and change-of-state (COS). In
addition, we will also look at terms and technologies used in embedded or
industrial control systems, involving things like automation systems, field-
buses, real-time and performance requirements.

5

Chapter 1: Understanding Embedded Networking Requirements

The trend towards more affordable microcontrollers results in embedded systems
which utilize several microcontrollers. Typically there is a need for a communication
channel between those controllers embedded in a system, hence “embedded network-
ing.” Typical examples of such “multi-controller” embedded systems with communi-
cation requirements are cars and trucks, household appliances, lift/elevator systems
and a whole array of industrial machinery.

1.1.2 Communication in the Automation Pyramid

Industrial automation applications as used on factory floors contain most of the ele-
ments applicable to embedded systems and embedded networking. Looking at an
embedded networking system from the industrial angle not only helps us to under-
stand basic communication requirements, but this model can also easily be adapted to
a variety of embedded systems.

Figure 1.1 Communication in the Automation Pyramid

Plant
Control

PC or
Workstation

Process
Control

High-end controller,
Embedded PC or

PLC

Controller
Coupler

16 to 32 bit

Sensors
Actuators

8bit CAN

Ethernet

ProfibusInter
bus-s Modbus

Plant
Management

High-end PC or
Workstation

Embedded Networking with CAN and CANopen

6

Figure 1.1 shows a variation of the industrial automation pyramid. It symbolizes the
hierarchy in an industrial automation system. At the bottom is the Sensor and Actua-
tor level with input and output elements that directly read switches and sensors like
current speed of a conveyor belt, RPM values from anything rotating or a current tem-
perature. Typical actuators include hydraulic or pneumatic elements or electrical
motors, which in industrial lingo are usually referred to as drives. Being at the bottom
of the pyramid also symbolizes that in any installation these elements or modules are
used in the highest quantity, compared to modules in the layers above.

Due to the higher quantity, these modules are often price sensitive, as the price-per-
module is multiplied by the large number of devices required. In the not-so-distant
past of some 20 to 30 years ago, communication at this level was not computerized,
meaning that every sensor or actuator was directly connected with its own set of
wires to the next higher control level. Today, the trend is to equip more and more sen-
sors and actuators with a networking interface.

However, since single components on the lowest level are needed in large quantities,
cost is still a major issue. Equipping simple sensors that just report a single or a few
values with high-performance processors and high-end network adapters like Ether-
net is simply not an option. Other technologies typically based on serial buses have
been used for years because they can be handled by some of the lowest performance

The automation pyramid symbolizes the different control levels and number of
computerized systems in a factory automation system. On top of the pyramid
there are a few workstations handling the management of one or multiple
plants, followed by levels with more workstations or PCs controlling specific
sections of the manufacturing process.

The three lower levels are those implemented in a complex machine or produc-
tion / manufacturing cell. The Sensor and Actuator level contains simple sen-
sors (contact sensors, distance sensors, temperature sensors, etc.) and actuators
(hydraulics, drives, etc.) used in the process. The Controller level implements
direct control loops between sensors and actuators. For example, the sensor
input from a rotary encoder could be used by a controller to calculate new out-
puts for the actuator; i.e. an electric motor / drive.

The Process Control level combines several systems from the Controller level.
So a production machine typically has one Process Control system that has
individual sub-systems on the Controller level. For example, such subsystems
might first feed material into a machine, then work on/with the material and
then pass the product on to the next step in the production process.

7

Chapter 1: Understanding Embedded Networking Requirements

(but most affordable) microcontrollers and microprocessors. CAN – the Controller
Area Network – is just one of many contenders in the field of networking technologies
that are suitable to reach into the lowest level of the automation pyramid.

The next layer up is the Controller level. In this level controllers are used to collect all
the inputs, perform some sort of control algorithm and transmit the appropriate com-
mands back to the actuators, the outputs.

The next layers of the automation pyramid are of only limited concern for embedded
networking. With each level up in the pyramid the performance of systems needs to
be higher, as it needs to handle multiple systems from the layer below. The communi-
cation requirements become more significant in the upper levels as more bandwidth
is required to handle all the accumulated information coming from the multiple sys-
tems in the layers below. In these levels, interfaces to embedded networks are only
used if a direct link to the lowest levels is required.

1.1.2.1 Placing embedded systems into the automation pyramid

Embedded systems using multiple microcontrollers and any sort of communication
between them can often be directly compared to the lowest levels of the automation
pyramid. There will be some sensors and actuators for the inputs and outputs and
some sort of controller. Sometimes there might be truly distributed control (in which
case the controller functionality is divided between modules) however the basic
model and its consequences still applies. The closer a module is to the Sensor and
Actuator level (or to the inputs and outputs), the more cost-sensitive it is and the more
basic the communication requirements.

As an example of placing an embedded communication system into the auto-
mation pyramid let’s have a look at a fully automated shuttle train (as found at
many airports) with a focus on the doors.

On the Sensor and Actuator level there is a whole array of signals. Sensors
detect not only the current status of a door (is it open, closed or something in-
between), they also detect what happens around it. Is something “in” an open
door or are passengers (too) close to the door?

The sensors report their findings to the controller level, probably one control
module in each passenger car supervising all the doors of this car.

Embedded Networking with CAN and CANopen

8

1.1.3 Terminology used in Embedded Networking

The following is a collection of terms and their explanations that are frequently used
in conjunction with computer networks, especially those related to industrial automa-
tion or to embedded systems.

1.1.3.1 Fieldbuses, Serial Buses

The term “fieldbus” originates from bus systems used in the production field of a
manufacturing or processing plant. By itself the term is generic, meaning that by sim-
ply referring to a “fieldbus” one cannot determine which exact type of fieldbus is
used.

Unfortunately the “Foundation Fieldbus” is sometimes referred to as “Fieldbus”
which can lead to confusion since the Foundation Fieldbus is simply one particular
“brand” of fieldbus, comparable to DeviceNet, Profibus, Interbus, Modbus and oth-
ers.

Many fieldbuses are based on a serial bus, meaning that data is transmitted over the
fieldbus on a bit-by-bit basis.

1.1.3.2 Arbitration, Token-ring, Multi-master, CSMA/CD

Most computerized communication systems require a method for avoiding collisions.
A collision occurs if two or more nodes transmit at the same time and thus destroy
each other’s messages. In other words, when may a particular node transmit some-
thing, and for how long?

One method would be to pass a token (could be a specific message) from one node to
another (forming a logical ring). Only nodes that currently have the token may trans-
mit something to the network. Once a node is done, it passes on the token and
remains silent until it gets the token again.

The control modules of each car report up to the Process level – some sort of
control module controlling the entire train.

Any communication to higher levels would go beyond “embedded network-
ing” as it would leave the “embedded system” of the automated train. At the
Plant Control level there would probably be some wireless communication to a
station where all the trains in the system are controlled.

9

Chapter 1: Understanding Embedded Networking Requirements

In a multi-master environment nodes may transmit at any time and collisions are
resolved immediately upon detection. The method used by Ethernet is Carrier Sense
Multiple Access with Collision Detection (CSMA/CD). In short it means that each
node listens to the network (carrier sense) and may transmit at any time (multiple
access). If a collision is detected in Ethernet, a jamming sequence is started which
destroys the message for all nodes participating in the communication. After a ran-
dom time delay the transmitting nodes will re-try.

The problem with such a communication scheme is that the jamming sequence
destroys bandwidth (no data can be transmitted during the jamming) and message
delays are not deterministic, making the overall response or transmit times hard to
predict.

CAN uses a modified version of CSMA/CD with Collision Avoidance (CA). Instead
of a jamming sequence, CAN resolves collisions by priority so that in a collision the
message with the higher priority gets access to the network. This process is described
in detail in Chapter 5, Section 5.2.8.

1.1.3.3 Input, Output

When looking at a single communication node, one could argue that there are inputs
and outputs to both the application (sensors and actuators) and the network – an
application input is transmitted “out” to the network, so it could be considered an
output (to the network).

To avoid confusion, all control systems consider “input” and “output” as they relate
to the application, not to the network.

An input signal comes from the application, typically from a sensor and goes into the
control system. If a network is used, the signal gets transferred via the network to
another node, either a master or directly to another output node.

An output signal goes to the application, typically to an actuator, and comes from the
control system. If a network is used, an output module receives the signal from either
the master or another input module.

Embedded Networking with CAN and CANopen

10

Figure 1.2 Inputs and Outputs - Traditional

The traditional control system in Figure 1.2 has 2 input nodes (A and B) and 2 output
nodes (C and D). As long as a master is involved the inputs and outputs are fairly
clear - all the input nodes transmit their data to the master and the master transmits
the calculated output data to the output nodes.

Figure 1.3 Inputs and Outputs - Embedded

However, in many embedded networks the scenario becomes more complex, as
shown in Figure 1.3. Often embedded networks use distributed control, meaning
there is no master and each node has more intelligence to decide on its own what to
do with the data. As a result the data flow is more flexible; an input node sends its
data directly to an output node which by itself decides when and how to switch its
outputs. What can be confusing to beginners in embedded networking is that at some
point the message sent as a result of an input “mysteriously” becomes an output.

Node A

Node B

Node C

Node D

Master

Network

Entire
control
systemInputs from

application
Outputs to
application

Node A

Node B

Node C

Node D

Network

Entire control system

11

Chapter 1: Understanding Embedded Networking Requirements

As the same figure shows, when discussing embedded networks one should also
avoid the terms “input node” or “output node” because many nodes (such as those
illustrated by nodes B and D) might have both inputs and outputs.

In general, it is best to refer to the terms “inputs” and “outputs” only as long as these
terms directly correspond to the inputs and outputs of the application, not of the net-
work. For any data in transition on the network simply refer generically to “network
variables” or “process data variables.” In this book we will primarily use the term
“process data variables” because in CANopen the term “network variables” has a spe-
cific meaning and should not be used in a general sense.

1.1.3.4 Master/Slave

Talking about masters and slaves in a network implies that the master has some sort
of control function over the slaves. Typically this involves scanning the network and
detecting the insertion or removal of slave nodes and the configuration of the nodes
(informing them about communication channels and methods to use). Functionality
may also include shutdown and/or reset of single nodes or the entire network.

Figure 1.4 The Master/Slave Communication Model

A master/slave communication method as shown in Figure 1.4 refers to master-driven
communication. In such an environment the slaves cannot typically communicate by
themselves or with each other. Only the master may initiate communication and
slaves only respond when they receive such a request from the master.

Slave Y
IN_1_Y
IN_2_Y

OUT_1_Y
OUT_2_Y

Master
IN_IMAGE_1_M
IN_IMAGE_2_M

OUT_IMAGE_1_M
OUT_IMAGE_2_M

IN_IMAGE_3_M
IN_IMAGE_4_M

OUT_IMAGE_3_M
OUT_IMAGE_4_M

Slave X
IN_1_X
IN_2_X

OUT_1_X
OUT_2_X

Embedded Networking with CAN and CANopen

12

In comparison, Figure 1.5 shows a direct, master-less communication model, where
all devices can directly exchange information without the requirement to route mes-
sages via a master. Obviously such a direct communication model is much more effi-
cient, as it has less communication overhead. A single message is sufficient to send
data from one device to another. In a master/slave communication model two mes-
sages would be required – one from the input to the master and one back from the
master to the output.

A “flying master” is a dormant master that can become active and take over “on-the-
fly” to be the new master. There are different methods for determining when and how
such a dormant master can become active. One possibility is using a negotiation phase
where a node on the network asks the existing master for permission to become the
new master. Another method is that the dormant master monitors all communication
on a network and recognizes when the existing master fails. In that case it automati-
cally becomes active and replaces the master that failed.

Figure 1.5 Direct Communication Model

1.1.3.5 Client/Server

In a client/server environment the server provides “services” to the network. A typical
service could be serving data access points (inputs and outputs) to the network. A cli-
ent is a network node making use of these services. Whether a network module
becomes a server or client is completely unrelated to its status as a master or slave.
Both masters and slaves can implement client and server functionality.

IN_1_Y
IN_2_Y
OUT_1_Y
OUT_2_Y
OUT_3_Y

Device X

OUT_1_Z
OUT_2_Z
OUT_3_Z
IN_1_Z
IN_2_Z

Device Z Device Y

O
U

T_
1_

X
O

U
T_

2_
X

IN
_1

_X
IN

_2
_X

13

Chapter 1: Understanding Embedded Networking Requirements

1.1.3.6 Producer, Consumer

A producer transmits data to the network and a consumer receives data from the net-
work. For a specific set of data there can only be one producer and there is at least one,
but possibly multiple consumers for that data.

1.1.3.7 Point-to-point, Multicast, Broadcast

A computer network typically supports multiple communication channels and meth-
ods. A point-to-point communication involves just two nodes on the network commu-
nicating directly with each other. All other nodes on the network either do not see this
channel or ignore it, so they are not affected by the communication going on between
the other nodes.

A multicast is the transmission of one message to multiple nodes. Typically the mes-
sage is not duplicated to achieve a multicast, rather the consumers are configured to
simultaneously receive the single message transmitted.

A broadcast is the transmission of one message to all nodes connected to the network.
A master typically uses broadcasts to issue network-wide commands (commands
affecting every node) or to signal an emergency.

1.1.3.8 Message Triggering: Polling, Time Driven, Event Driven, Change-of-State
(COS) and Time Triggered

The overall performance of a network in terms of achievable data bandwidth and
latency times often depends on the message triggering method chosen. So when and
how does a message with process data get transmitted? The following is just a sum-
mary of some of the basic methods. These methods are covered in more detail in later
chapters, organized according to where they are used in a CANopen system.

The most traditional method coming from pure master/slave environments is polling.
With this method a master polls the inputs as required by the control algorithm in the
master. Because an additional polling message is required, the overhead is fairly
large, decreasing available bandwidth.

In time driven communication, the producers transmit messages automatically on a
fixed time basis, for example every 50 milliseconds. This method makes the band-
width requirements and worst-case delay times very predictable.

Time driven communication can be divided into methods using a local or a global
timer. When local timers are used, each node has its own timer and individually trans-

Embedded Networking with CAN and CANopen

14

mits the message(s) upon timer expiration. Because the local timers are unsynchro-
nized, the timing relationship between nodes is unspecified. On the other hand, if a
global timer is used all transmissions are synchronized since all nodes will be using
the same timer reference.

Event driven on a change-of-state allows for the fastest possible reaction time, because
data gets transmitted as soon as it changes. Bandwidth usage is optimized, because
data does not need to be transmitted if there are no changes. Unfortunately, this
method is the least predictable, since many input changes in a short time will create
message bursts on the network.

Time triggered communication provides synchronization signals with time windows.
A producer may transmit its message in a time window that starts a certain number of
microseconds after the synchronization signal and has a specified length of several
microseconds. This method allows for the reserving of bandwidth in the form of time
slots for certain communication channels.

It should be noted that in CANopen all of these trigger mechanisms are available and
combinable (except for time triggered communication). More detailed examples are
described in Chapter 2, Section 2.5.

In cases where an input changes constantly, such a trigger method would cause
continuous network traffic. To prevent this, CANopen defines an “inhibit
time” during which a message may not be re-transmitted. When transmitting a
message, a node needs to wait for the inhibit time to expire before it may re-
transmit the message with the same variables.

Let’s take a look at an example to help clarify the terminology covered so far.
The network in Figure 1.6 has one master and three slaves. The slaves provide
their configuration data as a service to the network. They implement server
functionality to do so – they serve that data to the network. The master
becomes a client and requests the “health” data from the clients using a point-
to-point communication channel.

15

Chapter 1: Understanding Embedded Networking Requirements

1.1.3.9 Real-time, Latency

Many embedded control systems, especially those used in industrial automation
applications, have real-time requirements. This means that data needs to be processed
immediately, in real-time, within a specified time slot that may not exceed a pre-
defined limit. There is no general specification on how fast a control system needs to
be to qualify as “real-time system” – it just needs to be fast enough to be able to han-
dle the requirements of the application.

If the real-time requirements are such that an input needs to influence an output
within 10 milliseconds, then the control system must guarantee that a change to the
input affects the output accordingly in 10 milliseconds or less.

If a network is involved, transmitting messages may involve latency times – the time a
message can be delayed by not having immediate access to the network. This may be

Figure 1.6 Sample Network Layout

The master uses a broadcast channel to inform all slaves with one message to
switch into a specific operation state (run/operate or stop).

Node B is an input node that produces multicast messages of the input data on
an event driven basis to the master and Node C – which in turn become con-
sumers.

Node A Node B Node C

Master

Broadcast of
commands

Point-to-point
configuration

channels

Multicast
of data

Embedded Networking with CAN and CANopen

16

because there is another message currently in progress on the network that cannot be
interrupted.

As an example, let’s see what individual times make up the total maximum
time for an I/O cycle – that is, an input read being transmitted via a network
and switching an output somewhere else on the network.

Input-scan cycle time:
Any microcontroller implementing an input typically scans the inputs at a
fixed rate, such as every 100 microseconds. The worst case would be that we
just did a scan, the input changes, but it takes us the entire scan cycle time (100
microseconds) to re-check the input and recognize the change.

Input filter/debounce time:
In order to ensure that an input signal is stable and not just a disturbance on
the input line, many systems require that an input signal is detected conti-
nously for a specified time period. This time period is application specific.

Software processing time of input module:
The software in the input module reads the input signal and transfers it to the
peripheral handling the network. Depending on other interrupts or tasks run-
ning on the microcontroller, the execution time for this piece of software can
vary. In a real-time system it must be clearly determinable what the maximum
runtime is.

Network latency:
The network message that the input module is trying to send might not be
immediately sent if other network traffic is currently ongoing. For real-time
systems it must be clearly determinable what the maximum latency is.

Network transmit time:
The time it actually takes to send the data via the network.

Software processing time of output module:
The software in the output module detects the receipt of a network message
containing new process data and transfers the data to the appropriate output.
Depending on other interrupts or tasks running on the microcontroller, the
execution time for this piece of software can vary. In a real-time system it must
be clearly determinable what the maximum runtime is.

17

Chapter 1: Understanding Embedded Networking Requirements

1.1.3.10 Physical Stuff – Signals, Wires, Speeds and Network Layout

Before a communication channel between two or more computerized systems can be
established, some basic physical decisions have to be made. What is the physical
transmission media chosen? Wire, radio signals or something else? And if wire, what
kind? And how will the physical signal look on it? And what will be the speed or the
maximum bandwidth?

For embedded and industrial communications, wire is the first choice when it comes
to the physical media. Most common is a “regular” wire, meaning no special
demands on impedance, resistance or conductance are made. For noisy environments,
with a lot of Electro Magnetic Interference (EMI), twisted and shielded wires are pref-
erable. Many embedded networks try to use readily available wiring like Ethernet
cables, phone cables, or serial cables as used on PC COM ports.

The limiting speed factor for embedded networks is that all connected microcon-
trollers need to be able to deal with the speed used. A network running at 1Mbps can
transmit one bit per microsecond. An 8-bit microcontroller that only executes one
instruction per microsecond needs several instructions to transfer a byte from one
location to another, and could just about keep up with the communication of a 1Mbps
network.

The network layout refers to the physical connection of the nodes to the networks.
Common layouts are stars and buses. A star uses a central hub and all nodes con-
nected to the network are connected to that hub. A bus is a line and nodes may be con-

How much CPU performance is required to handle a network operating at the
highest speed rates and 100% busload?

Just to give a quick example: “highest speed rates” means that the length of a
single message is roughly between 50 and 150 microseconds. So the worst case
for the receiver is that a message comes in and needs to be processed every 50
microseconds. If the receiving microcontroller cannot keep up, messages might
potentially get lost.

Later in Chapter 5, Section 5.3 we will see how sophisticated implementations
of CAN interfaces help to keep down the workload for the microcontroller. By
offering hardware filtering mechanisms these implementations can be config-
ured to ignore messages that are of no interest to the local microcontroller. The
microcontroller only needs to react if a message comes in that is meant to be
received by the local microcontroller.

Embedded Networking with CAN and CANopen

18

nected anywhere on that line. Some buses allow junctions or drop lines (lines splitting
off from the bus), some do not. For more details on the physical layout, see Section
5.2.6.

1.1.3.11 ISO 7-Layer Reference Model

The standard network communication model is the ISO layer model that defines 7
layers from the physical media up to the application interface [ISO7498]. Most on-chip
communication interfaces usually only implement layer 1 (Physical Layer) functional-
ity. Some, like CAN, also offer partial layer 2 functionality (Data Link Layer). Func-
tionality from the layers above is usually implemented in software only. Protocol
standards that implement these layers or parts thereof are referred to as “higher-layer
protocols.”

It should be noted that not all layers are implemented for embedded networking
applications. Just to give an example, it would not really make much sense to add
overhead for long-distant routing of messages if the network does not have any “long
distance” functions.

Also, traditional 7-layer implementations would require an interface between any two
layers next to each other, resulting in an overhead that is unacceptable for embedded
applications. That is why higher-layer CAN protocols only implement selected func-
tionality from the higher layers, to minimize the overhead.

Figure 1.7 The ISO 7-layer Reference Model

1. Physical Layer

2. Data Link Layer

3. Network Layer

4. Transport Layer

5. Session Layer

6. Presentation Layer

7. Application Layer

Standard CAN implementation
(physical details often specified
by higher-layer protocol)

Partially
implemented by
higher-level CAN
protocols like
CANopen

Bypass
used without
higher-layer

protocols

19

Chapter 1: Understanding Embedded Networking Requirements

The ISO 7-layer network reference model is used to classify the functionality provided
by a communication network system. The model expects a clear separation between
these layers with defined interfaces between them, to achieve interchangeability. For
more information on this reference model see [Comer00].

As noted above, this type of implementation is not always suitable in embedded sys-
tems, as the overhead of all these interfaces would be too big to implement efficient
communication systems for lower-end microcontrollers with limited resources.

With CAN, most parts of the physical and data link layers are implemented in hard-
ware and there is no common, standardized software interface. Some applications put
their own application layer directly on top of the data link layer. However, with CAN-
open at least parts of the other layers are implemented.

1. Physical Layer:

• Describes the physical interconnection between network nodes
(CANopen: specifies usage of ISO 11898, high-speed)

• Includes electrical characteristics of signals used
(CANopen: chosen transceiver uses differential signal)

• Defines “bit-level” communication
(CANopen: bit generation, synchronization)

2. Data Link Layer:

• Bits are combined into frames
(CANopen: CAN data frames)

• Includes error detection via checksums
(CANopen: provided by CAN)

• Defines set of acknowledgements to determine successful transmission
(CANopen: provided by CAN)

• Enables successful point-to-point communication to the next bridge or gate-
way, but not beyond
(CAN/CANopen: not provided)

3. Network Layer:

Embedded Networking with CAN and CANopen

20

• Includes concepts of destination addressing and routing (CANopen: SDO
channels)

• Provides interaction functionality between a host and the network
(CANopen: configuration via SDO)

• Uses fragmentation to allow transmission of messages larger than allowed
with frames
(CANopen: segmented/fragmented transfer supported)

• Able to detect and respond to network bandwidth limitations
(CANopen: not provided)

4. Transport Layer:

• Provide end-to-end reliability: communication between source and destina-
tion hosts
(CANopen: partially provided by NMT services, see Chapter 2, Section 2.6).

• Double-checks that no switch, bridge or gateway in between end-to-end
communication has failures
(CANopen: no long-distance routing supported)

5. Session Layer:

• Allows different hosts on the network to begin and end communication ses-
sions
(CANopen: not typically used)

• Token management: Only the side holding a token may perform critical
functions like a write access to a shared data base record
(CANopen: SDO channel management)

• Synchronization: Can be used for large data transfers – supports resume of
an interrupted transfer
(CANopen: SDO block transfer mode available with abort, but no resume)

6. Presentation Layer:

• Handles data representation and encodes data in a standardized way
(CANopen: Object Dictionary, defined data types)

21

Chapter 1: Understanding Embedded Networking Requirements

• Data compression
(CANopen: not supported)

• Encrypting/Decrypting
(CANopen: not supported)

7. Application Layer:

• Application programs making use of the network

1.2 Code Requirements for Embedded Systems

The field of “embedded systems” can be divided into two main categories. On one
hand we have the high-volume electronics typically used in many consumer products
or other every-day products, as well as many products from the sensor and actuator
level of the automation pyramid shown in the previous section. On the other hand we

Objective

CANopen is mostly used in embedded systems. For those of you who come
from a pure PC programming environment, we will point out a few things that
you should be aware of when jumping into the programming of embedded
systems. If on the other hand you don’t need to implement CANopen nodes
yourself and you are just integrating or configuring CANopen networks, you
may want to continue your reading with Section 1.4.

Those of you with multiple years of experience in the “embedded field” by
either designing and/or programming microcontrollers might be tempted to
skip this section. However, we would recommend that you at least glance at it,
as we will specifically point out the impact that typical limitations of embed-
ded systems have on CANopen implementations.

We address topics such as limited resources (memory and CPU performance),
limited debugging environments, typically available communication channels
and real-time requirements.

If you are a newcomer to embedded systems, you should consider additional
literature such as [Barr99], [Berger01] or [Ganssle00].

Embedded Networking with CAN and CANopen

22

have the lower-volume specialty electronics that run some very specific control tasks,
often situated in the Controller or Process Control levels of the automation pyramid.
In very rough terms, high-volume refers to systems used in quantities of hundreds of
thousands whereas low-volume in this context indicates a maximum of a few thou-
sand.

If CANopen is used in embedded systems it is important to know which category it is
in. In general, the low-volume applications tend to be less price sensitive and can
afford to use microprocessors or microcontrollers with more horsepower and more
memory, facilitating the implementation of CANopen. Commercial CANopen source
code implementations can be purchased and integrated – typically without running
into any performance or memory requirement issues.

However, on high-volume embedded systems price is a very important factor and
there will be a certain limit on the resources (both in CPU processing time and mem-
ory usage) that can be made available to implement CANopen. Depending on the
CANopen functionality required by an application, it might be impossible to imple-
ment full-blown CANopen on a lower-end 8-bit microcontroller.

The following is a list of resource constraints typical for embedded systems and a
summary of how these constraints affect a desired CANopen implementation.

1.2.1 CPU/MCU Performance

CANopen is very flexible, so the amount of CPU processing time required for han-
dling the communication itself greatly depends on the CANopen functionality imple-
mented. CANopen can be handled by 8-bit microcontrollers running at speeds as
slow as executing just one or a few assembly instructions per microsecond. However,
there are typically some constraints one might run into. For example, the maximum
bus speed supported might be slower than 1Mbps, or, if the 1Mbps rate is supported,
it may be that a device cannot handle a maximum 100% busload.

In addition, Section 5.3 shows how different CAN controller implementations offered
by different chip manufacturers impact the MCU performance required to handle the
CANopen communication. Some CAN controllers have advanced filtering and/or
buffering techniques, greatly reducing the burden on the MCU.

Systems using an 8-bit microcontroller unit would either need to be prepared to sacri-
fice a significant share of the MCU processing time for handling the CANopen com-
munication, or sacrifice CANopen performance. There might be bursts where some
50% or more of the MCU time needs to be dedicated to the CANopen communication.

23

Chapter 1: Understanding Embedded Networking Requirements

Obviously this would not leave enough resources remaining for a demanding appli-
cation such as a multi-phase motor control. However, it is more than adequate for
simple sensors (such as temperature sensors).

1.2.2 Real-Time Requirements

Another performance factor to consider is the real-time behavior, defined as the guar-
anteed response time to an event. For example, can it be guaranteed that once a CAN
message is received with new output data, that this data will actually be applied to
the output pins within a certain time limit? Applications with high real-time demands
may require that this time be a fraction of a millisecond.

8-bit microcontrollers that are based on commercial, portable CANopen source code
might have a tough time guaranteeing such a value unless processor and possibly
application-specific optimizations are made to the code.

If an application has specific real-time demands it may be necessary to either use a
more powerful microcontroller or to hand-optimize the CANopen code towards the
application. The drawback is that after such optimization it is much tougher to port
the code to different microcontroller architectures.

1.2.3 Code Memory Space

The code memory size required for a CANopen slave protocol stack varies greatly.
Not only does C source code compile very differently on various microcontroller
architectures, the code size varies even more depending on which CANopen features
are enabled or disabled. Most commercial source codes allow code segments to be
included or excluded from the program via C “#define” statements. If, for example,
the optimized block transfer routines are not required, there is no need to actually
include and implement the code for this function.

On an 80C51 microcontroller code sizes for CANopen can vary from 2kbyte for mini-
mal bootloader functionality (not truly implementing a full CANopen node) versus
4kbyte-5kbyte of code for minimal CANopen implementations (like MicroCANopen,
see Section 6.3) all the way up to 25kbyte-45kbyte for a full-blown CANopen slave
node with all the bells and whistles.

CANopen masters or managers vary even more in functionality and may use consid-
erably more code memory.

Embedded Networking with CAN and CANopen

24

Although the overall situation is similar on 16-bit and 32-bit microcontrollers, they
typically have more overall code space available so saving a few kilobytes of code is
not as crucial as on an 8-bit device.

1.2.4 Data Memory Space

In general, the data memory requirements depend on factors similar to the code mem-
ory requirements. In keeping with the example from above, a correct implementation
of the block transfer mode requires a RAM buffer for all the data received via the
“block transfer.” Again the requirements have a wide range from 100-200 bytes for
minimal implementations like MicroCANopen and some 500 bytes to 1kbyte for full-
blown CANopen implementations. This is without the process variables themselves –
so all variables transmitted or received by a node typically need additional RAM
space. Nodes that need to receive or monitor all process variables may need several
hundred bytes of additional RAM.

1.2.5 Non-volatile Data Storage

If a CANopen node can be re-configured during operation and such configurations
need to be stored or reloaded after start-up, non-volatile storage memory such as an
EEPROM is required. Typically three sets of configuration data are required – two in
EEPROM and one in RAM. The manufacturer default configuration and the last saved
configuration are held in EEPROM, while the current configuration is held in RAM.

25

Chapter 1: Understanding Embedded Networking Requirements

1.3 Communication Requirements for Embedded
Networking

1.3.1 Higher-Layer Protocol

While many communication/networking technologies are available on-chip with even
the lowest-priced microcontrollers, they lack a dominant higher-layer protocol stan-
dard. All the serial interfaces typically provided on-chip with many microcontrollers
only includes some sort of layer 2 (Data Link layer) interface. That means that some
functionality is provided to transmit and receive data, but it is not defined when and
how messages go over the network and what kind of data they contain. As soon as
someone starts to specify things like data types (includes bit and byte order, for exam-
ple, to ensure that everybody knows if the hi-byte or low-byte comes first in a word)
or message identifiers to be used for specific services (either to recognize specific vari-
ables or configuration settings), he/she defines a higher-layer protocol.

Many applications still use proprietary higher layer protocols. Typical pitfalls with
proprietary protocols are:

• They must be very well documented, otherwise they are only usable by the
people who invented them

• New team members have no other source for learning than the in-house
documentation and possibly in-house cross training

• No third party, off-the-shelf development and test tools are available for the
protocol; they must be developed in-house

• No access to plug-and-play modules of third parties

Objective

The previous section examined code requirements. In this section we will out-
line the basic communication requirements.

A question often asked by novices is Why do we need anything besides TCP/IP
anyway? That is the standard in networking, so why not use it in embedded systems,
too? This chapter will answer these questions and outline the requirements
desired by many embedded networking applications.

Embedded Networking with CAN and CANopen

26

For embedded networking applications a standardized higher-layer protocol is desir-
able to avoid the pitfalls listed above. However, one should pay careful attention
when choosing a protocol for embedded networking to ensure the requirements
detailed in the following sections are met.

1.3.2 Price, Performance, Resources

As outlined in the previous sections, many embedded applications are price-sensitive
and thus cannot incorporate the hardware and software required to handle TCP/IP in
every network node. There are indeed implementations of small embedded TCP/IP
nodes such as embedded webservers, however, these still require a lot of resources,
not only in CPU performance but also in memory for storing the data files actually
“served” by the web server.

As of today it is not yet imaginable that such implementations could become so
affordable that we could put one in every light bulb. However, many long-life, low-
power lighting technologies already use microcontrollers today. So utilizing some
other, more affordable networking technology will most likely happen first.

In addition to cost there are also technical considerations. TCP/IP is not very suitable
for control purposes simply because it was not designed for that purpose. For exam-
ple, (and this becomes most visible in the actual message definitions) in Ethernet sin-
gle messages can have up to 1500 bytes of data and messages have an overhead of
about 24 bytes (preamble, addresses, type info, checksum). The TCP/IP layers add
additional overhead resulting in even more bytes wrapped around the data, poten-
tially allowing messages of up to 64kbytes. If a node only implements a simple analog
sensor (such as temperature, pressure, speed, distance, or similar) it typically only has
one variable of 8 or 16 bits to report. If the node used TCP/IP on Ethernet as the com-
munication network, every data word transmitted would result in some 50 or more
bytes of overhead being transmitted with it. And this does not include any overhead
one might have for establishing a communication channel between two nodes.

To summarize, a “usable” embedded networking technology must work on some of
the lowest priced microcontrollers. These are typically 8-bit devices with just a few
kbytes of code space and a few hundred bytes of RAM. The technology must use one
of the existing communication channels available on-chip (like UART, I2C, CAN or
others) and preferably the technology should not require a lot of code overhead for
handling the communication. That overhead, however, depends on the higher-layer
protocol being used.

27

Chapter 1: Understanding Embedded Networking Requirements

1.3.3 Definition of Data Types and Process Variables

A higher-layer protocol usable for embedded networking would need to specify ways
to recognize variables. There must be some methods in place to define data types
(such as signed and unsigned integers of different lengths) and identify the variables
themselves. If a temperature sensor transmits a temperature, the receiving party or
parties need to be able to recognize that this is the temperature value.

It would also be desirable to be able to directly request a specific variable using a
monitoring or analysis tool. If a node has several variables (maybe an entire array of
temperatures), it would be nice to be able to request a specific variable: “Please send
the information for temperature sensor number 3 now.”

This should work in both directions - both read and write accesses to variables should
be available to masters or monitoring/analysis tools.

1.3.4 Exchanging Process Variables

If a network technology is used that supports multi-master (any node can send a mes-
sage at any time, collisions are resolved) and multicast or broadcast (a message trans-
mitted is received simultaneously by a group of nodes or all nodes), then it should be
possible to take advantage of these features.

CAN supports these features and thus it is possible to set nodes to individually decide
when to transmit a message, for example by using change-of-state or event time trig-
ger mechanisms.

It should also be possible to directly link variables between devices instead of only
offering the master-slave communication model. So if a process variable produced by
one node is required by several other nodes, it should be possible to configure all the
receiving nodes to directly consume that variable whenever transmitted over the net-
work. Without such a feature the interference or translation of a master is required.

1.3.5 Configuration of Network Devices

Preferably, network nodes are at least in part (re-)configurable via the network itself.
A master or configuration tool should be able to read and/or set network parameters
in individual nodes that define the communication behavior of that node.

Embedded Networking with CAN and CANopen

28

This could include things such as how often to send a heartbeat message or which
process variables are transmitted from where, to where, in which messages and when
(triggering mechanisms).

1.3.6 Off-the-Shelf, Plug-and-Play

One of the bigger challenges is the demand for off-the-shelf, plug-and-play support.
For a network technology this means that nodes (like I/O modules, sensors, actuators,
etc.) are available from several providers and are interchangeable.

System designers that build a network can use these components and integrate them
along with their own network nodes. This way only nodes with specific requirements
would need to be developed from scratch. Generic I/O nodes would not need to be
(re-)developed, but could be acquired from third party providers instead.

1.4 Introduction to CANopen from the Application
Level

1.4.1 The Object Dictionary Concept

The core of any CANopen node is the Object Dictionary (OD), a lookup table with a
16-bit Index and an 8-bit Subindex. This allows for up to 256 Subentries at each Index.

Objective

In the previous sections we have examined general requirements for embed-
ded networks. In this section we would like to introduce CANopen and point
out how many of the embedded networking requirements are met by CANo-
pen.

This section is an introduction to the primary functionality provided by CANo-
pen and is intended to give students a quick start into the main ideas of CANo-
pen.

The chapters following this section will repeat some of the basic information
presented here and add technical details that are missing in this first overview
of CANopen functionality.

29

Chapter 1: Understanding Embedded Networking Requirements

Each entry can hold one variable of any type (including a complex structure) and
length. In the following sections the terms Index, Subindex and Subentry will be used
when describing such Object Dictionary entries.

All process and communication related information/data is stored as entries in pre-
defined locations of the Object Dictionary. Unused entries do not need to be imple-
mented.

The Object Dictionary not only provides a way to associate variables with an Index
and Subindex value, it also specifies a data type definition table. The entries starting at
Index 1 are exclusively used to specify data types. Table 1.1 shows the first seven
entries in the Object Dictionary defining some commonly used data types. The com-
plete listing of pre-defined data types is given in Chapter 2, Section 2.2.3. In addition,
CANopen also supports application specific data types that can be added to the list of
supported data types.

It should be noted that the entries mentioned above are only used to define data
types, not to store any variables. The Object Dictionary entries beyond 1000h are used
for variable storage; if an entry is specified to be of type “UNSIGNED16” then an
alternate description of the data type (for example, used in electronically readable
specifications) is used to indicate it is of data type 6.

As specified, the Object Dictionary satisfies the basic networking requirement of
being able to define data types and place variables into the network nodes. If a specifi-
cation says that a node must have a variable called "X-Position" which is located at

Index Data Type

1 BOOLEAN

2 INTEGER8

3 INTEGER16

4 INTEGER32

5 UNSIGNED8

6 UNSIGNED16

7 UNSIGNED32

Table 1.1 Object Dictionary Entries Starting at Index 1 Define Data Types

Embedded Networking with CAN and CANopen

30

Index 2000h, Subindex 0 and its data type is 4, then according to the Object Dictionary
the data type is INTEGER32, an integer value of 32 bits.

Figure 1.8 Mandatory Object Dictionary Entries Supported by all CANopen
Nodes

Figure 1.8 lists the mandatory Object Dictionary entries that every CANopen node
must implement to be CANopen compliant. Primarily, these provide the device type
information that gives an indication of which device profile a device belongs to (if
any), an error register, and an identifier record. The heartbeat is a low-priority status
message sent by a node on a periodic basis. The heartbeat time is listed here because
every node must support either the heartbeat or node guarding mechanism; today
heartbeat is the recommended, preferred method.

1.4.2 Device Profiles

Although the Object Dictionary concept allows for structuring the data that needs to
be communicated, there is still something missing: Which entry in the dictionary is
used for what? The dictionary is far too big to allow the master to take “wild guesses”
and simply try to access certain areas of the dictionary to see if they are supported.

The solution is simple. First of all, there are a few mandatory entries that all CANopen
nodes must support. These include the identity object with which a node can identify
itself, and an error object to report a potential error state. In addition, optional entries
are specified by the CANopen specification. The Device profiles are add-on specifica-

1000h 0 UNSIGNED32 Device Type Information

1001h 0 UNSIGNED8 Error Register

0 UNSIGNED8 = 4 (Number of sub-index entries)
1 UNSIGNED32 Vendor ID

1018h Identity Object

2 UNSIGNED32 Product Code
3 UNSIGNED32 Revision Number
4 UNSIGNED32 Serial Number

Index SubIdx Type Description

1017h 0 UNSIGNED16 Heartbeat Time

31

Chapter 1: Understanding Embedded Networking Requirements

tions that describe all the communication parameters and Object Dictionary entries
that are supported by a certain type of CANopen module. Such profiles are available
for generic I/O modules, encoders and other devices.

A master or configuration tool can read-access the identity object of any slave node
using a Service Data Object or SDO (a messaging protocol – more about this shortly).
As a reply, it receives an SDO with the information about which device profile a mod-
ule conforms to. Assuming the master knows which object entries are defined for a
particular device profile, it now knows which Object Dictionary entries are supported
and can access them directly.

There may be instances where an application requires the implementation of non-
standardized, manufacturer-specific Object Dictionary entries. This is not a problem,
because CANopen is truly "open." Additional entries that disable or enable a certain
functionality that is not covered by one of the existing device profiles can be imple-
mented in any device, as long as they conform to the structural layout of the Object
Dictionary.

1.4.3 Electronic Data Sheets

Electronic Data Sheets (EDS) offer a standardized way of specifying supported Object
Dictionary entries. Any manufacturer of a CANopen module delivers such a file with
the module, which in layout is similar to the “.ini” files used with Microsoft Windows
operating systems. (Note: a future standard for EDS files based on XML is currently in
development.)

An example of an Object Dictionary entry in an EDS file is:

[1000]

ParameterName=DeviceType

ObjectType=0x07

DataType=0x0007

AccessType=ro

DefaultValue=0x00030191

PDOMapping=0

The example above shows the EDS definition of the Object Dictionary entry
[1000h,00h]. The data type is 7 (UNSIGNED32, see Table 1.1).

Embedded Networking with CAN and CANopen

32

Figure 1.9 Electronic Data Sheets (EDS) Specify the Contents of Object
Dictionaries

A CANopen master or configuration tool running on a PC with a CAN card can
directly load the EDS into its set of recognized devices. Once a device is found on the
network, the master or configuration tool will try to find the matching EDS. Once
found, all supported Object Dictionary entries are known by the master/configuration
tool.

Figure 1.9 shows the relationship between Device Profiles and Electronic Data Sheets.
The Device Profile specifies the minimum entries that need to be supported by a
device conforming to the profile. However, the EDS might only specify objects that
are specific to a certain manufacturer or sub-type of module.

Device Profiles and Electronic Data Sheets are the basic functionality needed to meet
the requirement for "off-the-shelf" availability of network devices. From the commu-
nication point of view, any two nodes that conform to the same EDS are interchange-
able - their Object Dictionaries are identical and they have the same communication
behavior.

Master

EDS
Specific
DIGI IN
Module

Device
Profile
DIGI

IN/OUT

Slave 3
DIGI IN OD

Slave 2
DIGI OUT OD

Slave 1
DIGI OUT OD

EDS
Specific

DIGI OUT
Module

33

Chapter 1: Understanding Embedded Networking Requirements

1.4.4 Accessing the Object Dictionary: SDOs

The next requirement is that of a direct communication channel. A master or configu-
ration tool needs to be able to read and/or write the Object Dictionary entries of all the
nodes connected to the network.

CANopen supports such a basic client/server communication method by implement-
ing a point-to-point communication mode that allows for the issuing of read or write
requests to the node’s Object Dictionary. Messages that contain requests or answers to/
from the Object Dictionary are called Service Data Objects (SDO).

It should be noted that by default only one node in the system has the right to actively
initiate this SDO communication mode. Typically this is some sort of master/manager.
However, there are ways for other nodes such as configuration or analysis tools to
request the use of SDO communication channels.

The default SDO communication is a master-driven (client) request/response commu-
nication. The master/manager "owns" all the SDO communication channels and has
one channel available to each node in the system. Only the node that owns a channel
may send an SDO read or write request to the node (and Object Dictionary in it) and
the node addressed must reply with an SDO response either confirming the write
access or replying to the read-request (server, because the node “serves” its Object
Dictionary data to the network).

It should also be noted that SDOs support something called "segmented transfer" that
allows Object Dictionary entries of any size to be transmitted. If the content does not
fit into a single message, it is automatically segmented and distributed via multiple
messages.

The Service Data Object methodology allows master-driven read/write access to all
Object Dictionary entries of all nodes connected to the network. Strictly speaking, this
functionality by itself would already allow simple master-driven network systems. As
both process and configuration data are part of the Object Dictionary, the process data
could be updated using SDO transfers.

However, for a number of reasons this would not be a very efficient implementation.
First, it only implements a polling scheme where the master must handle all inputs

Embedded Networking with CAN and CANopen

34

and outputs. Second, it also adds a lot of message overhead. To get an input to an out-
put, four messages have to be transmitted via the network:

1. Master sends SDO read request to input node.

2. Input node replies with SDO response and the data.

3. Master sends SDO write request to output node.

4. Output node confirms with an SDO response.

Third, by definition SDOs always have a message length of 8 bytes, even if an SDO
only contains one data byte or a simple acknowledgement without process data.

In summary, the Service Data Object ensures a basic access method to any entry in the
entire Object Dictionary of any node. However, for pure process data communication
a more efficient methodology is required.

Because the configuration data is available via SDO accesses, SDOs fulfill the require-
ment for "plug-and-play." A system integrator who needs a specific I/O node, such as
a rotary encoder, can choose any product conforming to the Device Profile for encod-
ers. The system integrator or technician can then use CANopen configuration or mas-
ter software to configure the node to perform the communication actions as
demanded by the specific application.

1.4.5 Increased Performance with PDOs

For most applications, the SDO communication is not efficient enough to handle the
exchange of real process data; the overhead is just too big and the message triggering
methods are too limited (master-driven polling only).

Because CAN supports the multi-master communication concept (any node can send
a message at any time and collisions are resolved by message priority), a more direct
communication method is required to allow for more efficient, higher-priority access
to process data.

The Process Data Object (PDO) implements an optimized solution for placing multi-
ple process data variables from the Object Dictionary into a single CAN message of
up to 8 bytes.

35

Chapter 1: Understanding Embedded Networking Requirements

1.4.5.1 PDO Mapping

A PDO is like a “shortcut” to several process data variables in the Object Dictionary.
Via a process called PDO mapping (all implemented through Object Dictionary
entries), any dictionary entry can be mapped to data in a PDO, the only limit being
that in total a PDO cannot contain more than 8 bytes.

Figure 1.10 Process Data Object (PDO) Mapping Example

Consider the PDO mapping example in Figure 1.10. A CANopen input node supports
two digital inputs of 8 bits each and two analog inputs of 16 bits each. In conformance
with the Device Profile for Generic I/O modules, Object Dictionary entries at Index
6000h store the two digital inputs of 8 bits each, and entries at Index 6401h store the
two analog inputs as two words.

The Object Dictionary entries at Index 1A00h specify the PDO mapping, indicating
which bits of which Object Dictionary entries are used in the Transmit PDO 1
(TPDO1), filling the TPDO bit-by-bit. Note that this mapping can really be done on a

6000h
0 UNSIGNED8

Process data, digital inputs

1 UNSIGNED8 8-bit digital input
2 UNSIGNED8 8-bit digital input

= 2 (Number of sub-index entries)

1A00h
0 UNSIGNED8 = 4 (Number of used map entries)
1 UNSIGNED32 = 6000 01 08h (Idx 6000h, SubIdx 1, 8 bit)

1st Transmit PDO - Mapping

2 UNSIGNED32 = 6000 02 08h (Idx 6000h, SubIdx 2, 8 bit)

6401h
0 UNSIGNED8

Process data, analog inputs

1 UNSIGNED16 16-bit analog input
2 UNSIGNED16 16-bit analog input

= 2 (Number of sub-index entries)

3 UNSIGNED32 = 6401 01 10h (Idx 6401h, SubIdx 1, 16 bit)
4 UNSIGNED32 = 6401 02 10h (Idx 6401h, SubIdx 2, 16 bit)

D IN 2
Byte 2

TPDO1
A IN 1 A IN 2

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

UnusedD IN 1
Byte 1

Index SubIdx Type Description

Embedded Networking with CAN and CANopen

36

bit-level. Each entry starts using the first available free bit in the PDO and occupies as
many bits as it requires.

The second Subentry (Subindex 1) at Index 1A00h maps object 6000h, Subindex 1, 8
bits to the first bits of the TPDO1. The next Subentry (Subindex 2) at Index 1A00h
maps object 6000h, Subindex 2, 8 bits to the next free bits of the TPDO1, and so on. In
this example the remaining bits of TPDO1 (data bytes 7-8) remain unmapped and
unused.

Which PDOs are pre-defined for specific nodes along with their default mapping is
specified in the Device Profile and the Electronic Data Sheet.

1.4.5.2 PDO Linking

When it comes to the communication partners involved, PDOs have a default
arrangement similar to SDOs. The default state is that the master is the only node that
receives Transmit Process Data Objects (TPDO), and only the master may send
Receive Process Data Objects (RPDO) to the slaves. In other words, it ensures that a
pre-defined connection is usable by default, since unique CAN message identifiers
are assigned to each supported PDO – one unique ID for each TPDO and one for each
RPDO. In CANopen terms, the COB ID is the Connection Object Identifier that con-
tains the CAN message ID and some additional configuration bits, such as a bit to
enable and disable the PDO.

Figure 1.11 Default PDO Linking - Master/Slave Model

Slave Y
TPDO_1_Y
TPDO_2_Y

RPDO_1_Y
RPDO_2_Y

Master
RPDO_1_M
RPDO_2_M
TPDO_1_M
TPDO_2_M
RPDO_3_M
RPDO_4_M
TPDO_3_M
TPDO_4_M

Slave X
TPDO_1_X
TPDO_2_X

RPDO_1_X
RPDO_2_X

37

Chapter 1: Understanding Embedded Networking Requirements

During the initialization and configuration cycle, the PDO linking can be changed. A
master could inform one or multiple output modules that they should directly listen
to a specific TPDO of an input module. Again, a TPDO correlates to a unique COB ID,
a CAN message identifier. So in short, a node is informed as to which message frames
it should listen to and which ones it can ignore.

Figure 1.12 Optimized, Direct PDO Linking

Once these new linking settings are done and the network enters into the operational
mode, the master would not need to get involved in the process data communication
and could focus on other things like network management.

1.4.5.3 PDO Triggering

Now that a "shortcut" is available that allows several Object Dictionary entries to be
packed into one message, what are the options for triggering a PDO? CANopen sup-
ports a total of four trigger modes:

1. Event driven: If the input device recognizes a change-of-state (COS) on any of
its inputs, it updates the data in the Object Dictionary and the PDO and then
transmits the PDO. This mode allows for some of the fastest response times.

2. Time driven: A PDO can be configured to be transmitted on a fixed time basis,
for instance every 50 milliseconds. This mode helps to make the total busload
more predictable.

TPDO_1_Y
TPDO_2_Y
RPDO_1_Y
RPDO_2_Y
RPDO_3_Y

Device X

RPDO_1_Z
RPDO_2_Z
RPDO_3_Z
TPDO_1_Z
TPDO_2_Z

Device Z Device Y

R
P

D
O

_1
_X

R
P

D
O

_2
_X

TP
D

O
_1

_X
TP

D
O

_2
_X

Embedded Networking with CAN and CANopen

38

3. Individual Polling: Using a regular CAN feature, the remote request frame, a
PDO is transmitted only if the data is specifically requested by another node.
Note: Using this feature in new designs is not recommended, as the specific
implementation of remote requests varies between different CAN controllers!

4. Synchronized: A special mode allowing for a synchronized polling as
required by many motion control applications.

These trigger modes are explained in detail in Chapter 2, Section 2.5.

The PDOs allow for the implementation of very efficient and flexible communication
models. Being able to put multiple variables into a single message and sending them
directly from one node to another (or a group of others) is a network service that is
rarely available in more traditional industrial automation networks.

1.4.6 Network Management (NMT)

CANopen allows for a Network Management Master to watch over all nodes to see if
they are operating within their parameters. Upon failure of a node or the reception of
certain alarm/emergency messages it can initiate the appropriate recovery or shut-
down procedures.

There are different options as to how this supervising of nodes is implemented. The
latest version of CANopen recommends the usage of heartbeat messages. This allows
nodes to supervise each other, even without a Network Management Master (if neces-
sary).

The idea is that each node emits a regular heartbeat message as long as it is alive and
operating within its parameters. If all nodes produce such a heartbeat, every node can
monitor all the heartbeats of its communication partners. This is especially helpful in
COS (change-of-state) systems, where data messages can occur very sporadically and
might not be transmitted for a long time. Using the heartbeat protocol, all nodes at
least know that their communication partners are operational, even if they do not
receive PDOs with new data from them.

39

 2 The CANopen Standard

“The most important thing in a programming language is the name.
A language will not succeed without a good name.

I have recently invented a very good name
and now I am looking for a suitable language.”

Donald Knuth

This chapter focuses on the technical side of CANopen as specified by CiA DS301
V4.02 (CAN in Automation Draft Standard, www.can-cia.org) [CiADS301] and
EN50325-4 (Cenelec European Committee for Electrotechnical Standardization) and
also introduced by [Farsi99]. Besides DS301, there are many additional CANopen
related standards published by the CiA. These include several frameworks, device
profiles and application profiles. An overview of these standards follows in the next
chapter.

CANopen is “open” in three ways: First, CANopen is “open” because the technology
is laid open and by itself does not require payment of any license fees.

Second, CANopen enables a network designer to combine both CANopen compliant
and proprietary CAN nodes into one network. It just needs to be ensured that the
CANopen nodes and the proprietary CAN nodes do not interfere with the CAN mes-
sage identifiers used by each other.

Embedded Networking with CAN and CANopen

40

Third, CANopen can easily be extended or customized towards a specific application.
CANopen consists of a small set of mandatory functionality and a huge set of optional
functionality. Only the mandatory functionality must be implemented in each node to
be CANopen compliant. The system designer may pick from the pool of optional
functionality exactly those functions needed for a particular application. In addition,
CANopen is expandable and tolerates future functionality, even allowing manufac-
turers to implement functionality that is not yet available in the CANopen drafts or
standards.

2.1 Using Identifiers and Objects

One of the challenges for newcomers to any network technology is to catch up on the
terminology used and understand the different terms and abbreviations. In CANopen
the most often used words are “identifiers” and “objects.” However, there are many
kinds of identifiers and objects in CANopen, so it is extremely important to recognize
the differences.

There are 3 different kinds of “identifiers” within CANopen: the Node ID, the Object
Dictionary Indexes, and the COB ID or CAN ID.

When explaining network protocol standards, tutors and authors face the
“structuring challenge.” Do we explain the protocol stack bottom-up (starting
at lowest level working upwards) or top-down (starting at highest level work-
ing downwards)? The benefit of a top-down approach is that one starts directly
at the level to which the application interfaces. So it is up to each individual
student or reader to follow along to her/his desired level of detail. In general,
we stay with the top-down approach and only deviate from it if we think it
helps to better understand the concept under discussion.

Objective

Newcomers to CANopen easily confuse some of the terms used. Often this is
due to the confusing and sometimes conflicting usage of the words “identifier”
and “object.”

This section is intended to make you aware of this, and to clarify usage.

41

Chapter 2: The CANopen Standard

• The Node ID is used to identify a specific CANopen node. The allowed
range for Node IDs is from 1 to 127.

• The Object Dictionary’s Index and Subindex (16-bit and 8-bit “identifier”)
are used to identify a specific variable (which can be process data or config-
uration data) within a node. The Object Dictionary is described in detail in
the next section.

• The COB ID is the “Connection Object ID” and primarily identifies a spe-
cific message on the network. This ID directly corresponds to the CAN mes-
sage ID. In a CANopen system, a COB ID is unique and used for one
specific communication channel (from one node to one or more other
nodes). In addition, the COB ID may include control bits, such as an enable/
disable bit.

CANopen also uses multiple definitions involving the term “object.” There are objects
such as Object Dictionaries (OD), Process Data Objects (PDO), Service Data Objects
(SDO) and Connection Objects (COB), among others.

• The Object Dictionary’s primary function is to store variables and constants,
both process data and configuration data, in some sort of look-up table. The
Object Dictionary is described in detail in the next section.

• Process Data Objects are messages (or frames) that contain process data.

• Service Data Objects are messages (or frames) that contain service/configu-
ration data.

• COB IDs are used whenever a message (or frame) needs to be assigned to
implement a service. For example, each SDO requires the assignment of two
COB IDs: one for the client sending requests to the server and one for the
server sending responses back to the client.

Embedded Networking with CAN and CANopen

42

2.2 The CANopen Object Dictionary

2.2.1 What is the Object Dictionary?

The Object Dictionary (called “OD” for short) is like a table that holds all network-
accessible data, and each CANopen node must implement its own Object Dictionary.

The Object Dictionary contains a description of the CANopen configuration and func-
tionality of the node it is stored in, and may be read and written to by other CANopen
nodes. In addition, the Object Dictionary is used for storing application specific infor-
mation that is used by the node in which it is stored. This information can also be
used by other nodes on the network.

By writing data to the entries in the Object Dictionary of a node (and sometimes by
reading from them), the node can be instructed to perform an operation of some kind,
for example sampling current temperature or G-forces and making the sampled data
present in the Object Dictionary to be read by others.

By reading the entries in the Object Dictionary of a node, other nodes may find out
some information about what the node does and how it operates. Whether complete
descriptive information or only minimal information about the node is present in the
Object Dictionary can vary from application to application depending on the require-
ments of the network design. However, some information in the Object Dictionary is
mandatory and must be present. Which information is mandatory often depends on
which CANopen features are implemented by the node.

Objective

This section introduces one of the core aspects of CANopen, the Object Diction-
ary.

The Object Dictionary was briefly discussed in Chapter 1, however this section
will provide in depth information on how the Object Dictionary is organized,
how to read the Object Dictionary entries in the CANopen specifications, the
various types of entries, what the Object Dictionary contains and how to make
accessing the Object Dictionary easy.

43

Chapter 2: The CANopen Standard

2.2.2 Object Dictionary Organization and Contents

The Object Dictionary is organized as a collection of entries, rather like a table. Each
entry has a number called an Index, which is used to access the entry. The Index is 16
bits in size giving a maximum of 65,536 entries. Each entry in the Object Dictionary
may have up to 256 Subentries, referenced using an 8-bit value called the Subindex.
Each entry has at least one Subentry.

Not all entries in the Object Dictionary are implemented or used, creating gaps in the
table. For example, the entries with Indexes 0000h - 09FFh are often not implemented,
but the entry with Index 1000h is always implemented.

It is common practice to use hexadecimal (base 16) when referring to Object Diction-
ary Indexes and Subindexes. The CANopen specifications use hexadecimal notation
for these values.

Object Dictionary Example

Suppose a CANopen network implements a system that precisely controls
motors or some other type of precision actuator (perhaps for a robot arm) and
that the performance of the motors varies with temperature.

In implementing the CANopen network a node may be responsible for control-
ling the motors or actuators. The Object Dictionary of that node can contain the
current position of each of the motors, allowing it to be read by any other node
on the network. In addition, other nodes on the network are able to write new
positions to the Object Dictionary of the node, thereby causing the node to
make the motors move as required.

A second node on the network contains a temperature sensor and knowledge
of how temperature affects the motors. During power-up of the network, a net-
work master stores initial calibration data in the node by writing to the node’s
Object Dictionary. This calibration data is then made available to other nodes
on the network by reading the Object Dictionary. As the temperature changes,
the node modifies the calibration data stored in it, and therefore the data avail-
able to other nodes reading the Object Dictionary.

Embedded Networking with CAN and CANopen

44

For entries that store only one value, there is only one Subentry at Subindex 00h.
Entries that store more than one value must have a Subentry for each value, and store
the number of the highest Subentry at Subindex 00h.

When referring to an Object Dictionary entry with only one Subindex the Subindex is
omitted from the description. For example, consider the phrase “reading Index
1000h.” The lack of a Subindex implies that the entry has only one Subindex, num-
bered 00h.

The Object Dictionary contains several different types of data. The data may be stored
in standardized and custom data types (integers, strings, etc.) and the descriptions of
the data types used are also stored in the Object Dictionary. In addition, the Object
Dictionary stores the configuration information for the CANopen communications
used by the node, any manufacturer specific information, and various data for device
profiles.

The 65,536 possible Indexes are divided up into sections structuring the Object Dic-
tionary.

Object Dictionary Examples

Index 2000h stores a single 8-bit value:

Index 2000h, Subindex 00h = 8-bit value

Index 2001h stores two 8-bit values:

Index 2001h, Subindex 00h = 2
Index 2001h, Subindex 01h = first 8-bit value
Index 2001h, Subindex 02h = second 8-bit value

Index Range Description
0000h Reserved

0001h – 0FFFh Data Types

1000h – 1FFFh Communication Entries

2000h – 5FFFh Manufacturer Specific

Table 2.1 Object Dictionary Organization

45

Chapter 2: The CANopen Standard

2.2.3 Data Types

The Object Dictionary may store both standard/pre-defined and manufacturer
defined data types. In addition, the CANopen specification defines two basic classes
of data types, Standard and Complex. To organize the range of Indexes used for defin-
ing the data types, the data types section of the Object Dictionary is further divided
into the sections shown in Table 2.2.

The Multiple Device Modules data types stores both standard and complex data types
when more than one device profile is used.

6000h – 9FFFh Device Profile Parameters

A000h – FFFFh Reserved

The Object Dictionary entries in the data type section (0001h to 0FFFh) do not
store any variables; they are only used for the definition of data types. If physi-
cally implemented in a node, reading these entries returns the data size of that
data type in bytes, or an error if the data type is not used in the node. This
mechanism allows a configuration tool to read the data types section to deter-
mine which data types are actually used in the node.

Index Range Description
0001h – 001Fh Standard Data Types

0020h – 0023h Pre-defined Complex Data Types

0024h – 003Fh Reserved

0040h – 005Fh Manufacturer Complex Data Types

0060h – 007Fh Device Profile Standard Data Types

0080h – 009Fh Device Profile Complex Data Types

00A0h – 025Fh Multiple Device Modules Data Types

0260h – 0FFFh Reserved

Table 2.2 Data Type Storage in the Object Dictionary

Index Range Description

Table 2.1 (Continued) Object Dictionary Organization

Embedded Networking with CAN and CANopen

46

When implementing a CANopen node it is possible to define custom complex data
types in the Manufacturer Complex Data Types section of the Object Dictionary.

2.2.3.1 Standard Data Types

Table 2.3 lists the Standard Data Types, their descriptions and the Object Dictionary
locations where they are defined.

Standard Data Type Description
Stored in
OD Index

BOOLEAN Single bit value 0 or 1 indicating false or
true 0001h

INTEGER8 8-bit signed integer 0002h

INTEGER16 16-bit signed integer 0003h

INTEGER24 24-bit signed integer 0010h

INTEGER32 32-bit signed integer 0004h

INTEGER40 40-bit signed integer 0012h

INTEGER48 48-bit signed integer 0013h

INTEGER56 56-bit signed integer 0014h

INTEGER64 64-bit signed integer 0015h

UNSIGNED8 8-bit unsigned integer 0005h

UNSIGNED16 16-bit unsigned integer 0006h

UNSIGNED24 24-bit unsigned integer 0016h

UNSIGNED32 32-bit unsigned integer 0007h

UNSIGNED40 40-bit unsigned integer 0018h

UNSIGNED48 48-bit unsigned integer 0019h

UNSIGNED56 56-bit unsigned integer 001Ah

UNSIGNED64 64-bit unsigned integer 001Bh

REAL32 32-bit single precision floating point
number 0008h

REAL64 64-bit double precision floating point
number 0011h

Table 2.3 Standard Data Types

47

Chapter 2: The CANopen Standard

Each Subindex in the Object Dictionary uses one of the Standard Data Types listed in
this section.

Often a shorthand notation is used to refer generically to some of the data types:

The DOMAIN type is a block of application specific data that can be any length
desired. This provides an open-ended and flexible data type that is often used for var-
ious purposes, from chunks of configuration data to node firmware. Detailed descrip-
tions of the other data types may be found in the CANopen specification [CiADS301].

Data types consisting of multiple bytes are transferred using little-endian format,
which specifies that the least significant byte of the value is stored or transferred first,
and the most significant byte is stored or transferred last.

VISIBLE_STRING A text string containing printable ASCII
characters 0009h

OCTET_STRING An array of 8-bit unsigned integers 000Ah

UNICODE_STRING An array of 16-bit unsigned integers 000Bh

TIME_OF_DAY
48-bit value representing days since
January 1, 1984 and milliseconds since
midnight

000Ch

TIME_DIFFERENCE 48-bit value representing a number of
days and milliseconds since midnight 000Dh

DOMAIN Block of data 000Fh

INTEGERx a signed integer stored using x bits

REALx a floating point value stored using x bits

UNSIGNEDx an unsigned integer stored using x bits

VISIBLE_STRINGx a string containing x characters

OCTET_STRINGx a string containing x bytes

Table 2.4 Data Type Shorthand Notation

Standard Data Type Description
Stored in
OD Index

Table 2.3 (Continued) Standard Data Types

Embedded Networking with CAN and CANopen

48

A CANopen node can also allow the reading of the Object Dictionary entries that
define the standard data types. When read, they return the bit size of the type. For
example, the type UNSIGNED16 is defined at Object Dictionary entry 0006h. When
entry 0006h is read it can return the value 16.

2.2.3.2 Complex Data Types

Complex Data Types are types that contain one or more of the standard data types
grouped together, allowing sets of data to be constructed. This is analogous to struc-
tures in the C programming language.

Complex Data Types are really a shorthand or simplification for describing Object
Dictionary entries that use different types for each of their Subentries, and are useful
when a specific collection of data types are to be used frequently.

Standard Data Type Example

Suppose we wish to store a current temperature value in the Object Dictionary.
We could do this by using a REAL32 at Object Dictionary entry 2000h. Recall
that each Object Dictionary entry must have at least one Subentry that uses
Subindex 00h. Therefore at Index 2000h, Subindex 00h the data type will be
REAL32.

Complex Data Type Example

Let’s suppose we want to store the details of an error message. We would need
to know the error number and the text for the error message. To do this we
could define a complex data type called ERROR_MESSAGE defined as:

UNSIGNED16 - Error Number
VISIBLE_STRING - Error Text

Once the type is defined we could use it in the Object Dictionary. For example,
we could say that Object Dictionary entries 2000h – 200Fh have the type
ERROR_MESSAGE in order to create a place to store 16 error messages. Taking
a closer look at Object Dictionary Entry 2000h, it would look like the following:

Index 2000h:
Subindex 00h - stores the value 2 indicating highest Subindex of 2
Subindex 01h - has the type UNSIGNED16
Subindex 02h - has the type VISIBLE_STRING

49

Chapter 2: The CANopen Standard

There are four pre-defined complex data types defined in the CANopen specification.
The types are shown in Table 2.5.

Taking a closer look at the PDO_COMMUNICATION_PARAMETER complex data
type in the CANopen specification reveals it is defined as follows:

The type is made up of a collection of 8-bit, 16-bit and 32-bit values. Note that Subin-
dex 00h always has the type UNSIGNED8 when there is more than one Subindex.

Data Type Description
Stored in
OD Index

PDO_COMMUNICATION_
PARAMETER

Record to hold the communication
parameters used for a PDO 0020h

PDO_MAPPING Record to hold the mapping parame-
ters used for a PDO 0021h

SDO_PARAMETER Record to hold the communiucation
parameters used for a SDO 0022h

IDENTITY Record to hold identity information,
such as vendor ID and product ID 0023h

Table 2.5 Predefined Complex Data Types

Index Subindex Name Type

0020h

00h Number of highest Subindex UNSIGNED8

01h COB ID UNSIGNED32

02h Transmission Type UNSIGNED8

03h Inhibit Time UNSIGNED16

04h Reserved UNSIGNED8

05h Event Timer UNSIGNED16

Table 2.6 Complex Data Type Example

Embedded Networking with CAN and CANopen

50

A CANopen node can allow the reading of the Object Dictionary entries that define
the complex data types. When read, they return the Object Dictionary Index for the
data type encoded as an UNSIGNED8.

2.2.4 Communication Entries

The communication entries in the Object Dictionary describe most of the aspects of
the CANopen communications used by the node. Many of the entries are or can be
made writeable, allowing configuration of a node by other nodes on the network. The
entries occupy the Index range 1000h – 1FFFh in the Object Dictionary.

Table 2.7 gives an overview of all the communication entries. Following the table, the
mandatory entries are described to give some examples for available entries. Manda-
tory entries are those that must be implemented in a node in order to be CANopen
compliant. An additional listing can be found in the reference section and in the CAN-
open standard [CiADS301].

Reading Complex Data Type Example

Suppose the Error Message type given earlier was defined in the manufacturer
specific complex data type area at Index 0040h. Reading each of the three Sub-
indexes would return the following values:

Index 0040h:
Subindex 00h - returns 2 for highest number of Subindex
Subindex 01h - returns 06h for UNSIGNED16
Subindex 02h - returns 09h for VISIBLE_STRING

Index Name
1000h Device Type

1001h Error Register

1002h Manufacturer Status Register

1003h Pre-defined Error Field

1005h COB ID SYNC

1006h Communication Cycle Period

1007h Synchronous Window Length

Table 2.7 Communication Entry Overview

51

Chapter 2: The CANopen Standard

2.2.5 Mandatory Entries

2.2.5.1 Device Type (1000h)

The Device Type is a 32-bit value that describes in a limited way some of the capabili-
ties of the node. For example, it can describe if the node is a digital input/output mod-
ule, and if so, whether inputs and/or outputs are implemented.

1008h Manufacturer Device Name

1009h Manufacturer Hardware Version

100Ah Manufacturer Software Version

100Ch Guard Time

100Dh Life Time Factor

1010h Store Parameters

1011h Restore Default Parameters

1012h COB ID Time

1013h High Resolution Time Stamp

1014h COB ID EMCY

1015h Inhibit Time EMCY

1016h Consumer Heartbeat Time

1017h Producer Heartbeat Time

1018h Identity Object

1200h – 127Fh Server SDO Parameters

1280h – 12FFh Client SDO Parameters

1400h – 15FFh RxPDO Communication Parameters

1600h – 17FFh RxPDO Mapping Parameters

1800h – 19FFh TxPDO Communication Parameters

1A00h – 1BFFh TxPDO Mapping Parameters

Index Name

Table 2.7 (Continued) Communication Entry Overview

Embedded Networking with CAN and CANopen

52

2.2.5.2 Error Register (1001h)

The Error Register is an 8-bit value that can indicate if various generic errors have
occurred in the node, for example, current error, temperature error, communication
error, etc. The only bit that must be implemented is the generic error bit. There is a
manufacturer specific bit available to indicate an application specific error. This byte
is also transmitted in Emergency Objects.

2.2.5.3 Guard Time (100Ch)

Nodes must support either heartbeats or node guarding. Both mechanisms are dis-
cussed later in this chapter. To summarize, these mechanisms allow nodes to deter-
mine if a specific node is alive and well and able to communicate to the network,
along with the node’s current state. The Guard Time is a 16-bit value that specifies
how frequently the node guarding request is transmitted by the master or must be
received by the node. This entry must be implemented if heartbeats are not used.

2.2.5.4 Life Time Factor (100Dh)

The Life Time Factor is an 8-bit value that works with the Guard Time. It specifies
how many multiples of the Guard Time must pass without transmission from the
master or reception of a response from a slave before an error condition is generated.
This entry must be implemented if heartbeats are not used.

2.2.5.5 Producer Heartbeat Time (1017h)

If the node is not using node guarding then it must implement heartbeats. This entry
specifies how often the node should transmit heartbeat messages. It can be set to zero,
however, to disable heartbeat transmission. This entry must be implemented if node
guarding is not used.

2.2.5.6 Identity Object (1018h)

The Identity Object provides identifying information about the node. It must contain
at a minimum the CAN In Automation assigned Vendor ID, which is unique to a par-
ticular vendor. It may also contain a product code to identify the product the node is
in, a revision number and a serial number.

53

Chapter 2: The CANopen Standard

2.2.6 Manufacturer Specific Entries

This section of the Object Dictionary, using Indexes from 2000h to 5FFFh is left com-
pletely open by the CANopen specification for application specific use. Whenever the
application requires storage of data or configuration of operations that are outside of
any CANopen standard (including frameworks, device profiles and other standards),
they are located in this section of the Object Dictionary.

2.2.7 Device Profile Parameters

The CANopen specification [CiADS301] provides a variety of communication ser-
vices. Once a specific node is implemented, the designer of the node (or the network
where it will be used) has to specify which of these communication services are used
and how. A Device Profile specifies the process data variables a node knows and the
default configuration and communication settings. There are proprietary profiles, as
well as CiA standardized Device Profiles and Application Profiles. For more informa-
tion on these, see Chapter 3.

CiA Device Profiles standardize specific types of nodes, for example a generic Input/
Output module. Specifications are published for various device types and, in order to

Manufacturer Specific Entry Example

Suppose our node featured a real time clock. We might want to make the cur-
rent time available in an Object Dictionary entry so other nodes on the network
can read it. We could achieve this by defining the following Object Dictionary
entry in the Manufacturer Specific section:

Index 2000h:
Subindex 00h - 3 (UNSIGNED8)
Subindex 01h - Hours (UNSIGNED16)
Subindex 02h - Minutes (UNSIGNED8)
Subindex 03h - Seconds (UNSIGNED8)

Embedded Networking with CAN and CANopen

54

implement them, they use Object Dictionary entries located in the Device Profile
Parameters section.

2.2.8 Reading the CANopen Specification

The following headings are used in the specifications to describe Object Dictionary
entries. Their names are sometimes used inconsistently so both versions (where appli-
cable) are listed below.

 The bullets after the table describe each of the headings further.

Device Profile Example

In the Device Profile CiA DS 401 Generic I/O [CiADS401] the Object Dictionary
entry 6000h allows up to 2032 digital inputs to be read, 8-bits at a time.

Index 6000h:
Subindex 00h - 1 – 254(UNSIGNED8)
Subindex 01h - Read inputs 1 – 8(UNSIGNED8)
Subindex 02h - Read inputs 9 – 16(UNSIGNED8)
--
--

The CANopen specification [CiADS301] can be hard to follow but, like most
things, once you have stared at it for long enough it starts to make sense. This
is especially true if you figure out which of the many standards, frameworks
and device profiles available are relevant for your application.

This section aims to give you a jump-start on understanding the Object Dic-
tionary descriptions contained in the specification.

Heading Description
Index the Object Dictionary Index

Object or Object Code the Object type

Name the name of the entry

Type or Data Type the data type

Table 2.8 Specification Headings

55

Chapter 2: The CANopen Standard

• Index has been covered previously.

• The Object or Object Code is used to indicate the type of the object as a
whole.

• The Object Codes are not stored in the Object Dictionary, and therefore can-
not be read from the Object Dictionary. By reading the number of Subin-
dexes and knowing the type of each Subindex (which is necessary for using
the data read), along with the Index of the entry (is it a data type declaration
or not?), the Object Code information is largely redundant and can be
ignored. Note, however, that it is present in the Electronic Data Sheets and
Device Configuration Files which are explained in the following section.

• Name and Data type have been covered previously.

Acc. or Access
Attributes read and write attributes

M/O or Category indicates if the entry is mandatory or
optional

Object Code Description
NULL No data fields

DOMAIN A large variable amount of data

DEFTYPE Defines a standard data type

DEFSTRUCT Defines a complex data type

VAR A single value

ARRAY An entry with more than one Subindex, with each Subindex
(except 00h) having the same data type

RECORD An entry with more than one Subindex, with each Subindex
(except 00h) having differing data types

Table 2.9 Object Codes

Heading Description

Table 2.8 (Continued) Specification Headings

Embedded Networking with CAN and CANopen

56

• The access attributes are straightforward and indicate whether an entry can
be read, written or both.

• The M/O or Category sections indicate if a specific entry or Subindex needs
to be implemented or not for CANopen conformance.

2.3 The Electronic Data Sheets (EDS) and Device
Configuration Files (DCF)

In order to provide CANopen software tools such as monitors, analyzers and configu-
ration tools with a way to recognize which Object Dictionary entries are available in
CANopen nodes, an electronically readable file format is required. CANopen speci-

Attribute Description
RW Read and write access

WO Write only

RO Read only

CONST Read only, Data is constant

Table 2.10 Access Attributes

Category Description
Mandatory Must be implemented

Optional May be implemented if desired

Conditional Must be implemented if certain other entries or features are
implemented

Table 2.11 Categories

Objective

EDS and DCF file formats are used in CANopen to describe the Object Diction-
ary implemented in a specific node. In this section we point out how these files
are generated, maintained and used.

57

Chapter 2: The CANopen Standard

fies such a format called Electronic Data Sheet (EDS). An EDS is the electronically
readable version of an Object Dictionary specification.

2.3.1 EDS Format and Editing

The format of the EDS is specified in [CiADSP306]. It is similar to that of Microsoft
Windows “.ini” files and a regular ASCII-editor could be used to read and/or modify
it. However, in order to be compliant with the standard, entries must not only have
the appropriate parameters but several entries must also be cross-referenced. Thus
trying to edit and maintain an EDS with an ASCII-editor, although possible, is not
really practical.

Excerpts from a typical EDS file:

[1018]

ParameterName=Identity object

ObjectType=0x9

SubNumber=3

[1018sub0]

ParameterName=Number of entries

ObjectType=0x7

DataType=0x0005

AccessType=ro

DefaultValue=3

PDOMapping=0

LowLimit=1

HighLimit=4

[1018sub1]

ParameterName=Vender ID

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=0x0400005A

PDOMapping=0

[1018sub2]

ParameterName=Product code

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=0x03

PDOMapping=0

[1018sub3]

ParameterName=Revision number

Embedded Networking with CAN and CANopen

58

ObjectType=0x7

DataType=0x0007

AccessType=ro

DefaultValue=0x0000002F

PDOMapping=0

There are several commercial software tools available that support the generation and
maintenance of EDS files. These tools take adding or removing dictionary entries to
the drag & drop level; all standard Object Dictionary entries are pre-defined and can
be added to a new EDS with a few mouse clicks. As an example, Figure 2.1 shows
how such an editor displays the Identity Object entry (1018h).

Figure 2.1 Screen Shot of Vector's CANeds Editor

59

Chapter 2: The CANopen Standard

2.3.2 EDS Usage

There are several tools available that can work with EDS files. High-end CAN moni-
tors and analyzers or CANopen configuration tools can extract symbolic information
from these files and use them in their displays. A monitor or analyzer with this fea-
ture can listen to CANopen traffic on the network and associate the symbols of these
files with the messages seen on the network. So if there is a process data variable
defined in an EDS that is called “Boiler Temperature” and that value is transmitted
over the CANopen network, these tools can directly make the symbolic link and dis-
play the text “Boiler Temperature” along with the current value transmitted.

Other tools that work with EDS files are high-end CANopen masters. Such a CANo-
pen master is typically used in a system to receive all inputs, run some control algo-
rithm and then transmit all outputs. A CANopen master that can read EDS files can
use the symbolic names from the EDS file in the control algorithm. So in the case of
the example above a variable called “Boiler Temperature” is available to be used by
the control algorithm.

Another tool which utilizes the EDS file is the CANopen Conformance Test. The
CANopen Conformance Test is available through National Instruments and is used
by the CiA to test if a CANopen device is CANopen compliant. This test not only
checks for CANopen conformance in general, it also tests if a node implements all the
Object Dictionary entries specified in its EDS file.

For those of you who would still like to use an ASCII editor we recommend
starting with one of the examples published at www.CANopen.us. When edit-
ing EDS files “manually” with an ASCII editor you might want to double-
check after any changes to see if it still conforms to the standard. The web page
listed above also has a link to a free EDS checker tool offered by Vector. This
tool checks to see if an EDS conforms to the standard [CiADSP306] and dis-
plays appropriate error messages if not.

Embedded Networking with CAN and CANopen

60

2.3.3 DCF Format and Usage

The format of the Device Configuration File is almost identical to the EDS. However,
the usage is very different and justifies giving it a separate name and not just referring
to it as some sort of “EDS variant.”

The EDS defines the format of an Object Dictionary that may apply to multiple nodes.
The idea of a DCF is to store the configuration parameters of a specific node.This can
include minimum, maximum and default values for each entry. The DCF stores a spe-
cific setting, the current value that an Object Dictionary entry has or should have. The
idea is that a CANopen configuration tool or master can use the EDS to find out
which entries are accessible in a node, and they can use a DCF to store (or retrieve) the
values that a node has in these Object Dictionary entries. Thus it becomes possible to
save and restore all settings of a node: to save current settings a tool/master would
read all Object Dictionary entries of a node and store the values read in a DCF. A

Engineers working on applications that do not require 100% CANopen confor-
mance might be tempted to skip writing an EDS file for their node(s). As con-
sultants with practical experience in the field, we strongly recommend that you
create EDS files even in those cases where CANopen compliance is not
required.

Any CANopen network design will eventually reach the state where two or
more nodes will communicate with each other. On that first contact, there is a
good chance that the communication will not happen precisely as the system
designer(s) had in mind. So then the next question is: Which of all the nodes con-
nected is the one that is doing something wrong?

If the only basis for each node’s implementation is a written specification, the
debugging process to follow will always be locked to “manual” mode; read the
specification for all nodes suspected of ill behavior, interpret it (and there is
always room for interpretation) and double-check what the nodes are actually
doing.

However, if EDS files are used, the debugging process can eventually be auto-
mated. There is only minimal room for “interpretation variance” and there are
several tools (as listed above) that directly work with EDS files to simplify the
debugging process. Even the CANopen conformance test can be useful for this
scenario: it can be used to confirm that the features that should be CANopen
compliant are indeed CANopen compliant.

61

Chapter 2: The CANopen Standard

restore of a node can be performed by reading the values from the DCF for the node
and writing them to the Object Dictionary entries.

2.4 Accessing the CANopen Object Dictionary (OD)
with Service Data Objects (SDO)

2.4.1 Client and Server

Each CANopen node not only implements its own Object Dictionary, it also imple-
ments a server that handles read and write requests to its Object Dictionary. So a mas-
ter or configuration tool acts as a client to that server and can send read or write
requests to it. As an example, a configuration tool could send a request: "Node Num-
ber 5, I need to know what you have at Index 1000h, Subindex 00h." Node 5 would
recognize the request and reply with a response: "Whoever requested it, here is the
data that I have in my Object Dictionary at Index 1000h, Subindex 00h.”

2.4.2 Message Identifiers Used for SDOs

As discussed earlier, CANopen uses unique message identifiers – one message ID is
only used for one purpose in an entire CANopen network (this is a requirement of the
CAN arbitration feature that is explained in Section 5.2.8). There are some exceptions
to this rule that are primarily used for specific configuration services during initializa-
tion, test or debugging.

As an example, a system could feature several digital I/O modules that are all
implemented in accordance with an EDS for “generic I/O.” However, during
operation some of these nodes might be configured to be exclusively inputs
and others to be exclusively outputs. The specific configuration of each individ-
ual node is stored in its own Device Configuration File (DCF).

Objective

Now that we have a method for defining the data in a node (the Object Diction-
ary) that can be shared via the network, we need a method to access it. This sec-
tion explains the Service Data Objects (SDO) – the method used to implement
generic access to the Object Dictionary of a node by using request and response
messages.

Embedded Networking with CAN and CANopen

62

In order to implement a point-to-point communication channel two such message
identifiers need to be reserved; one to send requests to a specific node and one for
responses sent by that node. Figure 2.2 shows the message identifiers that are used by
default. The message identifier that is used to send a request to a specific node is cal-
culated by adding the Node ID of that node (1-127) to a base address of 600h. Thus
addresses 601h to 67Fh are used to provide 127 channels from one client to up to 127
servers. The message identifier that is used to send a response from each node back to
the client who sent the request is calculated by adding the Node ID of the node (1-127)
to a base address of 580h. Thus addresses 581h to 5FFh are used to provide 127 chan-
nels from as many as 127 servers back to the client.

Figure 2.2 Default Message IDs for SDO Communication

It should be noted that the default scheme used for assigning the message identifiers
only allows one client to be on the network. Because message IDs must be unique, no
two devices have the right to send SDO requests to the same node at the same time.
The entire SDO communication was designed around the idea that only one node in
the system needs the power to access each and every Object Dictionary entry in each
and every node. This is either a configuration tool or some sort of master responsible
for configuration.

NMT Master
(client)

Sends SDO
requests to each

node by using
message ID:

600h + Node ID

Expects reply
in message ID:
580h + Node ID

Node 3 (server)
Tx SDO: 583h
Rx SDO: 603h

Node 2 (server)
Tx SDO: 582h
Rx SDO: 602h

Node 1 (server)
Tx SDO: 581h
Rx SDO: 601h

63

Chapter 2: The CANopen Standard

2.4.3 SDO Message Contents

Every SDO request and response message contains 8 bytes of data of which the first
byte is a so-called “specifier.” The bits in it primarily specify whether this message
contains a read, write or abort (error indication). Other bits are used to indicate if this
is an “expedited transfer” where all data exchanged is part of this message, or a “seg-
mented transfer” where the data does not fit into one message and multiple messages
are used. The optional "block transfer" is optimized for the transfer of large data
blocks and is described in Section 2.8.5.

Typically bytes 2 to 4 contain the “multiplexor” – the combination of 16-bit Index and
8-bit Subindex identifying the Object Dictionary entry that is accessed with this SDO.
The byte order for the multiplexor is as follows: low byte of 16-bit Index, high byte of
16-bit Index and 8-bit Subindex.

The remaining bytes (5 to 8) are used to transmit data where applicable. If the data
transferred is 4 bytes or less it is typically part of the message (expedited), otherwise it
follows in additional messages (segmented).

Advanced Features

Where required, CANopen optionally allows the implementation of either a
method to perform SDO channel sharing or a method that provides additional
SDO channels. The latter allows a single node to implement multiple SDO
servers. So besides using just one message identifier pair to reserve a request
and a response channel for the SDO, such nodes would reserve additional mes-
sage identifier pairs for each additional SDO server implemented. A node with
two servers could provide both a master and a configuration tool access to its
Object Dictionary at the same time. There is no default scheme regarding
which message identifiers should be used for such additional channels.

The other method for allowing multiple clients is to implement SDO channel
sharing. Instead of having the servers implement multiple SDO channels the
clients implement a method of sharing the existing channels. This is imple-
mented via a so called SDO Manager that is responsible for all SDO channels
and by default is the only client that may use any of the channels. Other clients
that would like to use a specific SDO channel (such as a configuration tool only
connected to the network for maintenance) have to request the channel from
the SDO Manager and may only use it after the SDO Manager assigns it to
them. This method is described in detail in [CiADS302].

Embedded Networking with CAN and CANopen

64

In the case of expedited transfers the number of bytes used for data is indicated by
additional bits in the specifier.

In the case of a segmented transfer the first SDO request and SDO response do not
contain data, but an indication of how many bytes will need to be transferred in total.
Each segment transmitted after that also contains the specifier byte and up to 7 data
bytes. The specifier contains bits that specify if this is the last segment and if it is, how
many of bytes in the current message are data bytes that belong to the transfer.

At any time during a transfer, any of the two communication partners may abort the
communication by sending an SDO Abort message.

The detailed message contents of all SDO messages is explained in Section 2.8.

2.4.4 SDO Download vs. Upload

Per [CiADS301] an “SDO Download” implements a write access to the Object Diction-
ary of a node and an “SDO Upload” implements a read access.

In the authors’ experience these terms are easily confused, and they are only listed
here for completeness. In the following we will use the terms “SDO Read Access” and
“SDO Write Access.” These are easily understandable, especially as they correspond
to the access type field available for all Object Dictionary entries, where possible val-
ues include read-only, read-write and write-only.

2.4.5 SDO Usage Limitation

The SDO Read Access and SDO Write Access as explained in this section provide a
mechanism for generic read and write access to the Object Dictionary of each node on
the network. Because all configuration and process data of a node is part of its Object
Dictionary, the SDO transfers can be used to access the process data and it would be
possible to implement a communication system entirely based on SDO communica-
tion. However, that was never the intention of the SDO communication (recall that SD
stands for “Service Data”) and thus this communication mode is not very efficient.

For real-world implementations a leaner, more efficient communication method is
desirable in order to minimize the communication overhead and to make best usage
of the available bandwidth. In CANopen, this lean and efficient communication
method is provided by the Process Data Objects (PDOs).

65

Chapter 2: The CANopen Standard

2.5 Handling Process Data with Process Data
Objects (PDO)

CANopen is primarily intended to run on CAN; a message oriented communication
system capable of transmitting up to 8 bytes in a single message – in other words, it is
optimized for CAN. It should be noted that although optimized for CAN it can still run
on other, completely different network technologies such as I2C or Ethernet.

The obvious demands resulting from the CAN functionality are that it must be possi-
ble for nodes to transmit their data whenever they want to (and not be required to
wait for another node to poll them) and to place multiple process data variables into a
single CAN message.

All these demands are fulfilled by CANopen’s Process Data Objects, or PDOs.

In CANopen we distinguish between Transmit Process Data Objects (TPDOs) and
Receive Process Data Objects (RPDOs). When looking at single nodes this terminol-
ogy indicates if a PDO is produced or consumed by this node. So for each PDO in a
system there is exactly one node producing it, and for that node this PDO is a TPDO.
There is also at least one node (but perhaps multiple nodes) that receive and consume
the PDO. For all nodes consuming it, the PDO is an RPDO. This is illustrated in
Figure 2.3.

Objective

So far we have established communication channels that allow a master or con-
figuration tool to get access to all the Object Dictionary entries in a node. How-
ever, this is not an efficient communication model for sending process data.

The PDOs provide a far more sophisticated service for process data. The PDO
communication services are explained in this section.

Embedded Networking with CAN and CANopen

66

Figure 2.3 PDO: TPDO and RPDO

There are two sets of configuration parameters for a PDO. The communication param-
eters (indicating which CAN message is used for the PDO and how is it triggered)
and the mapping parameters (indicating which Object Dictionary entries are con-
tained in the PDO).

For each TPDO and RPDO that are transmitted and received by a node, the Object
Dictionary of that node contains one set of configuration parameters called the PDO
communication parameters.

The communication parameters for a TPDO differ slightly from those for an RPDO, as
more parameters are required for transmitting a message than for receiving a mes-
sage. Transmit trigger options, for example, determine when to send the message
with the PDO.

Node A

Node B Node C

PDO

For the producer
it is configured

as TPDO

For the consumers it is
configured as a RPDO

On the network, a
PDO corresponds

to a single message
with process data

For the consumers it is
configured as a RPDO

67

Chapter 2: The CANopen Standard

2.5.1 TPDO Transmit Trigger Options

There are four major transmit trigger methods supported by CANopen:

• Event driven (COS, Change-Of-State)

• Time driven

• Individual polling

• Synchronized, group polling

Which of these is used by a specific PDO is selected by the PDO communication
parameter “transmission type” which is explained further in the individual communi-
cation parameter sections below.

One of the advanced features of CANopen is that it supports all generally
known transmission and communication methods used in communication net-
works. CANopen nodes can not only transmit their data individually (either
event or time driven) they can also be polled individually or synchronized in
groups. In addition, any of these methods can be combined.

Integration Tip:
All these different communication methods contribute to a lengthy test pro-
cess, especially if combinations of these methods are allowed in a system.
When integrating a CANopen network the communication method used
should be chosen as early as possible and adopted by all nodes in the system.
That allows developers to focus all test procedures on the chosen method,
avoiding the additional test procedures required if multiple communication
methods are mixed in one network.

Implementation Tip:
If you develop your own CANopen node and it is for a specific system that
only supports a chosen set of communication methods, you do not need to
implement the unused communication methods. This will reduce your code
size, and will also contribute to shorter test cycles. In terms of code and data
memory sizes, a strictly time driven implementation typically has the fewest
requirements.

Embedded Networking with CAN and CANopen

68

2.5.1.1 Event driven

The event driven or change-of-state transmission method simply transmits a TPDO
message if the process data in it changes. What exactly is defined as an “event” is typ-
ically specified by the Device Profile. It could be any change to the data as well as spe-
cific change to the data (like reaching a certain limit or reaching a minimum
difference).

If a TPDO contains a set of digital inputs and the event is “any” change then the
TPDO gets transmitted as soon as the data in it changes. If there is no change in the
data there will be no transmission until the data actually changes.

There is one worst-case scenario for event driven communication that needs to be
handled properly: if one of the inputs changes constantly the TPDO would be trans-
mitted back-to-back (as soon as a TPDO is transmitted the data will have changed
again). Such a behavior would occupy 100% of the available bandwidth as illustrated
in the top portion of Figure 2.4.

Figure 2.4 Inhibit Timer

CANopen handles this worst-case scenario by introducing the “Inhibit Timer.” This is
a configurable timeout in multiples of hundreds of microseconds. After starting the
transmission of the TPDO the Inhibit Timer must expire before the TPDO may be

time
PDO PDO PDO PDO

time

PDO PDO

Without an inhibit timer a node with a
COS TPDO could transmit it back to back

With an inhibit timer a node may not send the
same TPDO again until the inhibit time expired

Inhibit timer

69

Chapter 2: The CANopen Standard

transmitted again. So the maximum frequency with which a TPDO could occur is
directly specified by the Inhibit Time.

The Inhibit Timer always affects the entire TPDO and all process variables contained
in it. So if the TPDO is transmitted because one process variable in it changed, the
Inhibit Time applies even if another process variable in the TPDO changes.

Whenever a TPDO is inhibited from transmission it means that potentially some pro-
cess data is lost. If the process data actually changes several times while the timer is
running not all of these changes will be transmitted.

In some instances what exactly constitutes an event change may vary. The Device Pro-
file for Generic I/O [CiADS401] introduces an extended event detection mechanism
for analog values. Some analog values such as a temperature value might only be
needed if they either changed “considerably” or reached a certain minima or maxima.
CiA specification [CiADS401] supports both configurable delta detection (the system
only recognizes an event change if the analog value changes by a user-defined delta)
and minima and maxima detection.

In general, a TPDO can contain multiple process variables and potentially also a mix-
ture of digital and analog data. This makes the event change detection a complex pro-
cess since it can be different for every single process variable contained in a TPDO.
Some CANopen nodes try to simplify this by either not allowing the mixing of analog
and digital data in one TPDO, or by only implementing simple event change detection
(values changed) without the extended detection mechanisms of [CiADS401].

2.5.1.2 Time driven

In the time driven communication method a TPDO is transmitted on a fixed time
basis, the Event Timer. The Event Timer for a TPDO is specified in milliseconds. If, for
example, the Event Timer is specified to be 50 milliseconds, the TPDO will be trans-
mitted every 50 milliseconds.

One problem with any event driven communication is the indeterminism: it is
very hard to predict the worst-case scenarios of how often messages will get
transmitted. By using the Inhibit Timer the worst-case becomes predictable
again as the worst-case is directly determined by the Inhibit Time. If it is set to
10 milliseconds the worst-case is that the message will be transmitted every 10
milliseconds.

Embedded Networking with CAN and CANopen

70

The Event Timer is a local timer on each CANopen node. Per default these timers are
not synchronized. If multiple nodes use an Event Timer of 20 milliseconds the actual
occurrence of these TPDOs on the network may all be within the same millisecond as
well as randomly distributed in a 20 millisecond time window.

On one hand the time driven communication method simplifies performance, band-
width and latency calculations. On the other, it produces more overhead than the
event driven communication since data will get transmitted even if it did not change
at all.

2.5.1.3 Individual polling

Although it is possible to use individual polling in CANopen, it is recommend that
this communication method not be used.

Individual polling is implemented via a CAN feature called “Remote Request.”
Unfortunately Remote Request has certain disadvantages, including the fact that not
all chip manufacturers implement it the same way in their CAN controllers. In other
words, it could be that nodes implemented with different CAN controllers are not
compatible when using Remote Request.

If an application requires the implementation of a polling mechanism (a message is
used to trigger a node to actually transmit its TPDO), the synchronized communica-
tion method described below should be used.

2.5.1.4 Synchronized or grouped polling

The main idea behind the synchronized communication mode is to provide motion
oriented systems such as robots with “parallelized” inputs and outputs. To avoid jitter
effects and ensure smooth movements it is necessary to get all inputs at the same
moment in time and to apply all outputs at the same time.

In CANopen a synchronized communication method is implemented using a SYNC
signal. The SYNC signal is a specific message without any data that is used only for
synchronization purposes. Figure 2.5 below illustrates how sensor data (for example
from encoders measuring the positioning of a moving robot arm) is synchronized.
Because the SYNC signal is typically produced on a fixed time basis, this triggering
mode can also be regarded as using a global timer for triggering instead of the event
time local to each node.

71

Chapter 2: The CANopen Standard

Figure 2.5 SYNC – Synchronized Communication for Sensors

The sensors constantly read their input data and keep a current copy in the message
transmit buffer. Upon reception of the SYNC message, all sensors stop updating the
buffer and start transmitting the data. Although all messages are transmitted serially
via CANopen, once the data arrives in the main processing unit all these inputs will
be from the same moment in time, i.e. the time the SYNC signal was transmitted.

The synchronization of outputs works similarly, as illustrated by Figure 2.6.

Figure 2.6 SYNC – Synchronized Communication for Actuators

Once the processing unit has new values for the outputs or actuators it transmits the
data serially via the network. The actuators receiving the messages keep the received
data in their receive buffers without applying the data to their outputs. They wait for the

Out Buffer A

Data Processing Unit

Sensor B Out Buffer B

Sensor N Out Buffer N

In Data A

In Data B

In Data N

Sensor A

Serial transmission via CAN,
highest priority first

Data N Data B Data A

SYNC
SIGNAL

Actuator B

Actuator N

Actuator AIn Buffer A

Data Processing Unit

In Buffer B

In Buffer N

Serial transmission via CAN,
highest priority first

Out Data A

Out Data B

Out Data N

Data N Data B Data A

SYNC
SIGNAL

Embedded Networking with CAN and CANopen

72

next SYNC signal and only upon reception of the SYNC signal will they actually
apply their outputs in parallel.

2.5.1.5 How good is the synchronization?

The quality of the synchronization is measured by the maximum time variance that
can still occur between the different nodes.

As an example consider a network running at 250kbps. The bit time on such a net-
work is 4 microseconds. Without going into the message details of CAN (see Section
5.2.7 for more details) assume the length of a single message varies between 200
microseconds and 450 microseconds.

If no synchronization method is used and all inputs use their local Event Timer for
TPDO triggering, the time variance for the inputs depends pretty much on the Event
Timer. If all nodes transmit their data every 50 milliseconds then the worst-case time
variance is 50 milliseconds. This means that two outputs that should be applied “in
parallel” might actually be applied with a difference of 50 milliseconds.

If synchronization is used, the only delay in each individual node is the time it takes
the node to process the receipt of the SYNC signal until either sending the TPDO (for
sensors) or applying the data from the RPDO (for actuators). This time is highly
dependent on the code quality and microcontroller used in implementing the individ-
ual CANopen nodes. However, with proper implementation these times should be
less than 100 microseconds. This means that two outputs that should be applied “in
parallel” might actually be applied with a difference of 100 microseconds.

Another delay not yet accounted for is that of the SYNC signal itself. In some applica-
tions it might not matter if the SYNC signal itself is delayed, because all I/Os are
affected the same way and individual delays are relative to the SYNC. However, some
applications might require some sort of absolute timing in which case the potential
delay of the SYNC itself might be a problem. The typical worst-case delay of the
SYNC message itself is the time the longest message can occupy the bus. In the exam-
ple above this was assumed to be some 450 microseconds. So suddenly the total vari-
ance adds up to more than half a millisecond.

Depending on how much more effort is put into the system correcting these variances
(they can be measured and corrected), much higher accuracies can be achieved. The
paper “High Precision Drive Synchronisation with CANopen” [Rostan02] describes a
method that achieves a one microsecond accuracy using internal re-calculations.

73

Chapter 2: The CANopen Standard

Applications that require a very high-resolution synchronization signal typically pro-
vide an extra line on the network cable in order to be able to send synchronization
pulses directly (and not via the network). With such a mechanism it is possible to
bring the variance down to a microsecond or less. However, its implementation is
“manufacturer specific” meaning there is currently no CANopen standard covering
this type of high-resolution synchronization mechanism.

2.5.2 SYNC Terminology

There are a few terms associated with the synchronization communication method
that need to be known in order to configure a system to use the synchronization fea-
ture.

2.5.2.1 SYNC COB ID

This is a configurable parameter (OD entry [1005h,00h]) in all nodes that supports
synchronized communication. The connection object ID specifies which CAN mes-
sage identifier is used as the SYNC signal, with the default at 80h. This parameter is
individually configurable in each node; thus it is possible to have multiple SYNC sig-
nals in a system. This allows developers to group nodes together, with some working
with one SYNC signal and others working with another SYNC signal.

2.5.2.2 SYNC Producer

There is only one node that produces the SYNC signal. Although it could be the NMT
Master producing the SYNC, it does not need to be. Any node can be a SYNC pro-
ducer, but only one node can be the producer of a specific SYNC in a system.

2.5.2.3 Communication Cycle Period

This is the time period in microseconds with which the SYNC signal occurs. Nodes
supporting synchronized communication have this value available in the OD entry
[1006h,00h].

2.5.2.4 Synchronous Window Length

This is the time window in microseconds in which all communication triggered by a
SYNC signal must occur. Nodes supporting synchronized communication may have
this optional value available in the OD entry [1007h,00h].

Embedded Networking with CAN and CANopen

74

2.5.3 Combining Transmit Trigger Options

In general, CANopen allows any of the communication methods specified to be com-
bined. As an example, a TPDO could be transmitted synchronized with change-of-
state. This results in a TPDO that is only transmitted in response to a SYNC signal if
any of the data in it changed since the last transmission.

The possible combinations are not part of the CANopen specification itself and they
are usually implemented using the transmission type “manufacturer specific.” How-
ever, in some cases a device profile might request a specific combination in which case
the transmission type “device profile specific” is used.

A frequently used combination is that of event driven and time driven. In an event
driven system, there might be long periods of “silence” if data does not change. This
might have side effects in cases such as:

• A new node is added to the system and it does not know the “last data
transmitted.”

• In the rare case of an erroneous message periodic re-transmissions ensure
that erroneous data is not valid for an extensive period of time.

Through the combination of event driven and time driven it is possible to specify a
time window within which a TPDO is re-transmitted. If the data changes frequently,
the TPDO will be re-transmitted within the time period specified by the Inhibit Timer.
If it does not change at all, it will still be transmitted at least every Event Time. If the
Inhibit Time is 50 (in multiples of 100 microseconds, so 5 milliseconds) and the Event
Time is 250 (in multiples of milliseconds, so 250 milliseconds) the TPDO will be at
least transmitted every 250 milliseconds but never more frequently than every 5 milli-
seconds.

2.5.4 PDO Linking and Pre-defined Connection Set

From the network perspective a PDO is nothing more than a message with a message
identifier and up to 8 data bytes. In CANopen almost everything is configurable and
this includes which message identifier (COB ID) is used for each PDO.

In order to establish a common ground a default usage of the message identifiers is
typically implemented. It is called the “pre-defined connection set” and determines
which COB IDs should be used by which node by default.

75

Chapter 2: The CANopen Standard

Table 2.12 below shows the identifier ranges assigned for the PDOs.

As an example, consider a node (call it node 5) which has the following pre-defined
COB IDs for its PDOs:

CAN ID
From To Communication Objects Comment

0h -- NMT Service From NMT Master

80h -- SYNC Message From SYNC Producer

81h FFh Emergency Message From nodes 1 to 127

100h -- Time Stamp Message From timestamp producer

181h 1FFh 1st Transmit PDO From nodes 1 to 127

201h 27Fh 1st Receive PDO For nodes 1 to 127

281h 2FFh 2nd Transmit PDO From nodes 1 to 127

301h 37Fh 2nd Receive PDO For nodes 1 to 127

381h 3FFh 3rd Transmit PDO From nodes 1 to 127

401h 47Fh 3rd Receive PDO For nodes 1 to 127

481h 4FFh 4th Transmit PDO From nodes 1 to 127

501h 57Fh 4th Receive PDO For nodes 1 to 127

581h 5FFh Transmit SDO From nodes 1 to 127

601h 67Fh Receive SDO For nodes 1 to 127

701h 77Fh NMT Error Control From nodes 1 to 127

Table 2.12 The Pre-defined Connection Set

PDO COB ID
TPDO1 185h

RPDO1 205h

TPDO2 285h

RPDO2 305h

TPDO3 385h

Embedded Networking with CAN and CANopen

76

This default connection has no “over-lapping” of any TPDOs and RPDOs specified.
This means that by default no RPDO specified uses the same identifier as any TPDO
specified, and thus no PDO is directly “linked.” (A link is where the COB ID of a
TPDO from one node is identical to the COB ID of an RPDO of any other node). Only
the NMT Master would be able to listen to all the TPDOs and only a master would be
able to generate the RPDOs received by the nodes.

However, because the COB IDs used for the TPDOs and RPDOs are configurable,
direct links can be established, for example by changing the COB ID for an RPDO to
the same used by another TPDO (also see Section 1.4.5).

2.5.5 RPDO Communication Parameters

In the Object Dictionary the Index area from 1400h to 15FFh is reserved for the RPDO
communication parameters. The Index range of 512 (200h) ensures that a maximum of
512 RPDOs can be configured in the Object Dictionary of a single CANopen node. The
parameters for the first RPDO (RPDO1) are located at Index 1400h, the parameters for
the second at 1401h (RPDO2), for the third at 1402h (RPDO3) and so on.

RPDO3 405h

TPDO4 485h

RPDO4 505h

What if an application requires that more than four TPDOs and four RPDOs be
used for specific nodes?

There are several solutions to this problem. In general the pre-defined connec-
tion set is just that – a pre-defined default that can be reconfigured at any time.
Another approach can be to simply modify the pre-defined connection set for a
specific application. An example for such an approach is described in Section
6.9.4.

PDO COB ID

77

Chapter 2: The CANopen Standard

The parameters for each RPDO are accessible via the Subindex. The table below
shows the parameters that are available for every RPDO.

The "Number of Entries" for a RPDO can be 5 if the Event Timer is supported. The
most popular configuration of RPDOs does not use the Event Timer and therefore the
Number of Entries is 2.

The "COB ID" is the connection object identifier which is the CAN message identifier
used for this RPDO. This parameter determines which CAN message is received and
interpreted as the RPDO belonging to this set of parameters.

The "Transmission Type" determines if this RPDO is to be processed immediately
upon reception or if a node needs to wait for a synchronization signal (SYNC), before
it may process the data received.

The "Inhibit Time" is not used for RPDOs and if implemented should have the value
zero.

The "Reserved" parameter is a legacy value from previous CANopen versions and
must not be implemented in nodes conforming to the current standard [CiADS302].

Subindex Name Data type
0 Number of entries UNSIGNED8

1 COB ID UNSIGNED32

2 Transmission type UNSIGNED8

3 Inhibit Time UNSIGNED16

4 Reserved UNSIGNED8

5 Event Timer UNSIGNED16

Table 2.13 RPDO Communication Parameters

Embedded Networking with CAN and CANopen

78

The "Event Timer" may be used to generate an emergency if this RPDO is not received
before the event timer expires. The event timer is reset upon reception of the RPDO.
Implementation of the Event Timer for RPDOs is not very common.

2.5.6 TPDO Communication Parameters

In the Object Dictionary the Index area from 1800h to 19FFh is reserved for the TPDO
communication parameters. As with the RPDOs, the Index range ensures that a maxi-
mum of 512 TPDOs can be configured for a single CANopen node. The parameters for
the first TPDO (TPDO1) are located at Index 1800h, the parameters for the second at
1801h (TPDO2), for the third at 1802h (TPDO3) and so on.

The parameters for each TPDO are accessible via the Subindex. The table below
shows the parameters that are available for every TPDO.

Although it is possible to have a single node receive up to 512 different RPDOs
such a setup is the exception. Many CANopen slave nodes only support a lim-
ited number of RPDOs. Just imagine a simple temperature sensor - if it only
has a temperature to report it will not need more than 1 TPDO and no RPDOs
at all.

A typical number for more generic I/O nodes is up to four RPDOs, as the so-
called pre-defined connection set of CANopen (also see section 1.4.5) pre-
defines the COB IDs used for the first four RPDOs in a CANopen slave node.

Subindex Name Data type
0 Number of entries UNSIGNED8

1 COB ID UNSIGNED32

2 Transmission type UNSIGNED8

3 Inhibit Time UNSIGNED16

4 Reserved UNSIGNED8

5 Event Time UNSIGNED16

Table 2.14 TPDO Communication Parameters

79

Chapter 2: The CANopen Standard

The “Number of entries” for a TPDO is 5, as five parameters are available for the con-
figuration of each TPDO. Only entries zero through two are mandatory, three and five
are optional.

As with the RPDO, the COB ID specifies the CAN message identifier used when
transmitting this TPDO. The transmission type selects the TPDO trigger behavior.
When is the message transmitted? Upon a change-of-state (COS) of any of the process
data variables contained in the TPDO? Or is the transmission strictly time driven,
occurring every so many milliseconds? An additional listing of all the available values
can be found in the Object Dictionary Reference section for the entries [14xxh,02h].

For change-of-state transmission the Inhibit Time specifies a timeout period that must
pass before this TPDO can be re-transmitted again. This minimum timeout between
two transmissions of a TPDO are specified in multiples of 100 microseconds.

The “Reserved” parameter is a legacy value from previous CANopen versions and
must not be implemented in nodes conforming to the current standard [CiADS302].

For event time driven TPDOs the Event Time specifies the time period used for this
TPDO. The Event Time is specified in multiples of milliseconds. If it is set to 100 the
TPDO is transmitted every 100 milliseconds.

Using a combination of both Inhibit Time and Event Time creates a time window for
the transmission of the TPDO. It will be transmitted at least every “Event Time” but
not more often then defined by the “Inhibit Time.”

2.5.7 PDO Mapping Parameters

As discussed earlier, a PDO can contain data from several Object Dictionary entries in
order to be able to exchange multiple process data variables with one message.

The PDO mapping parameters determine which Object Dictionary entries are con-
tained in a PDO. Single Object Dictionary entries are “mapped” or “placed into” a
PDO.

The maximum number of data bits available in a PDO is 64. Because the mapping pro-
cess works on the bit-level a total of 64 Object Dictionary entries can be mapped into a
PDO, if each entry is just one bit long. No matter what the length of an individual
Object Dictionary entry is, if all the lengths of the mapped entries are added up, the
total cannot exceed 64 bits.

Embedded Networking with CAN and CANopen

80

A single mapping parameter identifies one specific Object Dictionary entry with its
parameters Index, Subindex and length (in bits). These three parameters get coded
into one 32-bit value as shown in the table below.

The PDO mapping consists of an array of such single mapping parameters. The 64
bits available in a PDO are filled entry-by-entry with the data from the Object Diction-
ary entries specified in the single mapping parameters. The table below shows the for-
mat of a PDO mapping record.

The “Number of entries” value indicates how many single mapping entries are avail-
able in this record (0-64). What follows is an array of single mapping entries that is as
long as specified by the “Number of entries” value.

2.5.7.1 PDO Mapping OD Index Ranges

In the Object Dictionary the Index area from 1600h to 17FFh is reserved for the RPDO
mapping parameters, and the area from 1A00h to 1BFFh is reserved for the TPDO
mapping parameters. The Index range sizes are the same as used by the PDO commu-
nication parameters and directly correlate to each other. For example, the RPDO1
communication parameters are at Index 1400h and the mapping parameters at Index

Index Subindex Length (bits)
Bits 31 .. 16 Bits 15 .. 8 Bits 7 .. 0

Table 2.15 Content of a 32-bit Mapping Parameter

Subindex Name Data type
0 Number of entries UNSIGNED8

1 1st OD entry mapped UNSIGNED32

2 2nd OD entry mapped UNSIGNED32

3 3rd OD entry mapped UNSIGNED32

4 4th OD entry mapped UNSIGNED32

-- -- --

64 64th OD entry mapped UNSIGNED32

Table 2.16 PDO Mapping Parameters

81

Chapter 2: The CANopen Standard

1600h, the TPDO3 communication parameters are at Index 1802h and the mapping
parameters at Index 1A02h.

Figure 2.7 PDO Mapping Example

Figure 2.7 illustrates an example that maps a total of four manufacturer specific vari-
ables into TPDO3. The device in this example has four variables named status, temp,
speed and rpm located in the Object Dictionary at [2010h,00h-04h]. The mapping
entries for TPDO3 are at location [1A02h] and the four entries at that location map
those 4 variables one-by-one into the TPDO3.

2.5.7.2 Dynamic Mapping vs. Static Mapping

The PDO mapping of CANopen is a powerful feature, as it allows the content of sin-
gle messages to be customized. It makes CANopen very flexible, especially if
“Dynamic Mapping” is implemented – meaning the PDO mapping of a node can be
re-configured by a configuration tool or master.

However, in many deeply embedded applications this sort of flexibility might not be
needed – or it might even be seen as a safety risk factor since in theory “something”
could change what is contained in a message. That’s why several embedded applica-

2010h
0 UNSIGNED8

Manufacturer Specific Inputs

1 UNSIGNED8 8-bit variable ‘status’
2 UNSIGNED8 8-bit variable ‘temp’

= 4 (Number of sub-index entries)

1A02h
0 UNSIGNED8 = 4 (Number of used map entries)
1 UNSIGNED32 = 2010 01 08h (Idx 2010h, SubIdx 1, 8 bit)

3rd Transmit PDO - Mapping

2 UNSIGNED32 = 2010 02 08h (Idx 2010h, SubIdx 2, 8 bit)

3 UNSIGNED16 16-bit variable ‘speed’
4 UNSIGNED16 16-bit variable ‘rpm’

3 UNSIGNED32 = 2010 03 10h (Idx 2010h, SubIdx 3, 16 bit)
4 UNSIGNED32 = 2010 04 10h (Idx 2010h, SubIdx 4, 16 bit)

temp
Byte 2

TPDO3
speed rpm

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Unusedstatus
Byte 1

Index SubIdx Type Description

Embedded Networking with CAN and CANopen

82

tions use “Static Mapping.” In this case the PDO mapping is hard-coded into the soft-
ware of a CANopen node and it cannot be re-configured.

Some systems further distinguish between Dynamic Mapping and Variable Mapping.
Systems with Variable Mapping can only be configured while they are in the so-called
“pre-operational” state which means the network is not currently transmitting PDOs
with process data. In contrast, Dynamic Mapping allows a re-configuration while a
node is “operational,” meaning it is actively transmitting and receiving PDOs with
process data.

Another benefit of Static Mapping is that fewer resources (code and data memory,
CPU process time) are required for its implementation. Readers with embedded pro-
gramming experience will recognize that the resources required to implement
Dynamic Mapping on an 8-bit microcontroller are substantial.

2.5.7.3 PDO Mapping Practice

The PDO mapping is designed to work on the single bit level. Object Dictionary (OD)
entries with single bits could be mapped individually. Theoretically one could create a
PDO containing 2 single bit OD entries followed by an 8-bit OD entry, followed by a
single bit OD entry followed by a 16-bit OD entry.

Obviously this kind of “bit-juggling” is not very microcontroller oriented where the
straight-forward approach would be to use data widths of 8, 16 or 32 bits. In order to
keep things simple and manageable many CANopen implementations limit them-
selves to an 8-bit-oriented PDO mapping, meaning that the length of any Object Dic-
tionary entry that can be mapped to a PDO must be a multiple of 8 bits.

2.5.7.4 TPDO vs. RPDO Mapping and Dummy Entries

It should be pointed out that the mapping for a PDO is typically different on the
TPDO and the RPDO side. In general, the transmitting node maps Object Dictionary
entries into the TPDO which are “inputs” – process data coming into the node that
needs to be communicated to others. The receiver looks at this message as an RPDO
and will have its own usage for the data in it. Some of the data might directly be used
as “output” to an actuator or it might get stored locally for further processing, result-
ing in a completely different set of PDO mappings on the receiver side.

The receiver might not even have a use for all the data contained in an RPDO. It could
very well be that there are multiple process data variables available in an RPDO, but
the local receiver only needs one of those process data variables. In that case the
“unwanted” process data variables must still be mapped. CANopen supports multi-

83

Chapter 2: The CANopen Standard

ple “dummy” entries that can be used for mapping such “unwanted” data in RPDOs.
The Object Dictionary entries used for such dummy mapping are those from Index 1
to 7 which are also used to specify some basic data types (see Section 2.2.3).

2.6 Network Management (NMT)

2.6.1 NMT Slave State Diagram

Every CANopen slave node must implement an NMT state machine that allows the
slave to be in different operating states. The diagram in Figure 2.8 illustrates the major
states a slave node can be in. It should be noted that some of these state transitions can
be made automatically (by the slave themselves) where others can only be made upon
receiving the corresponding NMT Master message. The NMT Master message can be
directed at either individual nodes or at all nodes simultaneously. It contains the new
state that the addressed node(s) should switch to.

Objective

This section explains the Network Management services available in CANo-
pen. These include the NMT Master message to start/stop nodes, node guard-
ing, heartbeat and emergencies.

We will also show which NMT services must be implemented on every CANo-
pen slave. This includes the NMT slave state machine.

Embedded Networking with CAN and CANopen

84

Figure 2.8 The Network Management States of a Slave

Upon power-up a CANopen slave node comes out of “Power-On Reset” and goes into
Initialization. It initializes the entire application and the CAN/CANopen interfaces
and communication. At the end of the initialization the node tries to transmit its boot-
up message. As soon as it is transmitted successfully, the node switches to the Pre-
operational state.

Using the NMT Master message, an NMT Master can switch individual nodes or all
nodes back and forth between the three major states: Pre-operational, Operational and
Stopped. In addition, the NMT Master has the option to request two different reset
actions. Upon receiving the “Reset Communication” command, a CANopen slave
node will reset the CAN/CANopen communication interfaces. A “Reset Node” com-
mand, however, results in a reset of the entire node with all peripherals and all soft-
ware. Both reset states result in a new boot-up message being transmitted by the node
and the node reverting back to the Pre-operational state, where it will wait for further
NMT message commands.

Operational

Pre-Operational

Initialization Reset
Communication

Reset
Node

Power-On
Reset

Stopped

Transmit Boot-up

85

Chapter 2: The CANopen Standard

2.6.1.1 CANopen Messages Produced and Consumed

The main difference between the various NMT states is that not all types of CANopen
communication are actively used in each state. Table 2.17 shows which communica-
tion a node may perform when it is in a particular NMT state.

In the Initializing state a node may only produce the boot-up message and it does not
consume any messages.

In the Pre-operational state a node actively participates in all communication related
to SDOs, Emergencies (if used by the node), Timestamps (if used by the node) and
Heartbeat/Node Guarding.

There is only one difference between the Pre-operational state and the Operational
state. The operational state adds PDO communication, allowing the node to exchange

Additional States

The NMT state diagram introduced by the DS301 CANopen standard only
covers the basic requirements that apply to all CANopen nodes. This standard
state machine is sufficient to achieve CANopen conformance. However, some
of the frameworks or device profiles published today require additional states
to be implemented to allow services like a Node ID claiming procedure (which
is executed before a node can “boot-up”).

 Initializing
Pre-
operational Operational Stopped

Boot-Up

SDO

Emergency

SYNC/TIME

Heartbeat/
Nodeguard

PDO

Table 2.17 NMT State Dependent Communication

Embedded Networking with CAN and CANopen

86

and work with process data. Only in Operational mode does a CANopen node truly
run, meaning it executes all the input and output functions that it was designed to do.

In the Stopped state a node literally stops all communication, except for the minimal
NMT services.

2.6.2 Heartbeat or Node Guarding

In order to be CANopen compliant, every CANopen slave node must implement
either the Heartbeat or the Node Guarding services. Today, the recommendation is to
use heartbeat instead of node guarding as heartbeat consumes less bandwidth, is
more flexible and is safer.

With node guarding it is the NMT Master’s responsibility to poll (“guard”) all slaves
for their current NMT state information. If a node does not respond within a specified
time, the NMT Master may assume that this node was lost and can take appropriate
action (for example re-initialize or shut-down the system). In addition, individual
nodes can also monitor the guarding messages from the NMT Master and take the
absence of the poll message (exceeding a configurable time limit) as an indication that
the connection to the master was lost.

The DS301 CANopen specification does not provide any means for a node to
autostart, which means there is no way for a node to switch into Operational
without waiting for a message from the NMT Master.

However, many deeply embedded CANopen networks do not have an NMT
Master and two work-a-rounds were common in the past. One was to imple-
ment a “minimal” NMT Master – one of the slave nodes would simply transmit
the NMT “go to operational” message for everybody. Alternatively, some
applications ignored the standard and just allowed the nodes to autostart –
after switching to Pre-operational they would go straight into Operational by
themselves.

Because this was a common problem to NMT Master-less systems, a solution
was standardized with DSP302: CiA Draft Standard Proposal – the Framework
for CANopen Managers and Programmable CANopen Devices. Now Object
Dictionary entry 1F80 NMT Start-up offers a bit to allow autostart of nodes.

In other words, autostart is now in accordance with the standard but only if the
Object Dictionary entry 1F80 is implemented to report that the node is auto-
starting.

87

Chapter 2: The CANopen Standard

The monitoring options become more flexible when using heartbeat. With the heart-
beat method, each slave node by itself transmits a heartbeat, consisting of a 1-byte
CAN message containing the current NMT state a node is in. The heartbeat producer
time is configurable (entry [1017h,00h], UNSIGNED16, in milliseconds). Figure 2.9
illustrates two heartbeat messages repeatedly produced by two individual nodes at
individual heartbeat times.

Figure 2.9 Heartbeat

One obvious benefit of the heartbeat method versus the node guarding is that the
bandwidth used for the monitoring is cut by half (no polling required). In addition,
each node can decide by itself which heartbeats it would like to monitor. A common
practice is to monitor all the heartbeats from the direct communication partners. This
would allow a node transmitting a PDO to listen to the heartbeat of all the consumers
of that PDO to ensure that they are still “alive” and operational.

Another aspect is that of safety (see the following chapter for more details on “safety-
related” systems). One first step towards a “safer” system is that no single node
should be essential to the system. Using node guarding the NMT Master becomes
essential; if it fails, all nodes will be affected. However, with the heartbeat method, no
single node is essential for the heartbeat mechanism. Failure of a single node does not
necessarily result in the failure of all nodes.

2.6.3 Emergencies (EMCY)

Each CANopen slave node is assigned one emergency message, sometimes simply
referred to as EMCY. The CAN identifier used for these is 80h plus the CANopen

time

Slave1 Slave1 Slave1 Slave1 Slave1

Slave2 Slave2 Slave2 Slave2 Slave2

Heartbeat-Time Slave 2

Heartbeat-Time Slave 1

Embedded Networking with CAN and CANopen

88

Node ID. So node number 5 uses the CAN identifier 85h for transmitting emergency
messages.

An emergency message always contains 8 data bytes out of which the first 2 bytes are
used for a CANopen error code (see the Reference Section for the list of all CANopen
error codes defined). The third byte contains a copy of the error register (same value
as at OD entry [1001h,00h]). The remaining 5 bytes are available for manufacturer spe-
cific error codes.

In general, emergencies are only reported once. The reported emergency is consid-
ered to “still be there” until the node uses another emergency message to clear/reset
that specific emergency.

If, for example, a node reports a temperature emergency (measured temperature
exceeds the limits) it will only report it once. Only when the temperature has returned
within limits will the node transmit another emergency message, this time clearing/
resetting the temperature emergency.

If the high-byte of the CANopen error code is 00h the message is not an emergency
but a reset of an emergency.

For a listing of the defined error codes, see the Appendices in the Reference Section.

2.7 CANopen Example Configurations and Exercises

2.7.1 Heartbeat Producer and Consumer Configuration Example

Summary of Object Dictionary entries controlling the heartbeat mechanism:

[1016h,00h] Consumer Heartbeat Time, number of elements in array
[1016h,xxh] Single 32-bit entries for each heartbeat monitored
Bit 0-15: Heartbeat time

Objective

In this section we would like to give the reader a few configuration examples
and exercises. Although the focus is on the TPDO and RPDO configuration, we
will also cover configuration of a heartbeat producer and consumer.

89

Chapter 2: The CANopen Standard

Bit 16-23: Node ID monitored
Bit 24-31: Reserved

[1017h,00h] Producer Heartbeat Time, in milliseconds

2.7.1.1 Exercise
What entries need to be made to the Object Dictionary of node number 5 if that node
needs to:

1. produce a heartbeat of 250ms and

2. monitor the heartbeat of node 7 (produced every 500ms) and

3. monitor the heartbeat of node 9 (produced every 1,000ms)?

2.7.1.2 Solution

1. Write the value 250d into OD entry [1017h,00h] of node 5.

2. To monitor the heartbeat of a node, the consumer’s time (which is a time-out,
meaning a heartbeat is considered ‘lost’ if it does not appear within that time)
must be set to higher value than the producer’s time. A reasonable value is
some 1.5 to 2 times the producer’s time.

Write the value 750d (500 times 1.5) into OD entry [1016h,01h] of node 5 (first
heartbeat consumer entry).

Write the value 1 into OD entry [1016h,00h] to indicate that one heartbeat is mon-
itored.

3. Write the value 1,500d (1,000 times 1.5) into OD entry [1016h,02h] of node 5
(second heartbeat consumer entry). Write the value 2 into OD entry
[1016h,00h] to indicate that two heartbeats are monitored.

2.7.2 PDO Linking Example

Summary of Object Dictionary entries controlling the PDO linking (indicating which
CAN identifier is used for each RPDO and TPDO):

[1400h,01h] COB ID of RPDO1 (default is 200h + Node ID)
[1401h,01h] COB ID of RPDO2 (default is 300h + Node ID)
[1402h,01h] COB ID of RPDO3 (default is 400h + Node ID)
[1403h,01h] COB ID of RPDO4 (default is 500h + Node ID)

Embedded Networking with CAN and CANopen

90

[1800h,01h] COB ID of TPDO1 (default is 180h + Node ID)
[1801h,01h] COB ID of TPDO2 (default is 280h + Node ID)
[1802h,01h] COB ID of TPDO3 (default is 380h + Node ID)
[1803h,01h] COB ID of TPDO4 (default is 480h + Node ID)

2.7.2.1 Exercise

1. Node 5 needs to be configured to directly listen for the default TPDO1 trans-
mitted by node number 6. RPDO1 of node 5 should be used to receive TPDO1
of node 6 (for illustration see Figure 2.10).

Figure 2.10 PDO Linking Exercise

2.7.2.2 Solution

1. The default CAN identifier used by node 6 for TPDO1 is 186h (180h base
address plus 6 for Node ID 6).

Write the value 186h (390d) into OD entry [1400h,01h] of node 5.

2.7.3 PDO Linking and Mapping Example

Summary of Object Dictionary entries controlling the PDO mapping (indicating
which OD entries are used for each PDO):

TPDO_1RPDO_1

Node 5 Node 6

Node 6 uses its default TPDO_1:
the CAN identifier used is the one

determined by the pre-defined
connection set

The default RPDO_1 of Node 5 is
not set to receive TPDO_1

EXERCISE: Change it to receive
TPDO_1 of node 6

91

Chapter 2: The CANopen Standard

[1600h,00h] RPDO1 Mapping, number of entries mapped
[1600h,xxh] Index, Subindex and length (in bits) of a single entry mapped
[1601h,00h] RPDO2 Mapping, number of entries mapped
[1601h,xxh] Index, Subindex and length (in bits) of a single entry mapped

[1A00h,00h] TPDO1 Mapping, number of entries mapped
[1A00h,xxh] Index, Subindex and length (in bits) of a single entry mapped
[1A01h,00h] TPDO2 Mapping, number of entries mapped
[1A01h,xxh] Index, Subindex and length (in bits) of a single entry mapped

2.7.3.1 Exercise
Node 2Ah transmits two 16-bit analog values in its TPDO2 (two UNSIGNED16 values
mapped into TPDO2 of node 2Ah) using the default CAN identifier.

Node 2Dh transmits two 16-bit analog values in its TPDO3 (two UNSIGNED16 values
mapped into TPDO3 of node 2Dh) using the default CAN identifier.

1. Node 1Fh should be configured to receive in its RPDO2 the TPDO2 from node
2Ah and in RPDO3 the TPDO3 of node 2Dh.

2. Node 1Fh has an array of 4 UNSIGNED16 values at [6411h,01h-04h]. Config-
ure the mapping of RPDO2 and RPDO3 so that the values from RPDO2 go
into [6411h,01h-02h] and the values from RPDO3 into [6411h,03h-04h].

Figure 2.11 PDO Linking and Mapping Exercise

TPDO_1
TPDO_2
TPDO_3

Node 1Fh
Object

Dictionary
TPDO_1
TPDO_2
TPDO_3

Node 2Ah

OD: 6411h, 1
OD: 6411h, 2
OD: 6411h, 3
OD: 6411h, 4

Node 2Dh

Both nodes
use their
default
TPDO

settings

RPDO_1
RPDO_2
RPDO_3

Node 1Fh
RPDOs

Determined by the
mapping parameters for

RPDO_2

Embedded Networking with CAN and CANopen

92

2.7.3.2 Solution

Note: In order to change PDO parameters, a PDO typically needs to be disabled. This
can be achieved by setting bit 31 in the COB ID.

1. The default CAN identifier used for TPDO2 of node 2Ah is 2AAh. The default
CAN identifier used for TPDO3 of node 2Dh is 3ADh.

To configure node 1Fh to receive these: Write the value 2AAh into OD entry
[1401h,01h] of node 1Fh. Write the value 3ADh into OD entry [1402h,01h] of node
1Fh.

2. To configure the mapping:

Write the value '0' into OD entry [1601h,00h] of node 1Fh (informs node that map-
ping will be changed).

Write the value 64110110h into OD entry [1601h,01h] of node 1Fh (first mapping
entry for RPDO2, Index 6411h, Subindex 01h, length 10h).

Write the value 64110210h into OD entry [1601h,02h] of node 1Fh (second map-
ping, Index 6411h, Subindex 02h, length 10h).

Write the value ‘2’ into OD entry [1601h,00h] of node 1Fh (total number of entries
mapped is 2).

Write the value '0' into OD entry [1602h,00h] of node 1Fh (informs node that map-
ping will be changed).

Write the value 64110310h into OD entry [1602h,01h] of node 1Fh (first mapping
entry for RPDO3, Index 6411h, Subindex 03h, length 10h).

Write the value 64110410h into OD entry [1602h,02h] of node 1Fh (second map-
ping, Index 6411h, Subindex 04h, length 10h).

Write the value ‘2’ into OD entry [1602h,00h] of node 1Fh (total number of entries
mapped is 2).

93

Chapter 2: The CANopen Standard

2.8 Contents of CANopen Messages

2.8.1 Endianess

All numerical data types consisting of multiple bytes are transferred in CANopen
(whether in SDO or PDO) in the “Little Endian” format. Bytes are ordered by signifi-
cance and the lower significant bytes come first.

For example, a 2-byte word would be transmitted low-byte first, followed by the high-
byte. A 4-byte word is transmitted with the least significant byte first, followed by the
bytes of next higher significance and the most significant byte transmitted last.

Objective

This section is only for those readers who need to have an understanding of
CANopen on the individual message basis. Do you need to be able to interpret
individual CAN messages for their CANopen content? Well, this section is for
you!

If you do not need to know this level of detail, feel free to skip this section and
proceed to the next chapter.

When implementing CANopen software on a specific microcontroller, devel-
opers must pay attention to the byte ordering.

With 8-bit architectures the byte ordering is determined by the compiler alone
and not the architecture. Some compilers for 8-bit architectures are able to sup-
port both Little and Big Endian formats, so in these cases a simple compiler
switch might select the correct implementation.

If a 16-bit architecture based on Big Endian is used, however, an appropriate
byte swapping must be implemented. Most commercial CANopen stacks can
automatically activate byte swapping via a #define statement that enables an
appropriate byte swapping macro.

Embedded Networking with CAN and CANopen

94

2.8.2 SDO Communication

When using SDO communication, one needs to differentiate between two major com-
munication modes, typically referred to as “expedited transfer” and “segmented
transfer.” A third, optional mode is the "block transfer", an optimized method to
transfer large data amounts. Section 2.8.5 explains the messages used for block trans-
fer.

An expedited transfer consists of one SDO request and one SDO response.

A segmented transfer consists of an SDO initiation request and response and then one
pair of request and response for each 7-byte segment.

With expedited transfer up to four bytes of data can be directly embedded in an SDO
request or response, suitable for accesses to Object Dictionary entries that are up to 4-
bytes long. The segmented transfer allows for transmission of data bigger than 4-
bytes and is required to access Object Dictionary entries that are longer than 4-bytes.

2.8.2.1 The Initiate SDO Download – Request

The client (typically the node trying to configure a CANopen slave) sends this request
to a SDO server (implemented within a CANopen slave) by using the CAN identifier
600h plus the Node ID of the CANopen slave addressed. The download request is a
request to write to a specific Object Dictionary entry.

When implementing CANopen on microcontrollers with “limited resources” it
is desirable to only implement expedited transfer and to omit the segmented
transfer. Some of the latest CiA drafts actually take that into account; for exam-
ple, the device profile (CiADSP418) for batteries (such as those used in electri-
cal vehicles). The only Object Dictionary entries that would exceed the 4-byte
limit would be extended identification strings with up to 20 characters.

In order to utilize “expedited transfer only” for battery implementations these
entries have to be divided into several Subentries of 4 bytes each. So at Subin-
dex 1, one would find the first 4 characters of the string, at Subindex 2 the next
4 characters and so on.

95

Chapter 2: The CANopen Standard

Figure 2.12 Initiate SDO Download – Request

Message contents:

• ccs: Client Command Specifier = 1
• e: set to 1 for expedited transfer (data is in bytes 4-7)
• s: set to 1 if data size is indicated
• n: if e=s=1, number of data bytes in Byte 4..7 that do not contain data
• x: reserved
• The Multiplexor contains the Index and Subindex of the OD entry this write

access should go to

2.8.2.2 The Initiate SDO Download – Response

This is the response sent back from the SDO server to the client indicating that the
previously received download (write) request was processed successfully. The default
CAN identifier used for this message is 580h plus the Node ID of the node imple-
menting the SDO server.

Figure 2.13 Initiate SDO Download - Response

Message contents:

Client Server

Bit 7..5
ccs = 1

Bit 4
x = 0

Bit 3..2
n

Bit 1
e

Bit 0
s

3-Byte Multiplexor
Index, Subindex

Expedited data
or reserved

Byte 0 Byte 1..3 Byte 4..7

Client Server

Bit 7..5
scs = 3

Bit 4..0
x = 0

3-Byte Multiplexor
Index, Subindex Reserved

Byte 0 Byte 1..3 Byte 4..7

Embedded Networking with CAN and CANopen

96

• scs: Server Command Specifier = 3
• x: reserved
• The Multiplexor contains the Index and Subindex of the OD entry that

received the write access

2.8.2.3 The Download SDO Segment – Request

If in the initiation sequence a segmented transfer was negotiated, this message is used
to transmit the next segment (of up to 7 bytes) from client to SDO server.

Figure 2.14 Download SDO Segment - Request

Message contents:

• ccs: Client Command Specifier = 0
• c: set to 1 if this is the last segment/fragment
• n: number of data bytes in Byte 1..7 that do not contain data
• t: toggle bit – set to 0 in first segment, toggled with each subsequent request

2.8.2.4 The Download SDO Segment – Response

This is the response sent back from the SDO server to the client indicating that the
previously received download (write) segment request was processed successfully.

Client Server

Bit 7..5
ccs = 0

Bit 4
t

Bit 3..1
n

Bit 0
c Data segment

Byte 0 Byte 1..7

97

Chapter 2: The CANopen Standard

Figure 2.15 Download SDO Segment - Response

Message contents:

• scs: Server Command Specifier = 1
• x: reserved
• t: toggle bit – set to 0 in first segment response, toggled with each subse-

quent response

2.8.2.5 The Initiate SDO Upload – Request

The client (typically the node trying to configure a CANopen slave) sends this request
to an SDO server (implemented within a CANopen slave) by using the CAN identifier
600h plus the Node ID of the CANopen slave addressed. The upload request is a
request to read from a specific Object Dictionary entry.

Figure 2.16 Initiate SDO Upload – Request

Message contents:

• ccs: Client Command Specifier = 2
• x: reserved

Client Server

Bit 7..5
scs = 1

Bit 3..0
x Reserved

Byte 0 Byte 1..7
Bit 4

t

Client Server

Bit 7..5
ccs = 2

Bit 4..0
x = 0

3-Byte Multiplexor
Index, Subindex Reserved

Byte 0 Byte 1..3 Byte 4..7

Embedded Networking with CAN and CANopen

98

• The Multiplexor contains the Index and Subindex of the OD entry that the
client wants to read

2.8.2.6 The Initiate SDO Upload – Response

This is the response sent back from the SDO server to the client indicating that the
previously received upload (read) request can be processed. If expedited transfer is
used, the data read from the Object Dictionary is part of the response, otherwise addi-
tional segmented transfers are used. The default CAN identifier used for this message
is 580h plus the Node ID of the node implementing the SDO server.

Figure 2.17 Initiate SDO Upload – Response

Message contents:

• scs: Server Command Specifier = 2
• e: set to 1 for expedited transfer (data is in bytes 4-7)
• s: set to 1 if data size is indicated
• n: if e=s=1, number of data bytes in Byte 4..7 that do not contain data
• x: reserved
• The Multiplexor contains the Index and Subindex of the OD entry this write

access should go to

2.8.2.7 The Upload SDO Segment – Request

If in the initiation sequence a segmented transfer was negotiated, this message is used
to request that the next segment (of up to 7 bytes) be transmitted from SDO server to
client.

Client Server

Bit 7..5
scs = 2

Bit 4
x = 0

Bit 3..2
n

Bit 1
e

Bit 0
s

3-Byte Multiplexor
Index, Subindex

Expedited data
or reserved

Byte 0 Byte 1..3 Byte 4..7

99

Chapter 2: The CANopen Standard

Figure 2.18 Upload SDO Segment – Request

Message contents:

• ccs: Client Command Specifier = 3
• x: reserved
• t: toggle bit – set to 0 in first segment request, toggled with each subsequent

request

2.8.2.8 The Upload SDO Segment – Response

This is the response sent back from the SDO server to the client indicating that the
previously received upload (read) segment request was processed successfully. The
data segment is part of this message.

Figure 2.19 Upload SDO Segment - Response

Message contents:

• scs: Server Command Specifier = 0
• c: set to 1 if this is the last segment/fragment
• n: number of data bytes in Byte 1..7 that do not contain data

Client Server

Bit 7..5
ccs = 3

Bit 3..0
x Reserved

Byte 0 Byte 1..7

Bit 4
t

Client Server

Bit 7..5
scs = 0

Bit 4
t

Bit 3..1
n

Bit 0
c Data segment

Byte 0 Byte 1..7

Embedded Networking with CAN and CANopen

100

• t: toggle bit – set to 0 in first segment, toggled with each subsequent
response

2.8.2.9 The Abort SDO Transfer

At any time the client or server may abort an SDO transmission. The error code gives
an indication as to why the transfer was aborted. Typical errors are that a desired
Object Dictionary entry is not implemented by the SDO server or that the entry is of a
different length (for example writing a 2-byte value to a 4-byte entry). For a listing of
the possible error codes see the Reference Section.

Figure 2.20 Abort SDO Transfer

Message contents:

• cs: Command Specifier = 4
• x: reserved
• The Multiplexor contains the Index and Subindex of the OD entry that was

affected
• The Error Code gives an indication of what went wrong

2.8.3 Network Management (NMT) Communication

2.8.3.1 The NMT Master Message

The NMT Master message has the CAN message identifier 0 (zero) and contains 2
bytes. All CANopen slave nodes must be able to receive this message and act upon its
content.

Client Server

Bit 7..5
cs = 4

Bit 4..0
x = 0

3-Byte Multiplexor
Index, Subindex Error Code

Byte 0 Byte 1..3 Byte 4..7

101

Chapter 2: The CANopen Standard

Figure 2.21 NMT Master Message

Message contents:

• cmd: One of the following commands to switch into the specified NMT
state: 1 = Operational, 2 = Stopped, 128 = Pre-operational, 129 = Reset Node,
130 = Reset Communication

• Node ID: zero if addressed at all nodes, or the specific Node ID of the single
node addressed with this message

2.8.3.2 The Heartbeat

The heartbeat message sent by an individual node has the CAN message identifier
700h plus the Node ID. It only contains one byte showing the current NMT state of
that node.

Figure 2.22 Heartbeat

Message contents:

• NMT State: Reports the current NMT state the node is in: 0 = Boot-up, 4 =
Stopped, 5 = Operational, 127 = Pre-operational

NMT
Master

NMT
Slaves

Byte 1
Node ID

Byte 0
cmd

Heartbeat
Producer

Bit 6..0
NMT State

Byte 0

Bit 7
r

Heartbeat
Consumer(s)

Embedded Networking with CAN and CANopen

102

• r: reserved

2.8.4 Emergency Communication

The emergency message sent by an individual node has a CAN identifier of 80h plus
the Node ID.

Figure 2.23 Emergency

Message contents:

• Error Code: 2-byte error code – see Table 2.18
• Error Register: copy of the 1-byte error register at [1001h,00h]
• Manufacturer Specific Error Field: Up to 5 bytes for manufacturer specific

error codes

Error Code Decsription
00xx Error Reset or No Error

10xx Generic Error

20xx Current

21xx Current, device input side

22xx Current inside the device

23xx Current, device output side

30xx Voltage

Table 2.18 Emergency Error Codes

Error
Register Manufacturer Specific Error Field

Byte 0..1 Byte 3 Byte 4..7

Error Code

Emergency
Producer

Emergency
Consumer(s)

Error
Register Manufacturer Specific Error Field

Byte 0..1 Byte 2 Byte 3..7

Error Code

Emergency
Producer

Emergency
Consumer(s)

103

Chapter 2: The CANopen Standard

31xx Mains Voltage

32xx Voltage inside the device

33xx Output Voltage

40xx Temperature

41xx Ambient Temperature

42xx Device Temperature

50xx Device Hardware

60xx Device Software

61xx Internal Software

62xx User Software

63xx Data Set

70xx Additional Modules

80xx Monitoring

81xx Communication

8110 CAN Overrun (Objects Lost)

8120 CAN in Passive Error Mode

8130 Life Guard Error or Heartbeat Error

8140 Recovered from Bus Off

8150 Transmit COB ID Collision

82xx Protocol Error

8210 PDO not processed due to length of error

8220 PDO length exceeded

90xx External Error

F0xx Additional Functions

FFxx Device Specific

Error Code Decsription

Table 2.18 (Continued) Emergency Error Codes

Embedded Networking with CAN and CANopen

104

2.8.5 SDO Block Transfer

The block transfer mode is an optimized transfer mode for Object Dictionary entries
that contain large amounts of data. In this transfer mode, up to 889 bytes (segmented
into 127 messages with each 7 bytes) are combined into one data block and are trans-
mitted using back-to-back messages.

The block transfer mode is optional and can only be used if both client and server sup-
port this communication mode. If one of the nodes does not support block transfer,
the segmented or expedited transfer has to be used.

A download is divided into the following communication stages:

• Initiate Block Download - Client requests from Server to use block transfer
mode for a download.

• Download Blocks - Client sends data blocks to Server and expects one
response per block. Each block contains up to 127 segments.

• End of Download Block - Client and Server confirm that the transmission is
now complete.

At any stage, any of the two communication partners may abort the transfer by send-
ing an abort SDO transfer message.

2.8.5.1 Initiate Block Download

To initiate a block download the client sends the request shown in Figure 2.24 to the
server to which the server sends a response, also shown in Figure 2.24.

105

Chapter 2: The CANopen Standard

Figure 2.24 Initiate Block Download

Message contents of the request:

• ccs: Client Command Specifier = 6
• x: Reserved
• cc: Client CRC support, set to 1 if client supports CRC
• s: Size indicator, set if size of data to transmit is indicated
• cs: Client subcommand = 0
• The Multiplexor contains the Index and Subindex of the OD entry that the

client wants to write to
• size: Contains the size of the data block in bytes, if s is set

Message contents of the response:

• scs: Server Command Specifier = 5
• x: Reserved
• sc: Server CRC support, set to 1 if server supports CRC
• ss: Server Subcommand = 0
• The Multiplexor contains the Index and Subindex of the OD entry that the

client wants to write to
• blksize: The number of segments per block (1-127)

Bit 7..5
ccs = 6

Bit 4..3
x = 0

Bit 2
cc

Bit 1
s

Bit 0
cs = 0

3-Byte Multiplexor
Index, Subindex

Number of bytes
size

Byte 0 Byte 1..3 Byte 4..7

Client Server

Bit 7..5
scs = 5

Bit 4..3
x = 0

Bit 2
sc

Bit 1..0
ss = 0

3-Byte Multiplexor
Index, Subindex Reserved

Byte 0 Byte 1..3 Byte 5..7

blksize

Byte 4

Embedded Networking with CAN and CANopen

106

2.8.5.2 Download Blocks

After successful initiation, the client starts transmitting the blocks. Each block consists
of as many segments as specified by "blksize" during initiation. At the end of a block,
the client expects the server to send a response.

Figure 2.25 Download Blocks

Message contents of the request:

• c: Set to 1 if this is the last segment of the block
• seqno: Sequence counter from 1 to blksize (see initiation)

Message contents of the response:

• scs: Server Command Specifier = 5
• x: Reserved
• ss: Server Subcommand = 2
• ackseq: Number of segments acknowledged (received correctly) - the Client

must re-transmit those that are not acknowledged
• blksize: The number of segments per block (1-127) that the Client must use

for the next block

2.8.5.3 End of Download Block

After the client transmitted all blocks and the server acknowledged all blocks, the cli-
ent and server confirm to each other if the transmission was successful.

Bit 8
c

Bit 7..1
seqno Segment Data

Byte 0 Byte 1..7

Bit 8
c

Bit 7..1
seqno Segment DataBit 7

c
Bit 6..0
seqno Segment Data

Client Server

Bit 7..5
scs = 5

Bit 4..2
x = 0

Bit 1..0
ss = 2 ackseq Reserved

Byte 0 Byte 1 Byte 3..7

blksize

Byte 2

107

Chapter 2: The CANopen Standard

Figure 2.26 End of Download Block

Message contents of the request:

• ccs: Client Command Specifier = 6
• n: Number of bytes in last segment that do not contain data
• x: Reserved
• cs: Client subcommand = 1
• crc: Cyclic Redundancy Checksum of the transferred data, leave at zero if

CRC is not used (details about CRC generation are at the end of this chap-
ter)

Message contents of the response:

• scs: Server Command Specifier = 5
• x: Reserved
• ss: Server Subcommand = 1

An upload is divided into the following communication stages:

• Initiate Block Upload - Client requests from Server to use block transfer
mode for an upload.

• Upload Blocks - Client receives data blocks from Server and returns one
response per block. Each block contains up to 127 segments.

Bit 7..5
ccs = 6

Bit 4..2
n

Bit 1
x = 0

Bit 0
cs = 1 CRC Reserved

Byte 0 Byte 1..2 Byte 3..7

Client Server

Bit 7..5
scs = 5

Bit 4..2
x = 0

Bit 1..0
ss = 1 Reserved

Byte 0 Byte 1..7

Embedded Networking with CAN and CANopen

108

• End of Download Block - Client and Server confirm that transmission is
now complete.

At any stage, any of the two communication partners may abort the transfer by send-
ing an abort SDO transfer message.

2.8.5.4 Initiate Block Upload

To initiate a block upload a total of three messages are exchanged as shown in
Figure 2.27.

Figure 2.27 Initiate Block Upload

Message contents of the first request:

• ccs: Client Command Specifier = 5
• x: Reserved
• cc: Client CRC support, set to 1 if client supports CRC
• cs: Client subcommand = 0
• The Multiplexor contains the Index and Subindex of the OD entry that the

client wants to read from
• blksize: The number of segments per block (1-127)

Bit 7..5
ccs = 5

Bit 4..3
x = 0

Bit 2
cc

Bit 1..0
cs = 0

3-Byte Multiplexor
Index, Subindex blksize

Byte 0 Byte 1..3 Byte 4

Client Server

Bit 7..5
scs = 6

Bit 4..3
x = 0

Bit 2
sc

Bit 0
ss = 0

3-Byte Multiplexor
Index, Subindex

Byte 0 Byte 1..3 Byte 4..7
Number of bytes

size

pst

Byte 5

Reserved

Byte 6..7

Bit 1
s

Byte 1..7

ReservedBit 7..5
ccs = 5

Bit 4..2
x = 0

Bit 1..0
cs = 3

Byte 0

109

Chapter 2: The CANopen Standard

• pst: If set to a non-zero value, the server may switch back to the regular seg-
mented SDO transfer if the total data to be transmitted is less than or equal
to the number of bytes defined by pst

Message contents of the response:

• scs: Server Command Specifier = 6
• x: Reserved
• sc: Server CRC support, set to 1 if server supports CRC
• s: Size indicator, set if total size of data transfer is indicated
• ss: Server Subcommand = 0
• The Multiplexor contains the Index and Subindex of the OD entry that the

client wants to read from
• size: The total number of bytes that need to be transmitted (possibly using

multiple blocks)

Message contents of the second request:

• ccs: Client Command Specifier = 5
• x: Reserved
• cs: Client subcommand = 3

2.8.5.5 Upload Blocks

After successful initiation, the server starts transmitting the blocks. Each block con-
sists of as many segments as specified by "blksize" during initiation. At the end of
each block, the server expects the client to send a response.

Embedded Networking with CAN and CANopen

110

Figure 2.28 Upload Blocks

Message contents of the block segments:

• c: Set to 1 if this is the last segment of the block
• seqno: Sequence counter from 1 to blksize (see initiation)

Message contents of the acknowledge:

• ccs: Client Command Specifier = 5
• x: Reserved
• cs: Client Subcommand = 2
• ackseq: Number of segments acknowledged (received correctly) - the Server

must re-transmit those that are not acknowledged
• blksize: The number of segments per block (1-127) that the Server must use

for the next block

2.8.5.6 End of Upload Block

After the server transmits all blocks and the client acknowledges all blocks, the client
and server confirm to each other if the transmission was successful.

Bit 8
c

Bit 7..1
seqno Segment Data

Byte 0 Byte 1..7

Bit 8
c

Bit 7..1
seqno Segment DataBit 7

c
Bit 6..0
seqno Segment Data

Client Server

Bit 7..5
ccs = 5

Bit 4..2
x = 0

Bit 1..0
cs = 2 ackseq Reserved

Byte 0 Byte 1 Byte 3..7

blksize

Byte 2

111

Chapter 2: The CANopen Standard

Figure 2.29 End of Upload Block

Message contents of the server's confirmation:

• scs: Server Command Specifier = 6
• n: Number of bytes in last segment that do not contain data
• ss: Server subcommand = 1
• crc: Cyclic Redundancy Checksum of the transferred data, leave at zero if

CRC is not used

Message contents of the client's confirmation:

• ccs: Client Command Specifier = 5
• x: Reserved
• cs: Client Subcommand = 1

2.8.5.7 CRC Calculation

The Cyclic Redundancy Checksum used for the block transfer has 16 bits and is calcu-
lated over the entire data range of each block. The polynomial used for the calculation
is:

Bit 7..5
scs = 6

Bit 4..2
n

Bit 1..0
ss = 1 CRC Reserved

Byte 0 Byte 1..2 Byte 3..7

Client Server

Bit 7..5
ccs = 5

Bit 1
x = 0

Bit 0
cs = 1 Reserved

Byte 0 Byte 1..7

Bit 4..2
x = 0

x16 x12 x5 1+ + +

113

 3 CANopen Beyond DS301

“Get your facts first and then you can distort
them as much as you wish.”

Mark Twain

The part of the CANopen standard that was covered in the previous chapter
[CiADS301] lays down the foundation that any CANopen application builds upon. It
describes the basic communication, data structuring, and network management meth-
ods used in the network.

However, one of the advantages of CANopen is its “openness” which enables it to
incorporate additional specifications and standards which cover application or
device-specific aspects of a CANopen implementation. To avoid the need to further
modify or enhance existing standards, the approach is to include all enhancements in
additional documents, especially if they are device or application-specific. These can
be maintained by the CiA, but there are also proprietary profiles that specify how
CANopen is used in one specific product.

Although the creation of proprietary profiles is acceptable for many deeply embed-
ded networks, one of the main reasons for using a standard is to avoid re-inventing
the wheel. So it is highly recommended that developers get all the facts about existing
profiles and frameworks first (to see which elements can be adapted) before inventing
a new proprietary profile from scratch.

Embedded Networking with CAN and CANopen

114

3.1 Frameworks and Profiles Overview

One of the huge advantages of a higher-layer protocol is the guarantee of interchange-
ability between the same type of off-the-shelf devices from different manufacturers.
This ensures interoperability between all devices that comply with this networking
standard, thus simplifying the task of system integration. The documents that consti-
tute the CANopen Device Profiles describe, in detail, how to use CANopen for a par-
ticular type of device, what communication parameters are available, and how the
Object Dictionary is set up.

Objective

In this section we want to make the reader familiar with the various types of
documents that together make up the CANopen standard. We’ll also explain
what the documents are for and how they are numbered.

Because many new profiles are in the process of being developed, this can only
be a “snap shot” of current developments. With time, documents that are cur-
rently considered “proposals” will become “standards” and new proposals
will be available.

Device Profile Title
DS401 CANopen device profile for generic I/O modules

DSP402 CANopen device profile for drives and motion control

DS404 CANopen device profile for measuring devices and closed loop
controllers

DS405 CANopen interface and device profile for IEC 61131-3 program-
mable devices

DS406 CANopen device profile for encoders

DSP408 CANopen device profile for fluid power technology proportional
valves and hydrostatic transmissions

DSP410 CANopen device profile for inclinometers

DSP413 CANopen device profiles for truck gateways

Table 3.1 List of Selected Device Profiles

115

Chapter 3: CANopen Beyond DS301

Taking this thought one step further, a networking standard can also describe the
communication aspect of a complete application, including not only the individual
devices that are part of this application, but all interfaces between them as well. In
CANopen, the documents describing this are called Application Profiles.

There are many instances where CANopen devices or applications require more
mechanisms for configuration, data access or transport than what is covered by the
Communication Profile DS301. Some of these will actually change what is seen trans-
mitted on the CAN bus. These “extensions” to CANopen are called Frameworks.
Some Device Profiles, but not all, build on top of them, whereas all Application Pro-
files so far refer to at least one Framework.

The Frameworks, although targeted at the communication requirements of particular
applications, are nevertheless “open” to use in other applications. For instance, an
application that requires safety-relevant communication could utilize either of the
very different methods that the Framework for Safety-relevant Communication
DSP304 or the Framework for Maritime Electronics DSP307 describes. More details
will be covered in Section 3.5.

DSP414 CANopen device profiles for weaving machines

DSP418 CANopen device profile for battery modules

DSP419 CANopen device profile for battery chargers

DSP420 CANopen profiles for extruder downstream devices

Application
Profile Title
DSP407 Application Profile for Passenger Information

WD416 Application Profile for Building Door Control

DSP417 Application Profile for Lift Control Systems

Table 3.2 List of Application Profiles

Device Profile Title

Table 3.1 (Continued) List of Selected Device Profiles

Embedded Networking with CAN and CANopen

116

Figure 3.1 The CANopen Standard Documents

Figure 3.1 illustrates how the different standard documents build on or complement
each other. While the Device and Application Profiles carry 4xx numbers, the Frame-
works use 3xx to indicate that they are on about the same level as the Communication
Profile. The CAN bus as the underlying technology is described in CiA standard doc-
uments DS-1xx and 2xx as well as several EN and ISO standards.

Framework Title

DSP302 CANopen Framework for CANopen Managers and Programma-
ble CANopen Devices

DSP304 CANopen Framework for Safety-relevant Communication

DSP305 CANopen Layer Setting Services and Protocols (LSS)

DSP307 CANopen Framework for Maritime Electronics

Table 3.3 List of CANopen Frameworks

CAN Standards – Data Link & Physical Layer

DS-301 Communication Profile DS-3xx Frameworks

DS-4xx Application Profiles

DS-4xx Device Profiles

117

Chapter 3: CANopen Beyond DS301

What does the “DS” in “DS301” stand for?

When browsing the CANopen standard documents you will notice that some
of the documents start with “DS”, but there are other initials used as well. The
following are all the acronyms that have been used so far:

• DS - Draft Specification
• DSP - Draft Standard Proposal
• WD - Working Draft or Work Draft Proposal
• TR - Technical Report
• DR - Draft Recommendation

A Draft Specification describes an essentially fixed standard that presumably
will not undergo major changes in the future.

Draft Standard Proposals are released standard documents as well, but they may
be simplified or expanded to accommodate changed requirements in the
future. Officially still considered draft documents, you will nevertheless find
many implementations in the CANopen world that comply with these “best
possible standards.”

The Working Draft or Work Draft Proposal documents describe parts of the CAN-
open standard that are still very much “in the works.” They often carry 0.xx
version numbers, may change a great deal before being released, and are not
recommended at all for actual implementations. They are for informational
purposes only and in most cases document the work of SIGs, the Special-Inter-
est Groups within the CiA.

A Technical Report will give definitions and guidelines, for example on the
implementation and testing aspect of the network.

Draft Recommendations describe a “best recommended practice” for hardware
aspects of a CANopen implementation such as connectors, cabling, and indica-
tor LEDs.

Embedded Networking with CAN and CANopen

118

3.2 About Masters and Managers (DS302)

Unlike other fieldbus systems, CANopen does not require a single master that com-
bines all “intelligence” in the network. Instead, there are several different functional-
ities that provide application-supporting services.

The following sections summarize and clarify some of the terms described in DSP302,
the Framework for CANopen Managers and Programmable CANopen Devices.

Figure 3.2 Application-supporting Functionalities in CANopen

Objective

This section explains the different master and manager services available in
CANopen. Terms covered include the NMT Master, the SDO Manager, the
Configuration Manager and the CANopen Manager as described in
[CiADS302].

Flying Masters are also introduced. For details on Flying Master operation, see
[CiADS302].

DS-305

DS-301

DSP-302

CANopen Manager

Configuration
Manager

NMT
Master

SDO
Manager LSS

Master

SYNC
Producer

TIME
Producer

119

Chapter 3: CANopen Beyond DS301

As illustrated by Figure 3.2, the manager functionality specified by DS301 is the NMT
Master, which is primarily responsible for starting and stopping the network. There
are additional message producing functions that are often executed by a master, but
can also be executed by another node. These functions are the time stamp production
and the SYNC signal production. The only requirement for each of these functions is
that they must be executed exclusively on one node for one SYNC or time stamp. A
particular time stamp or SYNC message may only be produced by one node in an
entire network.

In addition to the NMT Master, DS302 defines the functionality provided by an SDO
Manager and a Configuration Manager. A CANopen Manager is simply the term
specified for a device that provides the NMT Master function and at least one of the
management functions for configuration or SDO management.

The LSS (Layer Setting Services) Master is only listed for completeness. The layer set-
ting services allow the assignment of Node IDs and selection of the bit rate used.

Another related term is the “Flying Master.” In any CANopen network, there may be
only one active NMT Master or CANopen Manager at any time. If a backup is
required in the event of a failing NMT Master or CANopen Manager, Flying Masters
can be used. Flying Masters are NMT Masters or CANopen Managers that monitor
each other and ensure that only one of them is active at any time. Upon failure or dis-
connection of the currently active Flying Master, the dormant Flying Master automat-
ically wakes up and takes over.

3.2.1 The NMT Master

DS301 defines the NMT Master as a service to provide mechanisms that control and
monitor the state of nodes and their behavior in the network. The primary command
message used is the “NMT Master Message” that can either address an individual
node or address all nodes at once. The commands that can be issued with the NMT
Master messages are requests to change the NMT state of a node as explained in Sec-
tion 2.6.1 and shown in Figure 2.9.

There is only one active NMT Master allowed in a CANopen network, but since there
may be more than one device capable of performing the NMT service, DSP302 defines
Object Dictionary entries to make it configurable. In addition to enabling/disabling
the NMT service, these configuration entries contain the Network List that tells the
NMT Master what types of nodes are in the network, how they are to be treated dur-
ing boot-up and when there is an Error Control Event for a particular node.

Embedded Networking with CAN and CANopen

120

If another node wants to generate an NMT command on the network, it can ask the
NMT Master to generate it by writing to its Object Dictionary, see Figure 3.3.

Figure 3.3 Request NMT Function

The NMT Master recognizes the request (for example issued by a configuration tool)
and then sends the requested NMT command.

Although this is the recommended procedure, not all NMT Masters support this func-
tionality. Because of this, most CANopen configuration tools directly generate the
desired NMT message themselves. It is up to the user of these tools to ensure that an
existing NMT Master does not interfere with the messages generated by the configu-
ration tool.

The following is a description of the primary Object Dictionary entries used to config-
ure the NMT Master.

3.2.1.1 [1F80h]: NMT Startup

Contains an UNSIGNED32 value to control the NMT behavior of a slave node or the
NMT Master.

NMT Requesting Device
(e.g. Configuration Tool)

SlaveNRD

NMT Master

Request NMT

SlaveSlaveSlaves

NMT command to all
or individual slaves

121

Chapter 3: CANopen Beyond DS301

The bits specified for this entry are:

For NMT slaves, only bit 2 of 1F80h is of interest. All other bits should be imple-
mented read-only and set to zero. NMT slaves that always autostart will have bit 2 set

Bit Description

0
If 0 the device is not the NMT Master.
If 1 the device is the NMT Master.

1
If 0 then start only explicitly assigned nodes.
If 1 then start all nodes.
If bit 3 is 1 then this bit is ignored.

2
If 0 then automatically enter the Operational state on boot-up.
If 1 then do not automatically enter the Operational state on boot-up.
NMT Slave: may be read-write or read-only with fixed value.

3

If 0 then the NMT Master may automatically start nodes. The behavior is
configured using bit 1.
If 1 then the NMT Master may not automatically start nodes. Bit 1 is
ignored.

4

If 0 then when a node fails to respond to node guarding or heartbeat, then
reset only that node.
If 1 then when a node fails to respond to node guarding or heartbeat,
reset all nodes.
If bit 6 is 1 then this bit is ignored.

5
If 0 then the NMT Master will not participate in the Flying Master process.
If 1 then the NMT Master will participate in the Flying Master process.

6
If 0 then use the configuration specified by bit 4.
If 1 then ignore bit 4 and if a node fails to response to node guarding or
heartbeat, stop all nodes.

7 – 31 Reserved. Always zero.

Table 3.4 Control Bits for NMT Startup

Embedded Networking with CAN and CANopen

122

and implemented as read-only. NMT slaves that can be configured to either autostart
or not autostart need to have bit 2 implemented as read-write.

3.2.1.2 [1F81h,xxh]: Slave Assignment

For each node of the network, these entries specify which management or master
functions have to be executed on them. Are they mandatory for the network opera-
tion? Do they have to be of a specific type (vendor ID and/or product ID match)?
What are their configuration and startup options?

The Subindex range representing the individual nodes on the network is 01h to 7fh.
The Subindex directly corresponds to the Node ID.

Each slave assignment entry in [1F81h,xxh] is of type UNSIGNED32. The individual
bits give the following information about the node the entry refers to.

Index 1F80h
Name NMT Startup

Mandatory No, recommended for NMT Masters

Subindex 00h
Name NMT Startup

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Table 3.5 Object Dictionary Entry NMT Startup

Bit Description

0
0 if the node is not a slave for this NMT Master.
1 if the node is a slave for this NMT Master.

1 Reserved.

Table 3.6 Control Bits for Slave Assignment

123

Chapter 3: CANopen Beyond DS301

When node guarding is used and a node guarding request is not answered by a node,
then the master will re-send the guarding request (Retry Factor -1) times. The time
interval between the re-tries is Guard Time.

2

0 if the node should not be automatically configured and started when a
boot-up message is detected being transmitted from the node.
1 if the node should be automatically configured and started when a
boot-up message is detected being transmitted from the node.

3

0 if the node is an optional slave. The network may be started if this
node can not be contacted.
1 if the node is a mandatory slave. Do not start the network if this node
can not be contacted.

4
0 if the node may be reset regardless of the current state of the node.
1 if the node may only be reset if the node is currently not operational.

5
0 if application software version verification is not required for the node.
1 if application software version verification is required for the node.

6
0 if automatic software update of the node is not allowed.
1 if automatic software update of the node is allowed.

7 Reserved.

8 – 15 Retry Factor, if node guarding is used.

16 – 31 Guard Time in milliseconds, if node guarding is used.

Index 1F81h
Name Slave Assignment

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Table 3.7 Object Dictionary Entry Slave Assignment

Bit Description

Table 3.6 (Continued) Control Bits for Slave Assignment

Embedded Networking with CAN and CANopen

124

3.2.1.3 [1F82h,xxh]: Request NMT

Writing an NMT command to this entry is a request to the NMT Master to send its
NMT Master message to the select node(s). The Subindex directly corresponds to the
Node ID number to be addressed with the NMT Master message. Subindex 80h repre-
sents “all nodes” meaning the NMT message will be sent to all nodes.

The values written to these Object Dictionary entries are the same command values as
used by the NMT Master message:

• 04h: Enter Stopped state
• 05h: Enter Operational state
• 06h: Reset Application
• 07h: Reset Communication
• 7Fh: Enter Pre-operational state

Reading one of the entries returns the last reported state of the selected node
(reported by the heartbeat or node guarding message). Because that information is
available on the network anyway it is redundant to have a copy in the NMT Master.
However, it gives an indication about what the NMT Master thinks the current state
of a node is. The possible values are:

Access Read Only

Mandatory No

Map to PDO No

Subindex 01h – 7Fh
Name Slave Assigment Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Table 3.7 (Continued) Object Dictionary Entry Slave Assignment

125

Chapter 3: CANopen Beyond DS301

• 00h: Unknown state
• 01h: Node missing
• 04h: Stopped
• 05h: Operational
• 7fh: Pre-operational

Index 1F82h
Name Request NMT

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 80h

Access Read Only

Mandatory Yes if 1F82h entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Request NMT for Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if 1F82h is implemented

Map to PDO No

Subindex 80h
Name Request NMT for All Nodes

Type UNSIGNED8

Default Value Node defined

Access Write Only

Table 3.8 Object Dictionary Entry Request NMT

Embedded Networking with CAN and CANopen

126

3.2.1.4 [1F84h,xxh] to [1F88h,xxh]: Network List

The network list allows the NMT Master to keep a local copy of the Device Type
[1000h] and the Identity Object [1018h,xxh] values of each node. The Subindex used in
the Network List directly corresponds to the Node ID number of the node for which
ID information has been stored in the Network List.

These entries are useful if the NMT Master needs to check if all nodes are in place
with the correct Node ID and to verify that no nodes have been exchanged. If a value
in the network list is set to zero, then a “don’t care” is assumed for that node and it
does not matter what value the node reports.

Depending on the level of detail required, an NMT Master could only implement
parts of the Network List. If only the device type information needs to be confirmed,
the implementation of [1F84h,xxh] is sufficient. If the level of detail required goes all
the way down to the serial number, then the entire network list must be implemented.

Mandatory Yes if 1F82h is implemented

Map to PDO No

Index 1F84h
Name Device Type Identification

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh

Table 3.9 Object Dictionary Entry Network List: Device Type

Table 3.8 (Continued) Object Dictionary Entry Request NMT

127

Chapter 3: CANopen Beyond DS301

Name Device Type Identification for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F85h
Name Vendor Identification

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Vendor Identification for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Table 3.10 Object Dictionary Entry Network List: Vendor ID

Table 3.9 (Continued) Object Dictionary Entry Network List: Device Type

Embedded Networking with CAN and CANopen

128

Index 1F86h
Name Product Code

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Product Code for Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Table 3.11 Object Dictionary Entry Network List: Product Code

Index 1F87h
Name Revision Number

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Table 3.12 Object Dictionary Entry Network List: Revision Number

129

Chapter 3: CANopen Beyond DS301

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Revision Number for Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F88h
Name Serial Number

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Serial Number for Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Table 3.13 Object Dictionary Entry Network List: Serial Number

Table 3.12 (Continued) Object Dictionary Entry Network List: Revision

Embedded Networking with CAN and CANopen

130

3.2.1.5 [1F89h]: BootTime

The time in milliseconds a NMT Master waits after sending a Reset Command for all
mandatory nodes to start-up. If this time expires and one of the mandatory nodes was
not found, the NMT Master will go into an error state.

3.2.2 The SDO Manager and Dynamic SDO Connections

The Pre-defined Connection Set in CANopen specifies only one SDO channel for
every Node ID. This means that by default every CANopen slave node implements
exactly one SDO server, and only one node (typically a master or configuration tool)
will act as an SDO client to access the Object Dictionaries of the slaves. No other node
can use the same SDO channels to talk to any of the slaves without risking collisions
with an SDO request message with the same identifier from another SDO client. Even
if the CAN messages do not collide, the additional SDO requests from a different
source can easily interfere with the other SDO communication that is going on.
Clearly this has to be avoided.

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F89h
Name Boot Time

Mandatory No but recommended for NMT Masters

Subindex 00h
Name Boot Time

Type UNSIGNED32

Default Value 0h

Access Read/Write

Mandatory No

Map to PDO No

Table 3.14 Object Dictionary Entry Boot Time

Table 3.13 (Continued) Object Dictionary Entry Network List: Serial Number

131

Chapter 3: CANopen Beyond DS301

Therefore, an SDO Manager is specified that is in charge of all SDO channels and that
has exclusive access to them. If implemented, the SDO Manager and the NMT Master
are on one and the same node.

A node, for instance a configuration or diagnosis tool that needs to talk to any of the
slaves, has to request a channel from the SDO Manager first. The channel can only be
used after that request has been granted or it has been confirmed that there is no SDO
Manager present in the network.

The procedure for the dynamic assignment of an SDO channel can be summarized as
follows:

1. The SDO Requesting Device (SRD) sends the “Dynamic SDO Request” message.
Because this message has the fixed CAN message identifier 6E0h and data length
zero, it can be sent by any node at any time.

2. The SDO Manager recognizes the “Dynamic SDO Request” and starts scanning the
network. It reads the 1F10h “Dynamic SDO Connection State” entry of each node
until it finds the one that issued the request.

3. Once the SRD is found the SDO Manager enables the SDO client functionality in
the SRD to allow the node client access to the Object Dictionary of the SDO Man-
ager.

4. The SRD can now request or release channels by writing to the 1F00h and 1F01h
entries.

5. The SDO Manager will act on the requests and try to establish the SDO channel by
writing to the Object Dictionary entries for SDO channel configuration of both the
SRD and the target node that the SRD wants to connect with.

To allow for a more efficient method for configuration tools to get access to an entire
network, there is also a mechanism to simply request all default SDO channels. If the
SDO Manager grants this request, it will stay away from all default SDO channels.

Multiple SDO Clients and Servers

Even though by default all nodes implement only one SDO client, DS301 speci-
fies that each node in the network may support up to 128 SDO servers, and just
as many clients (objects 1200h-12FFh, SDO Server and SDO Client Parameters).
An SDO Manager makes use of the additional SDO clients and can dynamically
configure them when other devices request them. A second option is to stati-
cally configure additional SDO channels during network configuration.

Embedded Networking with CAN and CANopen

132

Figure 3.4 illustrates the messages involved when a SRD requests all SDO channels
from the SDO Manager.

Figure 3.4 Dynamic Request for all SDO Channels

When the SDO Manager reads [1F10h,00h] from the SRD, the SRD replies with
00000003h to indicate that it desires to use all SDO channels. The SDO Manager will
overwrite [1F10h,00h] with 00000004h to indicate that the request was granted.

SRD SDO Manager

Dynamic SDO Request
Message 6E0h, no data

Stop scan upon response with bit0=1
SDO Read Response is 0000 0003h

SDO Read Request [1F10,00]
SDO Read Request [1F10,00]SDO Manager scans all nodes

SDO Read Request [1F10h,00h]

SDO Write Request [1F10h,00h]
with data 0000 0004h
SDO Write Response

From now on SRD may use
all SDO channels

133

Chapter 3: CANopen Beyond DS301

Figure 3.5 Register as SRD

When the SRD only wants to request single SDO channels, it needs to register as a
SRD with the SDO Manager first. The sequence for such an SRD registration process
is illustrated in Figure 3.5. This time the SRD replies to the SDO Manager’s read
request of [1F10h,00h] with the value 12800001h indicating that it wants to register
with the SDO Manager and requires an SDO channel to the SDO Manager. In this case
the SRD also informs the SDO Manager that the next available SDO Client within the
SRD is [1280h] (this is only an example; it could also have been one of the other SDO
clients in the range from 1280h to 12FFh).

The SDO Manager now executes several SDO Write Requests to 1280h to configure
the SDO Client to link to an SDO Server within the SDO Manager. Once the SDO Cli-
ent is configured, the SRD has an SDO channel to the SDO Manager to execute read or
write accesses to the Object Dictionary in the SDO Manager. The process is completed
by the SDO Manager writing 00000002h to [1F10h,00h] of the SRD.

Once the SRD is registered it can write to the 1F00h and 1F01h entries of the SDO
Manager to request or release single SDO channels.

SRD SDO Manager

Dynamic SDO Request
Message 6E0h, no data

Stop scan upon response with bit0=1
SDO Read Response is 1280 0001h

SDO Read Request [1F10,00]
SDO Read Request [1F10,00]SDO Managers scan all nodes

SDO Read Request [1F10h,00h]

SDO Write Request [1280,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1F10h,00h]
with data 0000 0002h
SDO Write Response

SDO Write Request [1280,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1280h,xxh]
Configure SDO Client
SDO Write Response

SRD is now registered with SDO Manager and can use
SDO client 1280h to access SDO Manager

Embedded Networking with CAN and CANopen

134

Figure 3.6 SRD Requesting a SDO Channel

Figure 3.6 shows the messages involved in the request of a single SDO channel. In this
example, the SRD has the node ID 5 and desires an SDO channel to node 7 with node
7 being the server and node 5 the client. The SRD uses its SDO channel to the SDO
Manager to write to [1F00h,00h] of the SDO Manager. The value written contains the
next available SDO Client in the SRD (here 1281h), the Node ID of the SRD and the
Node ID of the target node.

Assuming that node 7 only has one SDO server implemented (the default), the SDO
Manager would set up the SDO Client 1281h in the SRD to use the default SDO chan-
nel and would itself refrain from using that channel further.

However, if node 7 has multiple SDO servers implemented, the SDO Manager would
not assign the default SDO channel to node 5 but would configure both nodes to use a
new channel. So in addition to configuring the SDO Client in the SRD it would also
configure the additional SDO Server in node 7 as illustrated in Figure 3.7.

SRD
Node 5

SDO
Manager

SDO Write Request [1F00h,00h]
with data 1281 0507h
SDO Write Response

SRD Desired
Node 7

SDO Write Request [1281,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1281,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1281h,xxh]
Configure SDO Client
SDO Write Response

Default SDO channel of node 7
is now assigned to SDO client

1281h in SRD - node 5

135

Chapter 3: CANopen Beyond DS301

Figure 3.7 Fully Dynamic SDO Channel

The following is a description of the primary Object Dictionary entries used to config-
ure the SDO Manager.

3.2.2.1 [1F00h] and [1F01h]: Request and Release SDO Channel

After it has been assigned an SDO channel by the SDO Manager, a device that wants
to request or release SDO channels (the SRD) can do so by writing to these Object Dic-
tionary entries in the SDO Manager. The entries contain a value of type UNSIGNED32
that contains the following bits:

Bit Description

0 – 7
Node ID of the node the SRD wants an SDO channel to;
when writing to 1F01h and this is zero, then request to release all con-
nections and cease to be a SRD.

Table 3.15 Control Bits for Request and Release SDO Channel

SRD
Node 5

SDO
Manager

SDO Write Request [1F00h,00h]
with data 1281 0507h
SDO Write Response

SRD Desired
Node 7

SDO Write Request [1281,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1281,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1281h,xxh]
Configure SDO Client
SDO Write Response

SDO channel assigned from
SDO client 1281h in node 5 to
SDO server 1200h in node 7

SDO Write Request [1200,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1200,xx]
Configure SDO Client
SDO Write Response

SDO Write Request [1200h,xxh]
Configure SDO Server
SDO Write Response

Embedded Networking with CAN and CANopen

136

The value contains the Node ID of the device that the SRD wants to establish an SDO
channel to, as well as the Node ID of the SRD itself. The SDO channel requested
would make the SRD the SDO client, and the node would be the SDO server. The
third value available defines the Index of a free SDO client configuration Index within
the SRD. The SDO Manager will use that entry to configure the SDO client within the
SRD.

The Object Dictionary entries are specified as follows:

8 – 15 Node ID of the SRD.

16 – 31
Index of a free Client SDO Entry in the SRD's Object Dictionary
(1280h – 12FFh); when writing to 1F01h and this is zero, then this is a
request to release all connections.

Index 1F00h
Name Request SDO

Mandatory Yes for SDO Managers, not used on other nodes

Subindex 00h
Name Request SDO

Type UNSIGNED32

Default Value Not defined

Access Write Only

Mandatory Yes for SDO Managers

Map to PDO No

Table 3.16 Object Dictionary Entry Request SDO

Index 1F01h
Name Release SDO

Table 3.17 Object Dictionary Entry Release SDO

Bit Description

Table 3.15 (Continued) Control Bits for Request and Release SDO Channel

137

Chapter 3: CANopen Beyond DS301

3.2.2.2 [1F10h]: Dynamic SDO Connection State

This entry is not implemented by the SDO Manager, but by the devices that want to
request dynamic SDO channels. After an SDO Manager receives the request indicat-
ing that there are nodes on the network which are requesting an SDO channel, the
SDO Manager scans all 1F10h entries of all nodes to find out which node(s) requested
an SDO channel.

Read requests from this entry have to return zero if the node does not request an SDO
channel. If the node sent a “Dynamic SDO Request” message (COB ID 6E0h, no data
field), it must report the following values upon a read access:

• Set Request Indication bit to signal that an SDO channel is requested.

Mandatory Yes for SDO Managers, not used on other nodes

Subindex 00h
Name Release SDO

Type UNSIGNED32

Default Value Not defined

Access Write Only

Mandatory Yes for SDO Managers

Map to PDO No

Bit Description
0 Request Indication.

1 - 2 Connection State.

3 Request Error Control.

4 - 7 Reserved. Always zero.

8 - 15 Error code.

16 - 31 Index of a free Client SDO Entry in the SRD's Object Dictionary (1280h
– 12FFh).

Table 3.18 Control Bits Dynamic SDO Connection State

Table 3.17 (Continued) Object Dictionary Entry Release SDO

Embedded Networking with CAN and CANopen

138

• Set Connection State to one if access to all SDO channels is desired, other-
wise leave zero. This is useful for configuration tools that temporarily want
to have access to all nodes.

• Set Request Error Control to one, if the SDO Manager should continue to
provide error control services (heartbeat monitoring or node guarding) for
the nodes that the SRD gets connected to.

• Set the Index (range 1280h to 12FFh) of the SRD’s SDO client entry to be
used for the communication with the SDO Manager. This value can remain
zero if access to all SDO channels is requested.

The SDO Manager will write to this entry to confirm or deny the request:

• Request Indication bit is cleared to signal successful registration as SRD.
• Connection State is set to one if registration as an SRD was successful or to

two if all SDO channels were assigned to the SRD. A value of three indicates
that the dynamic SDO channel assignment is completed (SDO client and
server configured on both ends).This value will be set to zero if an error
occurred in which case an error code will be reported (see Table 3.19).

• Request Error Control will be set to one if the SDO Manager continues to
perform the error control for the node that the SRD established an SDO
channel with.

Error Code Description
00h Unspecified error.

01h There was no free SDO channel to create a connection between
the SDO Manager and SRD.

02h There were no more free SDO channels in the CANopen net-
work.

03h The Slave does not have any free Server SDOs.

04h The Slave node is not available.

05h – FFh Reserved.

Table 3.19 Error Codes Used with Dynamic SDO Channel Assignment

139

Chapter 3: CANopen Beyond DS301

3.2.2.3 [1F02h,xxh]: SDO Manager COB IDs

In order to assign CAN message IDs for additional SDO channels, the SDO Manager
needs to know which IDs are still available in the system. This is the configurable list
of IDs that the SDO Manager can use for dynamic channel assignments. Each list
entry is of type UNSIGNED32 and has the following bits defined for 11-bit COB IDs:

The important bits are 30 and 31. If 31 is set, the entry is used by the SDO Manager.
The COB ID is “owned” by the SDO Manager and only it is allowed to use or assign it.

Index 1F10h
Name Dynamic SDO Connection State

Mandatory Yes for Nodes using Dynamic SDO Channels

Subindex 00h
Name Dynamic SDO Connection State

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes for Nodes using Dynamic SDO Channels

Map to PDO No

Table 3.20 Object Dictionary Entry Dynamic SDO Connection State

Bit Description
0 – 10 COB ID

11 - 29 Set to 0

30
0 if the COB ID is free to be used for an SDO channel.
1 if the COB ID is currently in use for an SDO channel.

31
0 if the COB ID is valid, this Subentry is used.
1 if the COB ID is not valid, this Subentry is not used.

Table 3.21 Control Bits of SDO Manager COB ID Entries

Embedded Networking with CAN and CANopen

140

This also applies if bit 30 is cleared. If bit 30 is cleared, the COB ID is currently not
used for any SDO channel, however, the SDO Manager can assign it anytime.

Index 1F02h
Name SDO Manager COB IDs

Mandatory Yes for SDO Managers

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes for SDO Managers

Map to PDO No

Subindex 01h – FEh
Name COB ID 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Table 3.22 Object Dictionary Entry SDO Manager COB ID

141

Chapter 3: CANopen Beyond DS301

3.2.2.4 [1F03h,xxh]: SDO Connections

These entries contain the table of the current dynamic SDO channels assigned by the
SDO Manager. The data type is UNSIGNED32 and the following bits are defined for
these entries:

The offsets are added to the base Index address for the SDO communication parame-
ters. The Index with the SDO Server Communication Parameters in the SDO Server is
1200h plus the offset. The Index with the SDO Client Communication Parameters in
the SDO Client is 1280h plus the offset.

Bit Description
0 – 7 SDO Server Node ID

8 – 15 SDO Server Communication Parameter Offset

16 – 23 SDO Client Node ID

24 – 31 SDO Client Communication Parameter Offset

Table 3.23 Control Bits for SDO Connections Entry

Index 1F03h
Name SDO Connections

Mandatory Yes for SDO Managers

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for SDO Managers

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 1-254

Table 3.24 Object Dictionary Entry SDO Connections

Embedded Networking with CAN and CANopen

142

3.2.3 The Configuration Manager

In a network where the individual nodes are not pre-configured and must be config-
ured after every power-up, a Configuration Manager is required. The Configuration
Manager’s task is to locally store the configuration of each node and transfer that
information to the nodes upon each power-up of the system. If implemented, the Con-
figuration Manager and the NMT Master are on the same node.

If the Configuration Manager runs on a PC-style computer it stores the configuration
information by having local copies of the DCF files with the configuration for each
node in the system. It stores these files in an array of Object Dictionary entries located
at 1F20h (type of the entry is DOMAIN, which has an unspecified length). The Subin-
dex directly represents the Node ID. So the entry at [1F20h,07h] holds the DCF for
node number 7.

To optimize memory usage in Configuration Managers that run without a file system,
a concise version of the DCF is typically stored in 1F22h. The concise DCF format is
compressed in two ways. First, it only contains the Object Dictionary entries that need
to be configured (if some default values are actually used in a node, these do not get
configured). Secondly, a binary format is used instead of an ASCII format.

The concise DCF format is straight-forward:

• The first entry is a variable of type UNSIGNED32 specifying how many
entries are in this DCF: “Number of entries.”

• For each entry, the following record is stored:

o Index (UNSIGNED16)

o Subindex (UNSIGNED8)

o Length (UNSIGNED32), length of the data field to follow, in bytes

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Table 3.24 (Continued) Object Dictionary Entry SDO Connections

143

Chapter 3: CANopen Beyond DS301

o Data (DOMAIN), the data field

Although the regular ASCII DCF format and the concise DCF format are used when
accessing the entries at 1F20h or 1F22h, this does not tell us anything about the true
storage format within the Configuration Manager.

There might be some managers with enough intelligence that they do some compres-
sion of their own. For example, they may accept regular DCF formats, but internally
store the information in the concise format. Others might further compress the concise
format internally by not allowing any values greater than UNSIGNED16 for the num-
ber of entries or the length of an entry.

Because the configuration process for an entire system can take multiple seconds to
execute for each node, several functions have been provided to shorten the configura-
tion cycle. If the individual nodes support the storage of their last configuration in
non-volatile memory, a Configuration Manager would only need to double check to
see if each node still has the valid last configuration stored.

The following is an overview of the primary Object Dictionary entries used to config-
ure the Configuration Manager.

3.2.3.1 [1F20h-1F22h,xxh]: DCF Storage

These Object Dictionary entries store the DCF configuration files for the nodes that
need to be handled by the Configuration Manager. The Subindex directly relates to
the CANopen Node ID number of the node to which a DCF belongs. If 1F20h and
1F21h are implemented, 1F22h does not need to be implemented. The concise format
used in 1F22h is intended as an alternative for Configuration Managers that do not
have enough physical resources (memory storage capacity, CPU performance to inter-
pret ASCII DCF) to implement 1F20h and 1F22h.

Index 1F20h
Name Store DCF

Mandatory No

Subindex 00h
Name Number of Entries

Table 3.25 Object Dictionary Entry Store DCF

Embedded Networking with CAN and CANopen

144

Read attempts from a 1F20h Subindex with no DCF stored result in a SDO Abort with
the error code 08000024h “Data Set Empty.”

Type UNSIGNED8

Default Value 7Fh (highest Node ID available)

Access Read Only

Mandatory Yes if 1F20h is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Store DCF Node 1 – 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if 1F20h is implemented

Map to PDO No

Index 1F21h
Name Storage Format

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh (highest Node ID available)

Access Read Only

Mandatory Yes if 1F20h is implemented

Map to PDO No

Subindex 01h – 7Fh

Table 3.26 Object Dictionary Entry Storage Format

Table 3.25 (Continued) Object Dictionary Entry Store DCF

145

Chapter 3: CANopen Beyond DS301

Name Storage Format Node 1 – 127

Type UNSIGNED8

Default Value 00h: uncompressed ASCII

Access Read/Write

Mandatory Yes if 1F20h is implemented

Map to PDO No

Index 1F22h
Name Concise DCF

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh (highest Node ID available)

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Concise DCF Node 1 – 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Table 3.27 Object Dictionary Entry Concise DCF

Table 3.26 (Continued) Object Dictionary Entry Storage Format

Embedded Networking with CAN and CANopen

146

Read attempts from a 1F22h Subindex with no DCF stored result in the return of an
“empty” concise stream where the first 32-bit entry (Number of Entries) is zero. So the
response would be 00000000h.

3.2.3.2 [1F26h-1F27h,xxh]: Expected Configuration Date and Time Stamp

If the individual nodes on the network support the “Store Parameter Functionality” at
1010h (storing a configuration in non-volatile memory locally), the entry 1020h “Ver-
ify Configuration” of these nodes will be set to the date and time of the last configura-
tion.

The entries at 1F26h and 1F27h of the Configuration Manager contain a copy of these
entries so that the Configuration Manager can quickly confirm if the last configura-
tion saved is still the one to be used.

Index 1F26h
Name Expected Configuration Date

Mandatory No, required for handling nodes that use 1010h

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh (highest available Node ID)

Access Read Only

Mandatory Yes if 1F26 is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Configuration Date Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if 1F26 is implemented

Map to PDO No

Table 3.28 Object Dictionary Entry Expected Configuration Date

147

Chapter 3: CANopen Beyond DS301

3.2.4 The CANopen Manager

The term “CANopen Manager” was created in order to have a single term for the
combination of master and manager functionalities. A node is called a CANopen
Manager if it provides the NMT Master functionality and at least one of the functions
of an SDO Manager or Configuration Manager.

For details about the functionality provided by these masters and managers, see the
previous sections.

Index 1F27h
Name Expected Configuration Time

Mandatory No, required for handling nodes that use 1010h

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh (highest available Node ID)

Access Read Only

Mandatory Yes if 1F27 is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Configuration Time Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if 1F27 is implemented

Map to PDO No

Table 3.29 Object Dictionary Entry Expected Configuration Time

Embedded Networking with CAN and CANopen

148

3.2.5 The Boot-up Process

Due to the many configuration options available, the boot-up process can vary greatly
in CANopen. The complexity of the boot-up process can vary from simple pre-config-
ured, master-less systems that start-up themselves, to complex dynamic systems with
Flying Masters and an elaborate configuration process depending on the components
hooked up to the network. [CiADS302] uses a number of flow diagrams to illustrate
the possible boot-up options. For simplicity this book stays with two common exam-
ples.

3.2.5.1 Minimal NMT Master Boot-up

In a system with only a minimal NMT Master, the individual nodes transmit their
boot-up message and then stay in pre-operational mode. The NMT Master continu-
ously scans the network, either by passively waiting for the boot-up messages or
actively by trying to read Object Dictionary entries, such as 1000h device type infor-
mation. Alternatively it could ensure a synchronous start-up by issuing a “reset all
nodes” command to make sure that it did not miss a boot-up message.

Once the NMT Master determines that all nodes are available that are required for
smooth network operation, it will send the NMT Master message “start all nodes” to
start the network and the devices.

Optionally, it would continue monitoring the network and then react to network fail-
ures like nodes disappearing or changing their operating state.

3.2.5.2 CANopen Manager Boot-up

If a system contains nodes that need to be configured before they can start operation,
a CANopen Manager with Configuration Management is required.

The NMT Master related boot-up procedure of the CANopen Manager is basically
identical to the NMT Master boot-up described previously. However, before starting
the network, it needs to be confirmed that each node is configured correctly. The
CANopen Manager verifies the configuration of each node by first checking to see if
the node supports the “save parameters functionality” (saving a configuration in non-
volatile memory). If it does not support this function, it needs to be configured.

If it does support the save parameters function, it just needs to be verified that the
configuration is still valid. That can be done by comparing the date and time stamp of
the last configuration stored in the node with that stored in the CANopen Manager. If

149

Chapter 3: CANopen Beyond DS301

they are identical, no further configuration is required. If they do not match, the node
needs to be configured.

Once all nodes are processed, the NMT Master message “start all nodes” can be sent
by the CANopen Manager.

3.3 Device Profile for Encoder (DS406)

3.3.1 Introduction

In order to distinguish between encoders with “basic functionality” and “extended
functionality” the device profile introduces two classes: “C1” and “C2.” The “C1
class” encoders are basic encoders reporting one position value. “C2 class” encoders
can not only have advanced functions like scaling, they can also consist of multiple
encoders and report the values from multiple encoders.

Although not pointed out directly in the specification, using only absolute position
values when transmitting positions via a network based on CAN is recommended.
One of the known problems of CAN communication is that in some rare cases the
error detection and re-transmission scheme can cause the duplication of messages. In
other words, a node can conceivably receive a message twice.

If the data in that message is an absolute position value nothing happens. However, if
the data is incremental and it is received twice the receiver would now assume an
incorrect position for the encoder.

Objective

There is hardly any CANopen device that could be simpler than a single chan-
nel encoder reporting exactly one position value to the network. That’s why
this example was chosen as a practical example of what is specified in a device
profile.

The content of this section is based on [CiADS406]. The definitions and require-
ments shown are those for a “C1 class” encoder, a basic encoder without scal-
ing or other extended functionality, which simply reports one position value.

Embedded Networking with CAN and CANopen

150

3.3.2 Object Dictionary Entries

The following Object Dictionary entries are mandatory for “C1 class” encoders. They
are in addition to the regular mandatory entries like error register and Identity Object.

3.3.2.1 Index [1000h]: Device Type

One of the first things a device profile defines is the details about how Object Diction-
ary entry [1000h] has to be implemented. This is the device type entry, typically the
first entry read by CANopen Masters or configuration tools that scan the network for
connected nodes.

The device profile for encoders specifies that the low word of the 32-bit device type
field contains 0196h (= 406d, the device profile number).

The high word contains the encoder type, which can be one of the values in Table 3.30.

3.3.2.2 Index [1800h,xxh] and [1A00h,xxh]: 1st TPDO Parameters

The first default transmit PDO contains exactly one variable: the 4-byte encoder posi-
tion value stored in [6004h]. The mapping entry in [1A00h,01h] is 60040020h. The
transmission type [1800h,02h] is set to 254: device profile specific. It is transmitted

Encoder
Type Description
1 Absolute single-turn rotary encoder

2 Absolute multi-turn rotary encoder

3 Absolute single-turn rotary encoder with counter

4 Incremental rotary encoder

5 Incremental rotary encoder with counter

6 Incremental linear encoder

7 Incremental linear encoder with counter

8 Absolute linear encoder

9 Absolute linear encoder with cyclic coding

10 Multi-sensor encoder interface

Table 3.30 Encoder Types

151

Chapter 3: CANopen Beyond DS301

asynchronously using the event timer. Older implementations use the device profile
specific event timer at [6200h], newer implementations will adapt the device profile
independent event timer [1800h,05h]. In case both are implemented, they must always
be identical (writing to one also changes the other).

3.3.2.3 Index [1801h,xxh] and [1A01h,xxh]: 2nd TPDO Parameters

The contents of the second default transmit PDO are identical to the first. The only
difference is that it has a different default for the transmission type [1801h,02h], which
is 1. It is set to synchronous transmission with every SYNC signal received.

3.3.2.4 Index [6000h]: Operating Parameters

This is an UNSIGNED16 read-write value where individual bits report some of the
operating parameters like measuring direction or scaling capabilities available in this
encoder. For “C1 class” rotary encoders only bit 0 “Code Sequence” is mandatory. It
has to be set to 1 for clockwise operation, meaning turning the encoder clockwise
increments the position value. It has to be set to 0 if turning it counterclockwise incre-
ments the position value.

3.3.2.5 Index [6004h]: Position Value

The 32-bit read-only position value stored as UNSIGNED32.

3.3.2.6 Index [6500h]: Operating Status

The operating status is a read-only version of entry [6000h].

3.3.2.7 Index [6501h]: Resolution

This UNSIGNED32 read-only value is used slightly differently on rotary and linear
encoders. For rotary encoders it shows the number of measuring steps reported by a
single 360 degree turn of the encoder. For linear encoders it shows the length of a sin-
gle measuring step in nanometers.

3.3.2.8 Index [6502h]: Revolutions

This UNSIGNED16 read-only entry is used for rotary encoders. It contains the num-
ber of full 360 degree turns the encoder can count. For single turn rotary encoders this
value is 1. The total measuring range reported in the position value is Revolutions
[6502h] multiplied by Resolution [6501h].

Embedded Networking with CAN and CANopen

152

3.3.3 Encoder Object Dictionary Example

The following DS406 related Object Dictionary entries would be implemented for a
basic C1 class absolute multi-turn rotary encoder.

Index
Sub
index Description Data Type

Default
Value

1000h 00h Device Type UNSIGNED32 00020196h

1800h 1st TPDO Communication
Parameters

1800h 00h Number of Entries UNSIGNED8 5

1800h 01h COB ID UNSIGNED32 180h +
Node ID

1800h 02h Transmission Type UNSIGNED8 FEh

1800h 03h Inhibit Time UNSIGNED16 0

1800h 05h Event Time UNSIGNED16 0

1A00h 1st TPDO Mapping Param-
eters

1A00h 00h Number of Entries UNSIGNED8 1

1A00h 01h 1st Mapping Entry: Position
Value

UNSIGNED32 60040020h

1801h 2nd TPDO Communication
Parameters

1801h 00h Number of Entries UNSIGNED8 5

1801h 01h COB ID UNSIGNED32 280h +
Node ID

1801h 02h Transmission Type UNSIGNED8 1

1801h 03h Inhibit Time UNSIGNED16 0

1801h 05h Event Time UNSIGNED16 0

1A01h 2nd TPDO Mapping
Parameters

Table 3.31 An Object Dictionary Example for Encoders

153

Chapter 3: CANopen Beyond DS301

3.4 Device Profile for Generic I/O (DS401)

3.4.1 Introduction to Generic I/O

As with all device profiles, DS401 defines a small set of mandatory functionality that a
device must have in order to be able to claim DS401 compliance. In addition, it speci-
fies a much larger set of optional functionality that may be implemented if it is
required. In the case of DS401 the optional functions can add up to the point where it
is hard to implement all of them if the target is an 8-bit microcontroller.

1A01h 00h Number of Entries UNSIGNED8 1

1A01h 01h 2nd Mapping Entry: Posi-
tion Value

UNSIGNED32 60040020h

6000h 00h Operating Parameters UNSIGNED16 (no default)

6004h 00h Position Value UNSIGNED32 (no default)

6500h 00h Operating Status UNSIGNED16 (no default)

6501h 00h Resolution UNSIGNED32 (no default)

6502h 00h Revolution UNSIGNED16 (no default)

Objective

The device profile for generic I/O is one of the most often implemented CANo-
pen device profiles. By default it supports a total of up to 64 digital input chan-
nels and up to 64 digital output channels. The analog channels provided by
default are a total of up to 24 (12 channels for input and 12 for output), each 16-
bit resolution.

The content of this section is based on [CiADS401]. The definitions and require-
ments shown are those that are mandatory and must be supported by a generic
I/O device in order to be able to claim DS401 compliance.

Index
Sub
index Description Data Type

Default
Value

Table 3.31 (Continued) An Object Dictionary Example for Encoders

Embedded Networking with CAN and CANopen

154

For example, there can be about ten configurable parameters for each analog input
channel. These can include an offset and a scaling and several parameters for the
change-of-state detection. The change-of-state detection could include detection
involving an upper and lower limit/threshold as well as a negative or positive value
difference.

Another indicator of the potential for complexity is the number of device profile spe-
cific Object Dictionary entries specified. The mandatory entries are about one for
every 8 bits of digital input or output data, one for every 16 bits of output data and
two for each 16 bits of analog input data.

In addition, the device profile specifies hundreds (or thousands if all the entries speci-
fied for single-bit access are counted) of optional Object Dictionary entries that either
contain configuration parameters or alternate access to the process data (for example
16-bit access instead of 8-bit access to the digital data).

For the scope of this book we focus on the mandatory function set and some selected
optional functions that are commonly implemented in many devices. For a complete
listing of the optional functions see [CiADS401].

3.4.2 Object Dictionary Entries

The following Object Dictionary entries are mandatory for “Generic I/O” devices.
They are in addition to the regular mandatory entries like error register and Identity
Object.

3.4.2.1 Index [1000h]: Device Type

The device profile for generic I/O specifies that the low word of the 32-bit device type
field contains 0191h (= 401d, the device profile number).

Bits 16 through 19 provide information about the type of I/O provided. There is one
bit each that can be set to signal the support of a specific I/O type as listed in
Table 3.32.

Bit Description
16 Digital Input

17 Digital Output

Table 3.32 I/O Types

155

Chapter 3: CANopen Beyond DS301

In addition, bits 24-31 are used to report special functionality. So far only one value
has been specified. If bits 24-31 contain a 1 the device is a joystick.

3.4.2.2 Index [140xh,xxh] and [160xh,xxh]: RPDO Parameters

By default a total of up to four RPDOs are configured. The transmission type
[140xh,02h] is set to 255: manufacturer specific. The default behavior is that upon
receiving a RPDO the data contained in the RPDO is immediately applied to the out-
puts.

The default RPDO mapping is illustrated in Figure 3.8. RPDO1 contains 8 digital out-
put bytes that, upon receiving, will be copied to the Object Dictionary entries
[6200h,01h-08h]. RPDO2, 3 and 4 each contain four 16-bit analog values that are
mapped to the Object Dictionary entries [6411h,00h-0Ch].

Figure 3.8 Default RPDO Mapping of DS401

18 Analog Input

19 Analog Output

Bit Description

Table 3.32 I/O Types

8-bit
6200,2

8-bit
6200,3

8-bit
6200,4

8-bit
6200,1

8-bit
6200,6

8-bit
6200,7

8-bit
6200,8

8-bit
6200,5

16-bit
6411,1

RPDO1

16-bit
6411,2RPDO2 16-bit

6411,3
16-bit

6411,4

16-bit
6411,5

16-bit
6411,6RPDO3 16-bit

6411,7
16-bit

6411,8

16-bit
6411,9

16-bit
6411,ARPDO4 16-bit

6411,B
16-bit

6411,C

Notes: All Index, Subindex values in hexadecimal,
8-bit values are UNSIGNED8 and 16-bit values are INTEGER16

Embedded Networking with CAN and CANopen

156

3.4.2.3 Index [180xh,xxh] and [1A0xh,xxh]: TPDO Parameters

By default a total of up to four TPDOs are configured. The transmission type [180xh,
02h] is set to 255: manufacturer specific. The default behavior is a change-of-state
transmission – input data gets transmitted whenever the inputs change. Both inhibit
and event times have a default of 0.

The default TPDO mapping is illustrated in Figure 3.9. TPDO1 contains 8 digital input
bytes that are taken from the Object Dictionary entries [6000h,01h-08h]. TPDO2, 3 and
4 each contain four 16-bit analog values that are taken from the Object Dictionary
entries [6401h,00h-0Ch].

Figure 3.9 Default TPDO Mapping of DS401

3.4.2.4 Index [6000h,xxh]: Read Digital Inputs

This array is mandatory for devices that support digital inputs. It is an array of
UNSIGNED8 read-only values that contain the digital inputs. Subindex 0 specifies
how many Subentries are implemented. The default is 8 providing a total of 8x8 = 64
digital input bits. The maximum value allowed is FEh allowing for a total of 254x8 =
2032 digital inputs.

3.4.2.5 Index [6002h,xxh]: Polarity of Inputs

Although not mandatory, this is an Object Dictionary entry supported by many
generic I/O devices. If implemented, it is an array of UNSIGNED8 read-write values
that is exactly as long as the array in [6000h,xxh].

8-bit
6000,2

8-bit
6000,3

8-bit
6000,4

8-bit
6000,1

8-bit
6000,6

8-bit
6000,7

8-bit
6000,8

8-bit
6000,5

16-bit
6401,1

TPDO1

16-bit
6401,2TPDO2 16-bit

6401,3
16-bit

6401,4

16-bit
6401,5

16-bit
6401,6TPDO3 16-bit

6401,7
16-bit

6401,8

16-bit
6401,9

16-bit
6401,ATPDO4 16-bit

6401,B
16-bit

6401,C

Notes: All Index, Subindex values in hexadecimal,
8-bit values are UNSIGNED8 and 16-bit values are INTEGER16

157

Chapter 3: CANopen Beyond DS301

If implemented, each bit in this array defines the polarity inversion of the bits in the
[6000h,xxh] array. If a bit in this array is set, the corresponding bit in [6000h,xxh] is
inverted. If a bit is cleared, the corresponding bit is not changed.

3.4.2.6 Index [6200h,xxh]: Write Digital Outputs

This array is mandatory for devices that support digital outputs. It is an array of
UNSIGNED8 read-write values that contain the digital outputs. The entry is specified
as “read-write” in order to be able to read-back the last value written to the output.
However, these entries can only be mapped to RPDOs, not to TPDOs.

Subindex 0 specifies how many Subindexes are implemented. The default is 8 provid-
ing a total of 8x8 = 64 digital output bits. The maximum value allowed is FEh allowing
for a total of 254x8 = 2032 digital outputs.

3.4.2.7 Index [6202h,xxh]: Polarity of Outputs

Although not mandatory, this is an Object Dictionary entry supported by many
generic I/O devices. If implemented this is an array of UNSIGNED8 read-write values
that is exactly as long as the array in [6200h,xxh].

If implemented, each bit in this array defines the polarity inversion of the bits in the
[6200h,xxh] array. If a bit in this array is set, the corresponding bit in [6200h,xxh] is
inverted. If a bit is cleared, the corresponding bit is not changed.

3.4.2.8 Index [6206h,xxh] and [6207h,xxh]: Error Mode and Error Value for Outputs

Although not mandatory, these are Object Dictionary entries supported by many
generic I/O devices. If implemented, these are arrays of UNSIGNED8 read-write val-
ues exactly as long as the array in [6200h,xxh].

If implemented, each bit in [6206h,xxh] determines if a default value should be
applied to the corresponding output upon detecting an error condition or if the node
is stopped. The entries in [6207h,xxh] are the default values that should be applied if
this function is enabled and an error or stop condition is detected.

3.4.2.9 Index [6401h,xxh]: Read Analog Inputs

This array is mandatory for devices that support analog inputs. It is an array of
INTEGER16 read-only values that contain the analog inputs. Subindex 0 specifies
how many Subentries are implemented. The default is 12 analog inputs. The maxi-
mum value allowed is FEh allowing for a total of 254 analog inputs.

Embedded Networking with CAN and CANopen

158

If the resolution of the inputs is less then the 16 bits provided (for example, some just
have a 10-bit resolution), then the value must be shifted to the most significant bits
and the least significant, unused bits must be filled with zeros.

3.4.2.10 Index [6411h,xxh]: Write Analog Outputs

This array is mandatory for devices that support analog outputs. It is an array of
INTEGER16 read-write values that contain the analog outputs. The entry is specified
as “read-write” in order to be able to read-back the last value written to the output.
However, these entries can only be mapped to RPDOs, not to TPDOs.

Subindex 0 specifies how many Subentries are implemented. The default is 12 analog
outputs. The maximum value allowed is FEh allowing for a total of 254 analog out-
puts.

If the resolution of the outputs is less then the 16 bits provided (for example just have
a 10-bit resolution), then the value received must be shifted in order to use the most
significant bits and ignore the least significant, unused bits.

3.4.2.11 Index [6443,xxh] and [6444,xxh]: Error Mode and Error Value for Outputs

Although not mandatory, these are Object Dictionary entries supported by many
generic I/O devices. If implemented these are an array of UNSIGNED8 read-write val-
ues for [6443h,xxh] and an array of INTEGER32 read-write values for [6444h,xxh]. The
length of both arrays is the same as the length of array [6411h,xxh].

If implemented, each entry in [6443h,xxh] determines if a default value should be
applied to the corresponding output upon detecting an error condition or if the node
is stopped. If the entry is “1” the corresponding default error value is used. The
entries in [6444h,xxh] are the default values that should be applied if this function is
enabled and an error or stop condition is detected.

The data type of the default error values is INTEGER32 in order to be usable for any
integer based output (including INTEGER8 and INTEGER16). When used for another
data type output the lower bytes are ignored. In the case of an INTEGER16 output,
only the two most significant bytes of the INTEGER32 default error value are used.

3.4.3 Illustrations

Figure 3.10 shows the mandatory Object Dictionary entries involved for handling a
digital or analog output. The Object Dictionary entry with the process output data can

159

Chapter 3: CANopen Beyond DS301

be modified from the network side of a device by a SDO request or by a RPDO that
has this process output data mapped into it. With each change of the process output
data, the data gets immediately applied to the application side of the device. The pro-
cess data is not modified in any way and the last applied output value will be contin-
uously applied until it gets changed via the network. It will not change in the event of
an error.

Figure 3.10 Basic Setup of Output Processing

A more advanced setup of an output device is shown in Figure 3.11. Here the Object
Dictionary entries for error mode and values and some data manipulation entries
such as polarity change or scaling are implemented.

Output Data

RPDO
Mapping

Receive
PDO

SDO
Request

Application
Output

Access to any OD entry

OD Entries of
DS401 Compliant

Output Device

Network
Side of
Device

Application
Side of
Device

Embedded Networking with CAN and CANopen

160

Figure 3.11 Output with Optional Error Mode and Data Manipulation

On the network side, the process data is still received via RPDOs or by a SDO request
to the Object Dictionary entry with the process data. However, if (and how) it gets
applied to the application side of the device depends on several settings. During regu-
lar operation, the data will be manipulated as specified before it gets applied. For dig-
ital data the manipulation option is a potential change in polarity. For analog data the
manipulation is an optional scaling with a multiplication factor and an offset.

If an error occurs or the device is halted, the output applied depends on the settings of
the Error Mode and the Error value. If the Error Mode is enabled for a particular out-
put, then the specified default output value will be applied.

The diagram in Figure 3.12 shows the basic elements of input processing. The TPDO
mapping parameters determine into which TPDO an input signal is copied.

For each TPDO, the transmit trigger mechanism in an input device has to check the
conditions for the actual transmission of a TPDO. That can be an expiration of a timer
or the detection of a COS (change-of-state).

Output Data

RPDO
Mapping

Receive
PDO

Application
OutputError Mode Polarity or

Scaling

Default
Output Value

OD Entries of
DS401 Compliant

Output Device

SDO
Request

Access to any OD entry

Network
Side of
Device

Application
Side of
Device

Error
Switch

On error or halt
applies defaults
depending on
mode settings

161

Chapter 3: CANopen Beyond DS301

Figure 3.12 Basic Setup of Input Processing

A more advanced setup is shown in Figure 3.13. Here the data gets manipulated
before it is stored in the Object Dictionary. For digital data the manipulation option is
a potential change in polarity. For analog data the manipulation is an optional scaling
with a multiplication factor and an offset.

TPDO
Mapping

Input DataApplication
Input

SDO
Request

Transmit
PDO

Access to any OD entry

OD Entries of
DS401 Compliant

Output Device

Network
Side of
Device

Application
Side of
Device

Event
Time

Inhibit
Time

Transmit
Trigger

Embedded Networking with CAN and CANopen

162

Figure 3.13 Input Processing with Data Manipulation and Advanced COS
Detection

The advanced COS detection for digital inputs is an edge detection. A COS can either
be recognized on any data change, only on a rising edge (zero to one transition) or
only on a falling edge (one to zero transition).

With analog signals, the advanced COS detection can either be a function of reaching
a pre-defined limited or a value difference. When using the pre-defined limit, a COS is
detected if a certain threshold (upper limit or lower limit) is reached. When using
value differences, a configurable value difference relative to the last data transmitted
must be reached in order to recognize a COS.

TPDO
Mapping

Polarity or
Scaling

Application
Input

SDO
Request

Transmit
PDO

Access to any OD entry

OD Entries of
DS401 Compliant

Output Device

Network
Side of
Device

Application
Side of
Device

Event
Time

Inhibit
Time

Transmit
Trigger

Input Data

COS Detect
Parameters

163

Chapter 3: CANopen Beyond DS301

3.4.4 Generic I/O Object Dictionary Example

The following DS401-related Object Dictionary entries would be implemented for a
node with 2 bytes (each digital) and 2 words (each analog).

Index
Sub
index Description Data Type

Default
Value

1000h 00h Device Type UNSIGNED32 000F0191h

1400h 1st RPDO Communica-
tion Parameters

1400h 00h Number of Entries UNSIGNED8 2

1400h 01h COB ID UNSIGNED32
200h +
Node ID

1400h 02h Transmission Type UNSIGNED8 FFh

1401h 2nd RPDO Communica-
tion Parameters

1401h 00h Number of Entries UNSIGNED8 2

1401h 01h COB ID UNSIGNED32
200h +
Node ID

1400h 02h Transmission Type UNSIGNED8 FFh

1600h 1st RPDO Mapping
Parameters

1600h 00h Number of Entries UNSIGNED8 2

1600h 01h 1st Mapping Entry: 1st
Write 8-bit Output

UNSIGNED32 62000108h

1600h 02h 2nd Mapping Entry: 2nd
Write 8-bit Output

UNSIGNED32 62000208h

1601h 2nd RPDO Mapping
Parameters

1601h 00h Number of Entries UNSIGNED8 2

Table 3.33 DS401 Object Dictionary Example

Embedded Networking with CAN and CANopen

164

1601h 01h 1st Mapping Entry: 1st
Write 16-bit Output

UNSIGNED32 64110110h

1601h 02h 2nd Mapping Entry: 2nd
Write 16-bit Output

UNSIGNED32 64110210h

1800h 1st TPDO Communica-
tion Parameters

1800h 00h Number of Entries UNSIGNED8 5

1800h 01h COB ID UNSIGNED32
180h +
Node ID

1800h 02h Transmission Type UNSIGNED8 FFh

1800h 03h Inhibit Time UNSIGNED16 0

1800h 05h Event Time UNSIGNED16 0

1801h 2nd TPDO Communica-
tion Parameters

1801h 00h Number of Entries UNSIGNED8 5

1801h 01h COB ID UNSIGNED32
280h +
Node ID

1801h 02h Transmission Type UNSIGNED8 FFh

1801h 03h Inhibit Time UNSIGNED16 0

1801h 05h Event Time UNSIGNED16 0

1A00h 1st TPDO Mapping
Parameters

1A00h 00h Number of Entries UNSIGNED8 2

1A00h 01h 1st Mapping Entry: 1st
Read 8-bit Input

UNSIGNED32 60000108h

1A00h 02h 2nd Mapping Entry: 2nd
Read 8-bit Input

UNSIGNED32 60000208h

1A01h 2nd TPDO Mapping
Parameters

Index
Sub
index Description Data Type

Default
Value

Table 3.33 (Continued) DS401 Object Dictionary Example

165

Chapter 3: CANopen Beyond DS301

1A01h 00h Number of Entries UNSIGNED8 2

1A01h 01h 1st Mapping Entry: 1st
Read 16-bit Input

UNSIGNED32 64010110h

1A01h 02h 2nd Mapping Entry: 2nd
Read 16-bit Input

UNSIGNED32 64010210h

6000h Read Digital Inputs 8-bit

6000h 00h Number of Entries UNSIGNED8 2

6000h 01h Read Digital Input 1 UNSIGNED8 --

6000h 02h Read Digital Input 2 UNSIGNED8 --

6002h Polarity Digital Input 8-bit

6002h 00h Number of Entries UNSIGNED8 2

6002h 01h Polarity Digital Input 1 UNSIGNED8 0

6002h 02h Polarity Digital Input 2 UNSIGNED8 0

6200h Write Digital Outputs 8-
bit

6200h 00h Number of Entries UNSIGNED8 2

6200h 01h Write Digital Output 1 UNSIGNED8 --

6200h 02h Write Digital Output 2 UNSIGNED8 --

6202h Polarity Digital Output 8-
bit

6202h 00h Number of Entries UNSIGNED8 2

6202h 01h Polarity Digital Output 1 UNSIGNED8 0

6202h 02h Polarity Digital Output 2 UNSIGNED8 0

6410h Read Analog 16-bit
Inputs

6410h 00h Number of Entries UNSIGNED8 2

6410h 01h Read Analog Input 1 INTEGER16 --

Index
Sub
index Description Data Type

Default
Value

Table 3.33 (Continued) DS401 Object Dictionary Example

Embedded Networking with CAN and CANopen

166

3.5 Safety-Relevant Communication
(DSP304, DSP307)

3.5.1 Introduction and Terminology

In general, any application that has the potential to “significantly” harm the environ-
ment, injure or even kill one or multiple persons is considered “safety-related.” All
major standardization bodies publish standards defining safety-related systems and
specifying safety levels. One of the standards available is IEC 61508 which defines a
total of 4 safety-integrity levels (SIL) with 1 being the lowest safety level and 4 the
highest.

6410h 02h Read Analog Input 2 INTEGER16 --

6411h Write Analog 16-bit Out-
puts

6411h 00h Number of Entries UNSIGNED8 2

6411h 01h Write Analog Output 1 INTEGER16 --

6411h 02h Write Analog Output 2 INTEGER16 --

Objective

In this section we outline some of the functions and methods used to imple-
ment safety-relevant communication on CANopen.

Because safety aspects also depend on the specific application, implementation
methods may vary. For example, there is a CANopen framework for safety-rel-
evant communication [CiADSP304]. However, the maritime industry also had
safety requirements specific to their application, resulting in the CANopen
framework for maritime electronics [CiADSP307].

Index
Sub
index Description Data Type

Default
Value

Table 3.33 (Continued) DS401 Object Dictionary Example

167

Chapter 3: CANopen Beyond DS301

The safety-integrity levels are a measurement of the worst that can happen if some-
thing goes wrong. For example, the controls for a table saw have the potential to con-
tribute to a severe injury of a person. Such an application would be considered a SIL1
application. However, the controls of a chemical plant are in a different safety level as
their failure could contribute to multiple fatalities. This is considered at least a SIL3,
perhaps even a SIL4 application.

A safety-related system can typically be divided into multiple safety functions, each
responsible for a single crucial aspect of the entire system. A system is considered to
be functionally safe if all of its safety functions are carried out without failure.

The distinction between a safety-relevant versus a safety-critical application is the
existence of a “safe state.” If a system has a safe state it can turn to it is considered
safety-relevant. This includes all applications with an emergency shut-off switch – if
the system is switched off it can do no harm. Safety-critical systems, on the other
hand, require continuous control; once airborne a plane needs continuous control and
once started a chemical process might need continuous control.

For more information on safety related systems, IEC62508 and related subjects see
[Smith01].

3.5.2 Defects Happen

One of the basic rules when designing a safety-related system is that defects happen.
However, a single defect may not be allowed to result in the failure of a safety func-
tion. As far as electronics are concerned this means that redundancies need to be
added. Circuits and wiring can be duplicated on the hardware side. On the software
side, activities can also be duplicated; for example, sending a message twice.

There are multiple locations where redundancies can be added to a CANopen node:
microcontrollers and software can be duplicated, the CAN controller can be dupli-
cated, the transceiver and wiring can be duplicated and the messages on the bus can
be duplicated. Which duplications really make sense depends on both the application
and how the duplications are made. Duplicating a microcontroller and using the same
software on both does not do much to increase safety. If there is a conceptual defect in
either the microcontroller or the software it will be present in the first and the second
microcontroller. And typically in a complex system a software bug is far more likely
than an electronic component failing.

Another implication of “defects happen” is that no single component in the network
should be essential to the operation of the system. Failure of a single node should not

Embedded Networking with CAN and CANopen

168

prohibit other nodes from continuing their communication. This consideration favors
a truly distributed system without a master, which is fully supported by CANopen
where the nodes can exchange messages directly, whether the other nodes are alive or
not. Furthermore, this is another example of the CANopen heartbeat being preferable
to node guarding. Node guarding requires a single node to poll all the slaves, making
the node that does the polling essential to the system. With the heartbeat method,
however, nodes produce their heartbeat independently and the communication part-
ners can directly monitor that heartbeat.

If for some reason a master is essential to the system then it would need to be dupli-
cated. CANopen provides methods to use one or multiple “Flying Masters” as a
backup to the main master. As the term suggests, they can take over the main master’s
responsibilities “on-the-fly” during operation of the network.

3.5.3 Adding Safety to CANopen

Like many other computerized networks CANopen can be used in safety-relevant
applications. The major criteria for safety-relevant communication is met if a system
can reliably detect the loss of communication (maybe because the network cable broke
or a node went off-line) and fall back to the safe state as a result. This also illustrates
the fact that primary responsibility for implementing safety lies with the consumer of
the messages and not the producer. Thus the essential device is not the emergency
shut-off switch but all the devices consuming that message - they need to be able to
both receive messages from the switch, as well as be able to detect the loss of the
switch and then act upon that information.

The other criterion is to ensure reliable, secure communication. If an emergency shut-
off switch continuously sends the message “We are still all on GO,” it must be ensured
that there is no way that this node (or any other) produces this message by accident.

169

Chapter 3: CANopen Beyond DS301

More safety can be added in CANopen by adding redundancies to different levels.
Figure 3.14 illustrates the basic communication path of a CANopen node. A micro-
controller communicates with a CAN controller that uses a transceiver to exchange
signals with the physical media. Software redundancies can be added without chang-
ing this structure. Messages can be duplicated, sent twice over the network, and only
when both instances are transmitted is the transmission regarded as successful. To
further increase the safety, the second message has all data bits inverted and at least
two bits in the message identifier field inverted, too.

Figure 3.14 Adding Software Redundancy

In addition to adding software redundancies, some applications may require adding
hardware redundancies, too. One of the scenarios suggested by the CANopen frame-

When designing software for safety-relevant applications one should carefully
consider where it makes sense to design tasks that run independently and
where they need to be interlocked.

The worst (but still functional) design for an emergency shut-off switch would
have two independent tasks: one copies the current state of the button to the
message transmit buffer (setting up the “We are still all on GO” message) the
second task would simply trigger the transmit message from a timer interrupt
service routine.

If the first task fails for any reason, the second would still continue to transmit
“We are still all on GO.”

Micro
controller

CAN
controller

Transceiver

CAN bus

Embedded Networking with CAN and CANopen

170

work for safety-relevant communication is illustrated in Figure 3.15. Here the micro-
controller and the CAN controller are duplicated, but they still share the same
transceiver and physical media. This would be primarily used where electronic cir-
cuits responsible for going into a safe state need to do a “controlled” shut-down, like
switching off components in a certain order or applying additional brakes to a motor.

Figure 3.15 Adding Hardware Redundancy

The CANopen framework for maritime electronics uses another approach. The exam-
ination of the safety requirements in a ship placed the probability of “something hap-
pening to the wiring or an entire segment of the network” above the probability of
“something happening to individual electronics.” As a result, the framework recom-
mends duplicating the wiring as shown in Figure 3.16.

The idea is to not only duplicate the wiring but also to ensure that the wires take dif-
ferent paths. So the main trunks of the bus would be separated, for instance one going
along the starboard side of a ship and one along the port side.

Micro
controller

CAN
controller

Transceiver

CAN bus

Micro
controller

CAN
controller

171

Chapter 3: CANopen Beyond DS301

Figure 3.16 Adding Redundant Wiring

3.5.4 CANopen SRDO – Safety-Relevant Data Object

The CANopen framework for safety-relevant communication specifies SRDOs to be
used for transmitting safety-relevant data. They key elements of an SRDO are:

• An SRDO consists of two messages.
• The first message’s format is the same as used for regular PDOs, meaning

one or multiple Object Dictionary entries can be mapped into the SRDO.
• The second message is a duplication of the first with all data bits inverted

and at least 2 bits inverted in the message identifier field.

All SRDO transmissions have two essential timings. If any of these are exceeded when
receiving a SRDO, the receiver has to take that as an indication that “something hap-
pened” and should switch to the safe state immediately.

• SCT – Safeguard Cycle Time
This is the time between multiple SRDOs or, in other words, the “event
time” of the SRDO. The SCT is measured between the occurrences of the
second message of an SRDO.

CAN
controller

Transceiver

CAN bus 1

Microcontroller

CAN
controller

Transceiver

CAN bus 2

Embedded Networking with CAN and CANopen

172

• SRVT – Safety-Relevant Validation Time
This is the maximum time allowed between the first and the second mes-
sage of an SRDO.

Figure 3.17 SRDO Timing

Figure 3.17 illustrates the SCT and the SRVT which can both be specified in millisec-
onds. Typically the SRVT is expected to be much shorter than the SCT, as the second
message should follow almost back-to-back to the first message.

When configuring the SCT and SRVT great care should be taken as to how to config-
ure the producer and the consumers. Due to potential message delays after error con-
ditions on the bus or timer variations in the different microcontrollers, one should not
set the consumer and the producer to the same SCT and SRVT timings. The recom-
mended approach is to set the timings on the consumers first, since that is the timing
used to make a decision if the safe state should be entered or not. The corresponding
times on the producer side need to be shorter, so that the SRDO is produced more
often than expected. This ensures that even with variations in the timing on the pro-
ducer side the SRDO can still be received by the consumers. Once again, the exact dif-
ference depends on the specific application requirements. In general, setting the
producer timing to some 80%-90% of the consumer timing is a good start.

time

SRDO
dat

SRVT

SCT

SRDO
inv

SRDO
dat

SRDO
inv

SRDO
dat

SRDO
inv

SRDO
dat

SRDO
inv

173

Chapter 3: CANopen Beyond DS301

3.5.5 Object Dictionary Entries for SRDOs

The following is a summary of selected parameters that are configurable for the up to
63 SRDOs.

3.5.5.1 Index [1301h,xxh] to [1340h,xxh]: Communication Parameter

Similar to PDO configuration, each SRDO has one record of communication parame-
ters. The record has a total of six entries resulting in seven Subentries:

By default the CAN message identifiers 101h to 180h are used for SRDOs.

3.5.5.2 Index [1381h,xxh] to [13C0h,xxh]: Mapping Parameter

The structure and usage of the mapping parameters is identical to that of PDOs. See
Section 2.5.6 for details on how PDO mapping works.

3.5.5.3 Index [13FEh]: Configuration Valid

The 8-bit value at [13FEh] is used by a safety device to signal that it has a valid config-
uration. Only if all SRDO configurations are valid will this value be set to A5h. All
other values signal that the current configuration is not valid.

Subindex Name Description Type

0 Number of
Entries Set to ‘6’ UNSIGNED8

1 Direction 1 for Tx, 2 for Rx UNSIGNED8

2 SCT Safeguard Cycle Time in mil-
liseconds UNSIGNED16

3 SRVT Safety-Relevant Validation
Time in milliseconds UNSIGNED8

4 Transmission
Type Set to ‘254’ (FEh) UNSIGNED8

5 COB ID 1 CAN message ID of first
message UNSIGNED32

6 COB ID 2 CAN message ID of second
message UNSIGNED32

Table 3.34 SRDO Communication Parameters

Embedded Networking with CAN and CANopen

174

3.5.5.4 Index [13FFh,xxh]: Safety Configuration Checksum

The array at location [13FFh,xxh] contains one 16-bit checksum for each SRDO config-
ured in the local node. The CRC for each SRDO is generated over the communication
parameters (excluding Subindex 0 and 4) and mapping parameters.

To configure an SRDO, a CANopen Master or configuration tool first sets the SRDO
communication and mapping parameters and then has to write the matching CRC
checksum for this configuration into the corresponding checksum field. Reading back
the entire configuration before truly declaring a configuration as valid is recom-
mended.

175

 4 CANopen Configuration Example

“Few things are harder to put up with than the
annoyance of a good example.”

Mark Twain

This chapter uses a fictitious industrial control or automation system to give an exam-
ple of a CANopen network integration cycle. Although it is a fictitious example it is
representative of typical industrial manufacturing machinery that uses a main Pro-
grammable Logic Controller (PLC) with some I/O nodes connected to it.

Embedded Networking with CAN and CANopen

176

4.1 Evaluating the System Requirements

4.1.1 Defining the System

In order to keep the example simple, a total of three nodes (in addition to the PLC) are
assumed for this machine.

• The “Left Node” and the “Right Node” have identical communication
requirements. They should be DS401 compliant (generic I/O) and have a
fixed number of digital inputs and outputs (2 bits) and analog inputs and
outputs (2 times 11 bits).

• The “Middle Node” is a specialty module (manufacturer specific) providing
some inputs (provided in 2 bytes) from a user panel.

By default the entire communication is controlled by the PLC. All inputs are sent to
the PLC, all outputs come from the PLC. As an optional extension, a future version of
the control system will have the middle node send its data directly to the Left and
Right nodes without the PLC relaying the data.

Because the focus of this section is to establish the required communication between
the nodes, the control algorithm used on the PLC is assumed to be already developed
and in place.

In order to get an accurate timing, the SYNC signal is used. The SYNC for this exam-
ple has a 33ms communication cycle period. The control cycle time would be 66ms, as
two messages are involved for an input to output transfer (first message from input to
PLC, second from PLC to output).

The bus speed is chosen to be 125kbps, although the maximum network cable length
for that speed (about 1500 feet) is probably not needed. In general it is a good idea to

Objective

At the beginning of each system design the overall requirements must be eval-
uated. For our example we assume a central controller (PLC style) with distrib-
uted I/O points. On the communication side elements to be evaluated include
communication response times, bandwidth, distance, and number and type of
communication participants (nodes in the network).

177

Chapter 4: CANopen Configuration Example

not use a higher bus speed than required. Keeping the bus speed low decreases EMI
and increases overall system stability and tolerance.

4.1.2 Estimated Bandwidth Usage

A rough estimate of bandwidth usage can be calculated as follows:

1. Calculate the number of data bytes transmitted in each SYNC cycle:

• From Left Node to PLC: 5 (1 byte digital, 2 words analog)
• From Middle Node to PLC: 2 (2 bytes digital)
• From Right Node to PLC: 5 (1 byte digital, 2 words analog)
• From PLC to Left Node: 5
• From PLC to Right Node: 5

This results in a total of 22 data bytes.

2. Calculate the data bandwidth required:

The SYNC cycle time is 33ms, so 22 bytes transmitted every 30ms is about 100 bytes
for every 100ms, or 1,000 bytes per second. Multiplying by 8 (to achieve bits per sec-
ond not bytes per second) results in about 8kbps.

3. Estimate the total bandwidth:

Besides the data bytes, CAN messages contain message ID information, control bits, a
checksum and other overhead information. Unfortunately there is no easy rule of
thumb for the relationship between data bytes and overhead bits. The overhead factor
can be anywhere from less than 2 to as much as 6 or more if many short messages are
used.

Using the overhead factor range of 2 to 6 would result in a bandwidth range of

2 * 8kbps = 16kbps to 6 * 8kbps = 48kbps

Because the chosen bit rate of the network is 125kbps the estimation above would
(even for the worst case) result in a bandwidth usage of

48kbps / 125kbps = 38.4%

Embedded Networking with CAN and CANopen

178

This is an acceptable margin for a rough estimate. However, if the system would be
switched down to a 50kbps network speed a more detailed calculation would be
required.

Advanced development tools such as Vector’s proCANopen or CANoe automatically
perform these calculations and provide timing reports. The bandwidth statement
given by CANoe also calculates bandwidth usage for event driven communication.

4.2 Choosing the Devices and Tools

4.2.1 Choices to Make

Before one can make a selection one needs to know what the available options are. A
fairly compete listing of off-the-shelf CANopen products is published by the CiA.
There is both a product database and a CANopen product guide available online at
www.can-cia.org.

It should be noted that depending on the availability of the “best-match” products, it
might be necessary to take a step back and re-evaluate the system requirements. Per-
haps a similar product that is not a best-fit for the application has some other advan-
tages, and thus can be considered for the application if the requirements are adjusted.

For this example the following devices were chosen:

• PLC:
Schneider TSX Compact with CAN communication adapter

• Left and Right Node:
Schneider Advantys STB modular I/O system

• Middle Node:
Manufacturer specific solution based on Philips CANopenIA-XA

Objective

Once the requirements are set one needs to select the devices and tools used to
configure and test the devices and the network. In this section we choose tools
and devices for our example.

179

Chapter 4: CANopen Configuration Example

• Configuration Tool:
Vector proCANopen

• Simulation and Analyzing Tool:
Vector CANoe

This is a fictitious example, and many devices and tools from various manufacturers
could have been chosen. However, some of the devices and tools listed above have
some specific features in conjunction with CANopen.

4.2.2 Modular, Generic I/O

In regards to CANopen, the system shown in Figure 4.1 has two features that stand
out.

Figure 4.1 Schneider Advantys Modular I/O System

First, it is a modular I/O system. It allows building CANopen generic I/O devices with
exactly the number of digital and analog channels required by the application. As a
result, the number of data channels available per device are never fixed and could
even be expanded in the future without the need to exchange entire devices. In addi-
tion, simple control functions (like Boolean functions, comparators or counters) can be
performed within the module, creating a simple automation island.

Embedded Networking with CAN and CANopen

180

Second, it uses CANopen on its backplane. The communication used between the
individual components of the Advantys STB system is a dedicated CANopen net-
work. The module on the left in Figure 4.1 is called a CANopen NIM (Network Inter-
face Module). It has two CANopen interfaces and acts as a gateway between the
upstream network (where it is a CANopen generic I/O module) and the downstream
network (where it is a CANopen Master communicating with the individual modules
of the local system).

4.2.3 Tools

When it comes to configuration, simulation and test of a CANopen network, the Vec-
tor tools proCANopen and CANoe provide powerful features as the following exam-
ples will show. These tools can be used to configure, simulate and also test large
CANopen networks before they are built physically. Furthermore the simulation
engine of CANoe can be used to create the communication of an entire network. This
way a new node for a network can be tested without requiring the “live” network for
the test phase.

4.3 Configuring Single Devices

4.3.1 Advantys STB Configuration

As the previous section has shown, some CANopen nodes can be fairly sophisticated,
such as the modular Schneider Advantys STB system. In order to manage the modu-
larity of the system, Schneider provides its own setup software that configures a mod-
ular system and, depending on the configuration, generates an appropriate Electronic
Data Sheet – the electronic specification for the functionality provided by a CANopen
node.

Objective

Many CANopen devices offer several setup or configuration options through
jumpers, switches or proprietary setup tools that are not necessarily available
through regular CANopen configuration tools. This section shows some of the
proprietary setup tools available with some devices.

181

Chapter 4: CANopen Configuration Example

Such individual, device-specific setups and configurations need to be performed
before the device can be integrated into a CANopen network.

The screen shot in Figure 4.2 shows an example of an Advantys STB system consisting
of several Advantys STB modules and additional external third party CANopen mod-
ules that can be integrated into the “local” CANopen network. The configuration of a
system can be done manually (drag and drop individual modules from the catalog) or
read in from a physical system. The connection between the PC and the system is
made via a serial link to a special connector on the NIM.

Figure 4.2 Schneider Advantys Configuration Software

All the process data of such an automation island is combined into one process image
which is provided to the “upstream” CANopen network. The process image is simply
mapped into the PDOs available to the upstream network.

Once the configuration is completed, an EDS can be generated. The EDS file is needed
when integrating this particular automation island into a CANopen network.

Embedded Networking with CAN and CANopen

182

4.3.2 CANopenIA Configuration

Another example for a device specific setup tool is that of Philips’ CANopenIA. The
“Middle Node” was chosen to be implemented based on the Philips CANopenIA-XA
controller which also comes with an individual setup tool, CANopenIASetup.

The CANopenIA nodes do not support dynamic PDO mapping and thus the setup
tool needs to be used to configure a CANopenIA chip. The configuration includes
some hardware settings (like Node ID, bit rate used and which ports/pins of the con-
troller are enabled) and software settings like the default heartbeat time or the PDO
configuration (both communication and mapping parameters).

Figure 4.3 Philips' CANopenIA Setup Tool

The screenshot in Figure 4.3 shows the configuration of the first TPDO. The settings
selected set a SYNC transmission for the TPDO and a CAN message ID of 20Bh to be
used. Once the setup of a node is completed the setup information can be saved into a
DCF (Device Configuration File) and a binary file that needs to be transferred to the
CANopenIA chip. Although a download tool is provided, a regular CANopen config-
uration tool could be used for that purpose as well.

The reason why the setup tool provides a DCF instead of an EDS is that the DCF is
already node specific. It contains the setup information for exactly one node with a
specific node ID and not a generic setup for multiple nodes.

183

Chapter 4: CANopen Configuration Example

4.4 Overall Network Configuration

4.4.1 Getting Started: Select Nodes

The configuration of an entire network using Vector’s proCANopen starts by selecting
the nodes of the network. For each node a name, Node ID number and an EDS file
describing the node must be chosen. Figure 4.4 shows the selection of the EDS file for
the master in the example application, and Figure 4.5 shows the node configuration
options. Here the node is named “Schneider TSX Master,” has the Node ID “1” and
uses the EDS file “asbc259.eds.”

Figure 4.4 Selecting an EDS file for a Node in proCANopen

Objective

Although it is theoretically possible to configure an entire network on a “node-
by-node” basis, it is not a very practical approach for bigger networks or for
configuring multiple networks.

In this section we show how a configuration tool such as Vector’s proCANopen
can configure an entire network and automates the work of assigning process
data variables to specific Process Data Objects (PDO).

Embedded Networking with CAN and CANopen

184

Figure 4.5 Configuration of a Node in proCANopen

Figure 4.6 below shows the PLC and the left and right node of the example system.

185

Chapter 4: CANopen Configuration Example

Figure 4.6 Main Overview Window of proCANopen

4.4.2 Establishing Connections

Once the nodes have been configured, connections need to be made. A connection is
the link from one input variable to one output variable in the system.

It should be noted that the user only configures these connections (linking an input
variable of one node to the output variable of another). The software in proCANopen
then automatically assigns PDOs as required to implement these connections. So the
tedious task of assigning individual variables to PDOs does not need to be executed
by the user, it is automated.

A right mouse click on any of the nodes opens up a local menu, from which “Graphic
Connection” can be chosen. For the configuration in this example, the left node is cho-
sen with a right mouse click, then “Graphic Connection” is selected. Then the PLC is
selected to be the communication partner. After clicking on the button “Insert PDOs”
the window shown in Figure 4.7 pops up. It allows the specification of a prefix that is
used for all variable names in the PLC. As all these variables come from the left
Advantys node, the prefix entered is “AdvL_” which makes it easy to distinguish the
variables from the left and the right node.

Embedded Networking with CAN and CANopen

186

Figure 4.7 Step 1 of Making a Graphical Connection

After hitting “OK” proCANopen automatically connects all process variables from
the left node to the PLC as shown in Figure 4.8. The names for the process variables in
the Advantys node were directly extracted from the EDS file provided by the Advan-
tys configuration software. The names generated for the corresponding variables in
the master all have the specified prefix followed by an automatically generated name
based on the process variable name used in the Advantys node.

187

Chapter 4: CANopen Configuration Example

Figure 4.8 Step 2 Graphical Connection Completed

The importance of the prefix becomes more apparent in Figure 4.9 where both the
process variables from the left and the right node are shown in the master.

As specified, the Advantys system in this example has only 2 bits of digital inputs and
outputs and 2 words with analog inputs and outputs. The reason why a total of 5
bytes digital input are available is that Advantys also reports status and some echo
information back.

The PDO transmission type used for the connections can be selected using the
“Options” button. The default is “device profile specific,” however any of the other
possible transmission types may be chosen.

Embedded Networking with CAN and CANopen

188

Figure 4.9 Step 3 Adding Connections for the Right Node

Once all the node specific configurations have been made, the list of all PDOs used in
the network can be displayed. The left Advantys node with the Node ID 11 uses two
transmit and 2 receive PDOs as shown in Figure 4.10. The first TPDO has 5 digital
bytes mapped into it and uses the CAN message ID 18Bh which is the default from
the pre-defined connection set.

189

Chapter 4: CANopen Configuration Example

Figure 4.10 The list of all PDOs used in the Network

The final step of the configuration process is to start the “make” process that gener-
ates all the files needed to simulate this network using Vector’s CANoe.

4.5 Network Simulation

One of the biggest advantages of a network simulation is that potentially crucial situa-
tions (like a high busload or how the overall system changes by adding or removing

Objective

This section shows how the network configured in the previous section can be
simulated using Vector’s CANoe.

Embedded Networking with CAN and CANopen

190

nodes) can be tested before all nodes are available physically. This allows tracking
down potential danger zones where a system may reach its limits.

If you are not interested in the simulation of the network but would like to start
“using” the real network, you can skip this section.

Once a CANopen network has been configured using Vector’s proCANopen it can
easily be simulated with CANoe. After starting a new CANoe configuration, the sys-
tem configured by proCANopen can be imported. After ensuring that the CANoe
configuration is saved and set to use the same CAN bit rate as the proCANopen
setup, the simulation can be started by pressing the Tool button with the flash. The
first messages that appear in the trace window are the boot-up messages of the indi-
vidual nodes (see Figure 4.12, “CANoe Trace Recording of Simulation,” on page 192,
first 3 messages in trace window).

It should be noted that “simulation” in this sense actually means that the CAN traffic
generated is actually sent on the network. As a minimum “network” CANoe expects a
closed-loop system where both CAN ports provided by the Vector CAN hardware
interface are connected together using a short CAN bus cable with two termination
resistors.

As the PLC/Master is currently not simulated with the control algorithms it does not
create the NMT startup message. As a result all nodes remain in the pre-operational
state. However, all functions of proCANopen are fully usable – proCANopen does
not realize that the network is simulated and thus can interact with all the simulated
nodes.

To set all the nodes to operational, proCANopen can be used to generate the NMT
message “Start all nodes.” Once the nodes are in the operational state, the default
communication mode is “change-of-state,” which means a TPDO is transmitted
whenever its input data changes. The inputs of each node are simulated by the auto-
matically generated panel windows. By manually changing some of the inputs in the
panels, the appropriate TPDO is transferred and the corresponding variable in the
receiving node/panel is updated.

191

Chapter 4: CANopen Configuration Example

Figure 4.11 Automatically Generated Panels for I/O Simulation

The images in Figure 4.11 show the I/O panels for the nodes 1 (PLC), 11 (left Advantys
system) and 12 (right Advantys system). The input data entered manually (for exam-
ple the bits [6000h,01h-05h] of node 11) is transferred to the corresponding output
data (here [5200h,01h-05h] of node 1).

Embedded Networking with CAN and CANopen

192

Figure 4.12 CANoe Trace Recording of Simulation

The trace window shown in Figure 4.12 lists the CAN messages that were generated
so far. Each node generated its own boot-up message “HBGuard_xxx” with the data
being 0. Node ID 127 is the default used by proCANopen which participates in any
CANopen configuration as a true node of that system. The “DynSDOReq” was a
dynamic SDO request of proCANopen to see if a CANopen SDO Manager is in the
system. As there was no response, proCANopen took control and sent the “start all
nodes” message “NMTZeroMsg.” All following messages are TPDOs where the pre-
fix of the message name indicates the Node ID number of the node transmitting the
PDO and the suffix indicates the PDO number (starting at zero). Message “N11_T0”
shows the same data that was visualized in the panels of Figure 4.11.

Because the CAN messages of this CANopen network are actually transmitted via the
CAN interface, all network statistic analysis windows display the values for this net-
work. These include information about the current and maximum bandwidth as well
as statistics on how often which messages occur.

193

Chapter 4: CANopen Configuration Example

4.6 Network Commissioning

4.6.1 Finalize the Configuration

In Section 4.4 some global settings and specifically the PDO mapping were already
configured. What was not yet set up is some fine tuning concerning TPDO triggering
methods, heartbeat or node guarding setup and error behavior. In addition, a method
is needed to automate the configuration process.

The configuration of the nodes can be finalized using Vector’s proCANopen and the
“Device Access” functionality which allows read/write accesses to the Object Diction-
ary of each node. This can include things like using a different transmission type for
specific PDOs and setting the heartbeat times used by individual nodes. Figure 4.13
below shows the “Device Access” window for the node 12, “Advantys Right.” The
Producer Heartbeat Time is in the process of being set to 300 milliseconds.

As an example, the TPDO communication parameters of the right and left Advantys
node (ID 11 and 12) could be changed to use the SYNC signal instead of the default
change-of-state transmission type. Whether the nodes are simulated by CANoe or
physically present on the network, any changes made with proCANopen become
immediately active and can be analyzed in the trace window of CANoe, CANalyzer
or other analyzing tools.

Objective

Whether the nodes of the network are simulated or physically existing on the
network, the process for the final steps of the network configuration are the
same. This section deals with these last steps of the configuration and how to
apply them to a network.

Embedded Networking with CAN and CANopen

194

Figure 4.13 Setting the Heartbeat Producer Time of Node 12

The trace listing in Figure 4.14 uses relative timestamps, so the timestamp displayed is
the time that expired since the last occurrence of a message with this message ID. The
trace shows that the SYNC is sent about every 33 milliseconds (note that the actual
value displayed here is 35.52 – the accuracy depends on the producer, in this case it
comes from a regular PC) and the heartbeats of nodes 11 and 12 occur every 300 milli-
seconds.

195

Chapter 4: CANopen Configuration Example

Figure 4.14 Trace Listing of SYNC’d Communication

The timestamp can also be used to verify the triggering of each PDO. Here some other
SYNC periods were chosen to add some diversity:

• N11_T0: Send with every SYNC
• N11_T1: Send on every 5th SYNC
• N12_T0: Send with every SYNC
• N12_T1: Send on every 4th SYNC

Once the network and all nodes have the desired configuration there are a number of
methods to ensure that this configuration is used as the new default configuration
right after startup of the network.

4.6.2 Downloading Configuration to Nodes

Vector’s proCANopen stores any configuration change that is made to the Object Dic-
tionary of a node into the corresponding DCF. This is true for all writes made to a live
or simulated network as well for the changes made only in the input mask of a node’s
Object Dictionary.

At any time, the current configuration can be downloaded to the entire network or
groups of nodes. This means that the configuration data stored in the DCF files is

Embedded Networking with CAN and CANopen

196

written to the appropriate Object Dictionary entries. This allows a quick configuration
of an entire network or parts of a network after a power-up or reset cycle.

4.6.3 Storing the Current Network Configuration

In addition, proCANopen supports the setup of configuration management (CMT)
for a CANopen Manager in the system. The entire network configuration can be
stored in a concise format usable by CANopen Managers that are responsible for the
configuration of the individual nodes.

Figure 4.15 Configuration Management Window

The Object Dictionary entries used for these configuration cycles are either selected
automatically or manually. For the manual selection each node has an individual list
of selectable CMT parameters. In Figure 4.15 the list of CMT parameters is shown for
the left Advantys node. The PDO parameters are always part of configuration man-
agement and are not listed. The only configurable parameter currently selected for
CMT is the heartbeat producer time [1017h,00h]. It is set to 300 milliseconds. The total
amount of configuration data (concise DCF format) is displayed at the bottom, cur-

197

Chapter 4: CANopen Configuration Example

rently 325 Bytes. This is the amount of storage needed in a CANopen Manager to
store the configuration data for this node.

4.6.4 Alternatives with Store Parameters

If the individual nodes support the “Store Parameters” feature, an alternate configu-
ration storage scenario is available. Each node can be instructed by proCANopen to
save the current set of configurable parameters in its own non-volatile memory. This
allows each node to store its own configuration and use it as the new default upon the
next startup.

This feature can also be used if a Configuration Manager is not available in the net-
work. However, it should be noted that without a Configuration Manager any new
nodes added to the system (for example, repair replacements) must be configured
before they are inserted into the system.

4.7 Advanced Features and Testing

4.7.1 Advanced Node Simulation

So far only the communication between the nodes has been simulated, tested and ana-
lyzed. However, in CANoe it is possible to add algorithms to the simulated nodes,
allowing them to produce certain data or interact with the data received.

The simulation of nodes is based on a programming language called CAPL (CAN
Application Programming Language). Because the CAPL programs implementing the
individual nodes are available in CANoe, they can be edited and enhanced to work
with the data received or to be transmitted. An example of a CAPL program is shown
in Figure 4.16.

Objective

This section summarizes extended features of the example setup. These fea-
tures are not essential to the overall configuration, commissioning and mainte-
nance cycle. However, they are useful for getting advanced and/or automated
test results.

Embedded Networking with CAN and CANopen

198

Figure 4.16 The CAPL Program for Node 12

4.7.2 Migration from Simulation to Physical Node

Another useful CANoe feature is that simulated nodes can be disabled individually.
This allows for a variety of functions such as replacing the simulated nodes one-by-
one with the physical nodes.

Another typical use is the test and configuration of a single node. Test and configura-
tion would not need to be done on the live system, instead the CANoe simulation can
be used with only that node disabled in the simulation that is currently connected
physically and needs to be tested.

4.7.3 Advanced Panel Design

For applications that require extensive use of the I/O panels (for example if used for
very thorough testing or as a test tool at the end of the production line), a more graph-
ical representation of the data might be desirable.

The panels shown in Figure 4.11 are kept simple, as they are automatically generated.
However, CANoe comes with a panel editor that allows the generation of customized
I/O simulation panels based on standard graphical elements (dials and bars) and cus-

199

Chapter 4: CANopen Configuration Example

tomized bitmaps. An advanced example for the panels is shown in Figure 4.17 where
both the support feet and the ladder of a fire engine are animated.

Figure 4.17 Example for an Advanced Panel Design

Part Two: CANopen Engineering

203

 5 Underlying Technology: CAN

“The wireless telegraph is not difficult to understand.
The ordinary telegraph is like a very long cat.

You pull the tail in New York, and it meows in Los Angeles.
 The wireless is the same, only without the cat.”

Albert Einstein

CANopen was designed as a higher-layer protocol for CAN, operating with ISO 11898
compliant high-speed transceivers (line drivers). In general, CANopen is “open”
enough that it can be operated with other CAN transceivers or even using completely
different networking technologies. However, when choosing other transceivers or net-
work technologies, one needs to understand that the result is a proprietary solution
that is not compatible with anything else. Standard CANopen components only work
if ISO11898 compliant high-speed transceivers are used.

About the Terminology
CAN – Controller Area Network – was invented in the late eighties. Since then
some terms have been added and others replaced. As authors we had to make
a choice on the terminology to use. Using the latest terms was one desire. How-
ever, in reality there are still many documents such as CAN controller
datasheets, manuals and web pages using the established terminology, so just

Embedded Networking with CAN and CANopen

204

In order to truly understand CANopen and to be able to monitor, analyze and debug
a CANopen system, some basic understanding about CAN is required. This chapter
deals with CAN – the Controller Area Network – but with a focus on CANopen.
CANopen does not use all of the features provided by CAN, and sometimes avoiding
certain features is specifically recommended.

Features not used or not of direct concern (like synchronization mechanisms that
shorten or lengthen individual bit times allowing all nodes to stay “in sync”) are not
covered in this book. Readers looking for additional details about CAN should con-
sider reading [Etschberger01] or [Lawrenz97].

ignoring the old terminology was not an option either. Here are the terms in
question:

ISO 11898 vs. ISO 11898-X
This ISO standard specifies CAN physical layers. The original standard
ISO11898 (which is still the only one published by ISO to date) only specifies
one physical layer. However, a new version of the standard is in the works add-
ing other physical layers, too. Assuming the current drafts are accepted, ISO
11898-2 will contain the specification for the high-speed transceivers as used by
CANopen.

CAN 2.0A/B vs. Base Frame Format and Extended Frame Format
Many CAN related documents still make reference to CAN version 2.0A and
2.0B, which refers to the usage of 11-bit or 29-bit CAN message identifiers,
respectively. The terminology used today is more intuitive. A CAN message
frame with an 11-bit identifier is called base frame format, whereas the
extended frame format corresponds to CAN message frames with a 29-bit
identifier.

As an example of one of the unused features, the CiA recommends avoiding
the use of the so-called extended frame format (which use 29-bit CAN message
IDs instead of 11-bit IDs). Currently all CANopen functionality is entirely spec-
ified based on the 11-bit IDs of the base frame format. However, CANopen is
open enough that it works with 29-bit identifiers, too.

So why shouldn’t we use extended IDs?

A detailed answer is in the FAQ in Appendix A, which can be found in the Ref-
erence section. In summary, extended IDs “steal” from the data-bandwidth and
are less secure because the checksum needs to cover additional bits.

205

Chapter 5: Underlying Technology: CAN

5.1 CAN Overview

CAN was originally designed for automotive networks, where many small sensors
need to report small values frequently. As a result, CAN features small message
frames of only up to 8 data bytes but on the other hand can handle many message
frames per second. At the highest bit rate of one Megabit per second, several thou-
sands of messages could occur per second (see also Section 5.2.7).

The overhead per message includes an 11-bit message identifier and a 15-bit Cyclic
Redundancy Checksum (CRC). A message can contain 50% overhead or more (dou-
bling the length of a message) and makes CAN very secure and reliable, especially as
the CRC is confirmed by all nodes. If a single node reports a CRC error, all other nodes
discard the message and it automatically gets re-transmitted (see Section 5.2.9).

The typical physical medium is a twisted pair of wires and the maximum network
length depends on the network speed chosen. At 1Mbps the maximum length is about
40m/120ft. Longer distances are achievable at lower speeds, for example about 500m/
1500ft at a speed of 125kbps (see Section 5.2.1).

CAN is a multi-master network, so each node may send its data at any time. Colli-
sions get resolved by priority. The message with the lowest message identifier wins
the arbitration process and gets through. In order for this mechanism to work, all
CAN message identifiers used in a network must be unique. Higher-layer protocols
ensure the uniqueness of the CAN message IDs by assigning/reserving certain IDs for
certain purposes (see also Section 5.2.8).

On the lowest level all message frames are broadcasts, meaning every single node
receives every single message on the network. It is up to each individual node to
decide if a particular message is needed by that node. To avoid a situation where each
node must really examine every message on the network, most CAN controllers have
filter techniques implemented in hardware (see Section 5.3).

Objective

This is a brief summary of the most essential CAN features such as a high mes-
sage rate per second, high reliability through extensive CRC and CRC checking
by every node, typical physical media and arbitration by message priority. All
of these features are explained in more detail in the following sections.

Embedded Networking with CAN and CANopen

206

5.2 An Introduction to CAN

CAN is a very flexible communications network as it only implements parts of the
physical layer and data link layer (see the end of Section 1.3.1 for more info on net-
work layers and the 7-layer reference model). CAN may be implemented on different
physical transmission media like twisted pair, power lines, optical and others. On top
of the data link layer, a variety of higher-layer protocol standards are available, plus a
countless number of in-house proprietary standards.

All major chip manufacturers provide microcontroller derivatives with CAN inter-
faces on-chip. The selection of an external transceiver determines the physical layer.
All other CAN features described in this section are implemented on-chip as part of
the CAN interface. This includes the entire error detection and message re-transmis-
sion mechanisms.

5.2.1 The Physical Layer based on ISO 11898

Although there are customized CANopen implementations using different physical
implementations, the standard itself specifies the usage of “standard high-speed
transceivers” in accordance with ISO11898. These transceivers (line drivers) are con-
nected between the CAN controller and the physical medium: a pair of wires - prefer-
ably twisted with optional wires for shielding or additional customized signals.

Objective

This section explains the basic concepts of CAN. This includes physical signals,
layout, speeds and limitations. After reading this section, you will know what
kind of signals you will see when you hook up an oscilloscope to the CAN bus.
In addition, you will understand how the error detection and re-transmission
handling is implemented in CAN.

207

Chapter 5: Underlying Technology: CAN

Figure 5.1 ISO 11898 Compliant High-speed Transceiver

As Figure 5.1 illustrates, the transceiver takes the TTL signal (on some parts this might
be a 3V level) coming from the CAN controller’s transmit pin and converts the signal
to a differential signal between the two wires of the network cable (typically labeled
CAN_L and CAN_H for low and high). In return, differential signals on the two wires
of the network cable are converted back into TTL level and are fed back to the CAN
controller’s receive pin.

5.2.2 Signal States: Recessive versus Dominant

The letters “d” and “r” in Figure 5.1 stand for the so-called “dominant” and “reces-
sive” signal states on CAN.

A logical 1 indicates the recessive state. It is represented by 5V (or 3V on 3V devices)
on the TTL level and by a zero difference between the two network wires CAN_L and
CAN_H. Both wires are at a level of about 2.5V.

A logical 0 indicates the dominant state. It is represented by close to 0 volt on the TTL
level and by a 2 volt difference between the two network wires. CAN_L is driven
about one volt lower and CAN_H is driven about 1 volt higher.

In CAN the dominant signal overwrites the recessive signal. If multiple nodes write to
the network at the same time, the network will be in the dominant state if any single
node writes the dominant signal. This mechanism is used to detect collisions: a node

Tx

Rx

Tr
an

sc
ei

ve
r

CAN_H

CAN_L

d d
5V

0V
r

d d
5V

0V
r

t

t

t

d r d

2,5V

VDIFF = 2V 0V 2V

Embedded Networking with CAN and CANopen

208

writing the recessive state and reading back the dominant state knows that there was
a collision and can now start appropriate recovery actions.

Logically a CAN network behaves like a “wired AND gate.” If any single node writes
a dominant bit (zero), the entire network will be in the dominant state. Only if all
nodes write a recessive bit (one) will the network be in the recessive state.

At this point it should be noted that the network only supports these two states. There
is no third state for “idle.” Extensive periods of the recessive state are used for
“idling.”

5.2.3 Signal Levels

The exact voltage levels used on the transmission wires are shown in Figure 5.2 below.
In the recessive state, both CAN_L and CAN_H are at 2.5V. In the dominant state,
CAN_L is pulled down by 1V and CAN_H is pulled up by 1V. So the levels are 1.5V
for CAN_L and 3.5V for CAN_H with a 2V difference between them.

Many transceivers have some additional pins such as a “slope control” and a
2.5V “reference output.” The slope control is only needed in applications that
have hard limitations on the amount of electromagnetic interference they may
produce. It allows softening the signal edges. However, if the CAN bus is used
at higher bit rates, the bit time becomes so short that there is no room to play
with the signal edges. Unless you really need this feature, we recommend not
using the slope control and leaving the setting at “best signal quality.”

The 2.5V reference output is not needed for the implementation of CAN or
CANopen and can be ignored.

It would be nice to know how that discussion went when the designers of the
transceiver had the choice: What do we put on the extra pin that we have available?
and somebody probably came up with We have a stable 2.5V level in the trans-
ceiver itself, why don’t we put that out, maybe somebody else can use it?

What a far-reaching decision that was: as a result, technical support engineers
have one more frequently asked question to deal with that is heard over and
over again: What is that 2.5V reference for? It would have been so much easier for
technical support if the pin would have simply be left at NC – Not Connected.

209

Chapter 5: Underlying Technology: CAN

Figure 5.2 High-speed Signal Levels According to ISO-11898

The main benefit of a differential signal is its immunity to electromagnetic interfer-
ence (EMI). If the signals are exposed to external EMI influence, that influence affects
both wires as illustrated in Figure 5.3. In addition, the EMI generated by CAN itself is
reduced by using a differential signal in wires close to each other.

Figure 5.3 Using a Differential Signal

The figure shows how signals produced by node 1 can get altered during their trans-
mission to nodes 2 and 3. However, the level of change is the same on CAN_L and

Udiff = 2V

UCAN_H = 3.5V

Dominant RecessiveRecessiveV

2

3

4

5

1 UCAN_L = 1.5V

UCAN_H = 2.5V

UCAN_L = 2.5V

Physical Media:
Twisted pair of CAN_L and CAN_H with
termination resistors and optional shielding.

EMI

U diff

CAN_H

CAN_L

V

t

CAN
Node 1

CAN
Node 2

CAN
Node 3

Embedded Networking with CAN and CANopen

210

CAN_H and the transceivers of nodes 2 and 3 can still reliably detect the voltage dif-
ference between the two lines.

For those who are interested in more information about how CAN works we
recommend the books [Lawrenz97] and [Etschberger01] that go into all the
details. This section lists some details you will need to know when looking at
low-level CAN signals and frames with oscilloscopes or logic analyzers. How-
ever, for CANopen development, monitoring and analysis, a CANopen moni-
tor or analyzer is much more suitable than an oscilloscope!

Idling
A CAN bus can only be in one of two states: it is either recessive or dominant.
So what about “idle” – does that mean we always have constant transmissions?
This is true in a sense; by default every CAN controller constantly transmits the
recessive state.

Between frames / messages, the bus defaults back to the recessive state, the log-
ical 1. This is also called the “Inter-Frame Space.”

Bit Coding
CAN uses NRZ (Non-Return to Zero) bit coding. This means that during an
entire bit time the signal stays at the logical 0 or 1 level, without any edges or
transitions within the bit time.

Bit Stuffing
Within data frames (messages), CAN uses a technique called bit stuffing. For
synchronization purposes, edges are required within the communication data
stream. To ensure that there are enough edges, the transmitter automatically
inserts an opposite stuff bit into the communication stream after 5 consecutive
bits of the same value.

The receiver counts consecutive bits received within a data frame and after 5
consecutive bits automatically removes (ignores) the following opposite stuff
bit from the communication stream.

Note that the bit stuffing mechanism is only active within data frames and not
during the inter-frame space (idling).

211

Chapter 5: Underlying Technology: CAN

Figure 5.4 CANscope Display of a Data Frame

Figure 5.4 is from an oscilloscope-like tool with CAN awareness, the CANscope from
Vector. Without the CAN awareness it would be very hard to recognize the different
sections of the data frame displayed, especially the stuff bits. The message shown uses
the identifier 181h (default ID of PDO1 from node 1) and has four data bytes: A9h,
14h, 40h and FFh. The bottom line indicates the four stuff bits of this message.

5.2.4 Wiring/Cabling

The differential signal used by ISO 11898 compliant transceivers already gives CAN a
good level of EMI protection, and in some cases ordinary twisted-pair wiring without
additional shielding can be used. However, for noisy environments using a shielded
cable is still recommended.

The common perception is that CAN is a 2-wire network. However, an additional
common ground is required for reliable operation. If the entire network is embedded

Embedded Networking with CAN and CANopen

212

in a machine or apparatus there typically is a common ground and it might not be
necessary to actually use a third wire. If, on the other hand, the network spreads over
a longer distance, the additional wire for ground should be part of the wiring.

Many applications use the same trunk of wiring for supplying the devices with
power, which makes 4-wire CAN cabling one of the more popular variants. Two
shielded twisted pairs are what many industrial automation applications use. One
pair is used for the CAN signal and the other pair for the common ground and power
supply.

[CiADRP3031] recommends the specific wiring, termination resistors and connectors
to be used. In general, CAN is not very demanding in regards to the cabling, espe-
cially if only medium bit rates of 250kbs or below are used. Besides many variations of
twisted pairs, there are applications that use flat ribbon cables, telephone cabling, PC
serial cables, Ethernet cabling, Firewire cabling and others.

5.2.5 Connectors

Because CANopen is used in many very different applications, the wiring and the
connectors are not part of the specification and are application specific. To allow a
variety of connectors to still be compatible, the CiA recommends pin-outs for all
major connector types typically used in CANopen environments. The recommenda-
tions are published in [CiADRP3031]: CiA Draft Recommendation Proposal 303-1.

The signals specified for connectors are:

• CAN_L:
CAN_L is the bus line that is driven lower during the dominant bus state.

• CAN_H:
CAN_H is the bus line that is driven higher during the dominant bus state.

• CAN Ground:
This is the common ground used by the CAN nodes. If the nodes have a
common ground anyway, this signal might not be needed.

• CAN Shield (Optional):
An optional shield around the CAN_L and CAN_H signal is connected to
this pin.

• Positive Supply (Optional):
If a CAN node is supplied with its operating power via the cable, this pin

213

Chapter 5: Underlying Technology: CAN

gets connected to the positive line of the supply power. The voltage levels
are not specified. A commonly used voltage in industrial systems is 24VDC.

• Ground (Optional):
This is an additional ground pin that in most applications will be identical
to the CAN ground.

5.2.5.1 9-Pin D-Sub

When using 9-pin D-Sub connectors, the male connector is expected to be on the
device or network node. The female connector is used on the cable.

Figure 5.5 Pin Assignment for 9-pin D-Sub

In general, pins that are unused or reserved may be used for manufacturer spe-
cific purposes. However, you should keep in mind that the CiA reserves the
right to change their recommendation for the reserved pins in the future.

Pin Signal Description

1 - Reserved

2 CAN_L CAN_L bus line (dominant low)

3 CAN_GND CAN Ground

4 - Reserved

5 (CAN_SHLD) Optional CAN Shield

Table 5.1 Pin Assignment for 9-pin D-Sub

Embedded Networking with CAN and CANopen

214

5.2.5.2 Muti-Pole or Dual Header Row

When connecting to a header row directly on a PCB, the layout is D-Sub compatible –
meaning that if clamped 9-pin D-Sub connectors are used on a flat ribbon cable, it can
be directly connected to a dual header row.

Figure 5.6 Pin Assignment for 10-pin Dual Header Row

6 (GND) Optional Ground

7 CAN_H CAN_H bus line (dominant high)

8 - Reserved

9 (CAN_V+)
Optional CAN external positive supply (dedicated for
supply of transceiver and opto-couplers, if galvanic iso-
lation of the bus node applies)

Pin Signal Description

1 - Reserved

2 (GND) Optional Ground

Table 5.2 Pin Assignment for 10-pin Dual Header Row

Pin Signal Description

Table 5.1 (Continued) Pin Assignment for 9-pin D-Sub

215

Chapter 5: Underlying Technology: CAN

5.2.5.3 RJ10 – 4-pin

Some RJ10 sockets have a “connector inserted” detection built in. On devices with two
sockets this can be used to implement auto-termination. As long as only one cable is
inserted in any of the two sockets a termination resistor is connected. As soon as both
sockets are used (two cables plugged in), the termination resistor is disconnected.

Figure 5.7 Pin Assignment for 4-pin RJ10

3 CAN_L CAN_L bus line (dominant low)

4 CAN_H CAN_H bus line (dominant high)

5 CAN_GND CAN Ground

6 - Reserved

7 - Reserved

8 (CAN_V+) Optional CAN external positive supply

9 - Reserved

10 - Reserved

Pin Signal Description

Table 5.2 (Continued) Pin Assignment for 10-pin Dual Header Row

Embedded Networking with CAN and CANopen

216

5.2.5.4 RJ45 – 8-pin

One of the benefits of RJ45 is that many cable configurations are readily available off-
the-shelf as this connector is used by Ethernet. Therefore it is seldom necessary to
manufacture customized cabling when using RJ45.

Figure 5.8 Pin Assignment for 8-pin RJ45

Pin Signal Description

1 (CAN_V+)
Optional CAN external positive supply (dedicated for
supply of transceiver and optocouplers, if galvanic
isolation of the bus node applies)

2 CAN_H CAN_H bus line (dominant high)

3 CAN_L CAN_L bus line (dominant low)

4 CAN_GND Ground / 0 V / V-

Table 5.3 Pin Assignment for 4-pin RJ10

Pin Signal Description

1 CAN_H CAN_H bus line (dominant high)

2 CAN_L CAN_L bus line (dominant low)

3 CAN_GND Ground / 0 V / V-

Table 5.4 Pin Assignment for 8-pin RJ45

217

Chapter 5: Underlying Technology: CAN

5.2.6 Physical Layout

The physical layout of a CANopen network is that of a linear bus. The main trunk
consisting of the CAN_L and CAN_H signals must have termination resistors at each
end of the line. It is recommended that the termination resistors be 120 Ohm for buses
running at a speed of 1Mbps. Slower and longer buses should use resistor values in
the range of 150 Ohm to 300 Ohm.

If “junctions,” “Y’s” or “drops” are used, they may not exceed a maximum length.
This length depends on the maximum speed used on the network. The higher the
speed, the shorter the maximum drop length allowed. In a worst case scenario with a
bit rate of 1Mbps the maximum drop length may not exceed 1 (one) foot.

4 - Reserved

5 - Reserved

6 (CAN_SHLD) Optional CAN Shield

7 CAN_GND Ground / 0 V / V-

8 (CAN_V+)
Optional CAN external positive supply (dedicated for
supply of transceiver and opto-couplers, if galvanic iso-
lation of the bus node applies)

Additional recommended pin-outs for industrial connectors including “mini”
and “micro” style connectors and for Firewire connectors are specified in
[CiADRP3031].

Pin Signal Description

Table 5.4 (Continued) Pin Assignment for 8-pin RJ45

Embedded Networking with CAN and CANopen

218

Figure 5.9 Physical Layout

Figure 5.10 CANopen Bit Rate versus Bus Length

There are many factors involved when calculating maximum bus length and maxi-
mum drop length possible. Besides the conductivity factors of the cabling and connec-
tors, one also needs to consider the number of nodes connected, the bus speed used,
the delay time of the transceivers and the position of the sample point for read-backs
(which specifies where in a bit time a node samples the bit for reading it – typical val-
ues are in the range of 70% to 87%).

The single most crucial value for the maximum bus length is the bus speed.
Figure 5.10 shows how the bus speed influences the maximum bus length achievable.
The physical background is quite simple. The way the arbitration and error detection
system of CAN works, a single bit must be stable on the entire bus before the next bit

Node Node

Node

Node

Node

Node

Node

Node

Node

Node

Node Node

Terminator Terminator
TapTrunk Line

Drop Line

Tap Tap Tap

1000
500

10
5

Bit Rate
[kbps]

40 100 1000 10,000

CAN Bus Length [m]

20

50

200

100

0 10 200

219

Chapter 5: Underlying Technology: CAN

can start. So as an estimate, the shortest bit time possible is the time it takes for a sig-
nal to travel from a node at one end of the bus to one on the other end – and back
again. “And back” is required to ensure that any node still has a chance to overwrite
the signal on the bus. So a node writing the recessive state could be overwritten by
one writing the dominant state.

In summary, one bit time cannot be shorter than the time it requires for a signal to go
through a transceiver onto the bus, roughly traveling at the speed of light to the other
end, going through a transceiver again, and all the way back. At a bit rate of 1Mbps
some 120 feet is about the best one can expect in terms of CAN bus length. If some of
the other conditions are unfavorable, like lots of nodes connected to the bus or an
early sample point for the read-back, the maximum length possible might not even
reach 100 feet.

In many cases, a rough estimate for the maximum achievable bus length is sufficient.
An estimate is shown in Figure 5.10.

5.2.7 The CAN Base Frame Format

Of the various messages/frames on CAN, the one used most often is the Data Frame
containing process data. Another important frame is the Error Frame. Additional
information about the frames listed here and other messages/frames such as remote
frames and overload frames can be found in [Lawrenz97] and [Etschberger01].

Figure 5.11 The CAN Base Frame Format

411 0..64 1511 71 1 1 1 1

S
ta

rt
of

 fr
am

e

M
es

sa
ge

 id
en

tif
ie

r
C

A
N

op
en

: C
O

B
-ID

C
on

tro
l b

its
:

R
TR

, I
D

E
 a

nd
 re

se
rv

ed

D
LC

D
at

a
le

ng
th

 c
od

e

D
at

a
fie

ld

C
R

C
C

yc
lic

 re
du

nd
an

cy
ch

ec
ks

um

D
el

im
ite

r a
nd

 A
C

K
:

E
nd

 o
f f

ra
m

e

In
te

r f
ra

m
e

sp
ac

e

Embedded Networking with CAN and CANopen

220

Consider Figure 5.11, reading from left to right. The CAN Data Frame begins with a
dominant start bit. While idle, the bus is in the recessive state, so that any transition
from idle to dominant is considered the start of a frame.

What follows is the 11-bit CAN message identifier. In CANopen this is usually part of
the COB ID, the Connection Object ID. Because this field is part of the arbitration pro-
cess (the resolving of collisions if multiple nodes transmit at the same time), it must be
ensured that each message ID is unique in the network. This simply means that no
CAN ID may be transmitted by more than one node at any time.

When using CANopen, the three control bits that follow should all be considered
“reserved” and should be left at 0. The CiA recommends that developers not use RTR
(remote request, used to poll a certain message) or IDE (used to enable a 29-bit identi-
fier instead of 11-bit) in CANopen networks. See also the FAQ Appendix A for more
information on RTR.

DLC stands for “Data Length Code” and specifies how many data bytes are in this
frame. Although the DLC is a 4-bit value, the only values allowed for DLC are 0
through 8.

The data field contains as many data bytes as specified by the DLC. So the length in
bits is either 0, 8, 16, 24, 32, 40, 48, 56 or 64. Right after the data field is the 15-bit CRC
– Cyclic Redundancy Checksum.

The remaining control bits are the CRC delimiter, the ACK (acknowledgement) slot
and the ACK delimiter. The delimiters are used to give all nodes some time to work
on and react to the previous bits. Receiving nodes get one bit time (CRC delimiter) to
compare the CRC calculated internally on the received data with the CRC received in
the frame. They then have one bit time (ACK delimiter) to complete CRC calculation
and one bit time (ACK slot) to acknowledge that they received the Data Frame. If the
last delimiter is recessive, it confirms that all nodes received the frame and matched
the CRC. See also Section 5.2.9.

The data frame ends with an end of frame sequence of 7 consecutive, recessive bits. A
minimum period of 2 (new ISO 11898-1) or 3 (ISO 11898) recessive bits must follow as
inter-frame space (idle between messages), before the next frame can begin.

Depending on the number of data bytes in a data frame, the length of a data frame
varies from 44 to 108 bits. However, due to the bit stuffing the actual length of a data
frame can be longer.

221

Chapter 5: Underlying Technology: CAN

For more information on bandwidth and worst-case calculations such as the highest
expected message rate (data frames per second) or the highest possible data band-
width, see the FAQ Appendix A.

5.2.8 Collisions and Arbitration

The collision and arbitration process is one of the central features of CAN. It ensures
that if a collision occurs (multiple nodes transmitting at the same time), they are
resolved by priority and the highest priority message will get through. The entire pro-
cess is implemented in such a way that no bandwidth is lost.

The process is similar to CSMA/CD (Carrier Sense Multiple Access with Collision
Detection). “Carrier Sense” means that a node constantly “senses the carrier,” listen-
ing to the communication on the network. It will not, however, interfere with a com-
munication currently in progress. “Multiple Access” means multiple nodes have
access to the carrier medium at the same time – if there is no communication on the
network, multiple nodes may try to write to the network at the same time. The “Colli-
sion Detection” is the detection of a collision if indeed multiple nodes write at the
same time.

The interesting part is what happens next. The traditional CSMA/CD as implemented
on Ethernet would start a jamming sequence once a collision is detected. This way the
communication is interrupted for everybody and aborted. All nodes will start over

When the designers at Bosch who developed CAN had to decide how many
data bytes would be allowed as minimum and maximum, several factors were
evaluated.

One concern was that even the highest priority messages would have to wait
until the message currently in progress was completed. So the maximum mes-
sage length allowed directly determines the maximum delay even the highest
priority message might have before it gets transmitted.

Another concern was the reliability of the checksum. The longer the message,
the less effective the CRC.

The final compromise was to allow 0 to 8 data bytes, requiring a 4-bit DLC –
Data Length Code. Some argue that a 4-bit DLC could also be used to allow a
message length of up to 15 data bytes, However, that would entirely change the
communication timing and reliability of CAN.

Embedded Networking with CAN and CANopen

222

after a random delay. Unfortunately this process steals bandwidth, as nothing can be
transmitted during the jamming sequence.

CAN uses a smarter approach. Instead of producing a jamming sequence, collisions
are instantly resolved by priority. The message with the highest priority wins this
arbitration and gets through. Not only does the highest priority message get through,
the entire process is immediately repeated with all the messages that lost the arbitra-
tion cycle. So the message with the next highest priority is automatically transmitted
next. Sometimes, this mechanism is called CA (Collision Avoidance) instead of CD
(Collision Detection), arguing that collisions in the true sense do not happen in CAN.
This entire process is implemented in hardware and does not require any software
intervention.

Figure 5.12 The CAN Arbitration Process

Figure 5.12 illustrates how the arbitration cycle of CAN works. The most likely sce-
nario for a collision occurs when multiple modes internally get a request to send a
frame while another transmission is currently in progress. In this case nodes 1, 2 and 3
get a request to send while node X is transmitting. Because nodes 1, 2 and 3 are con-
stantly listening to the network, they know that the network is currently being used
and they wait until node X completes its transmission.

Node X
Node 1
Node 2
Node 3

Transmit
Request

Remainder

Node 1

Node 2

Node 3

Arbitration
phase

CAN Bus

Start
Bit

Node 2
loses Arbitration

Node 3 loses
Arbitration

Message Identifier Field

223

Chapter 5: Underlying Technology: CAN

Once node X completes its transmission, nodes 1, 2 and 3 will wait until the end of the
minimum inter-frame space (three recessive bits) and then simultaneously start trans-
mitting their messages. They all write the dominant start bit. Right after the start bit,
the three nodes start the bit-by-bit arbitration cycle in which the 11-bit message identi-
fier is used. The nodes write the message identifiers with the highest significant bit
first.

There are three key points to the arbitration process that follows:

1. CAN message identifiers are unique in the network. An identifier is assigned to a
node and only that node may transmit it.

2. Writing a 0 (the dominant state) overwrites a 1 (the recessive state).

3. Each node writing a bit also reads it back from the bus to confirm that transmis-
sion was successful, or if it was overwritten.

Because the identifiers are unique, there will be a collision somewhere within the 11-
bit identifier field if multiple nodes try to transmit at the same time. Nodes that send a
1 and read back a 0 know that another node overwrote their 1 and that they lost the
arbitration. They will step back from the bus and try again immediately after this
frame ends. In this example, node 2 loses arbitration in the third bit of the identifier. It
writes a 1 but reads back a 0, so it knows that it lost arbitration and will abort the cur-
rent transmission. Instead, it will start receiving the message from the node which
won the arbitration.

The algorithm started in each node with a request to transmit performs the following
simplified steps:

1. Wait until the bus is available (wait until current message is completed).

2. Send the dominant start bit.

3. Send the next bit of the 11-bit CAN identifier.

4. Read back the bit from the bus lines.

5. If the bit from step 4 is different from the bit from step 3, receive the incoming mes-
sage, then go back to step 1 and start over.

6. If number of bits arbitrated is not yet 11, go back to step 3.

7. Arbitration won – send data frame.

Embedded Networking with CAN and CANopen

224

5.2.9 Error Detection Mechanisms

CAN has very sophisticated error handling implemented as part of the protocol. Most
steps involved are implemented directly in the CAN controller hardware and are usu-
ally not influenced or controlled by the application program.

Although the arbitration process is one of the best features of CAN, it is also
directly responsible for some of the limitations of CAN.

Because every node needs to be able to read back the bit that it just wrote, a bit
must be stable on the entire bus before the next one can be transmitted. This
limits CAN’s maximum speed/distance compared to networks that operate as a
pipeline – bits are pushed in as fast as possible without waiting. By the time the
first bit reaches the end of the pipeline, several more bits might be already on
the way.

The message identifier uniqueness requires that the 2048 (211) identifiers avail-
able need to be assigned to the network nodes to ensure that no single node
uses an ID that is assigned to another node. All higher-layer protocols includ-
ing CANopen implement some scheme to assign the identifiers. Most of these
schemes require that each node be assigned a unique Node ID before it gets con-
nected to the network. Typically nodes get pre-configured via some software
setup tool that writes to non-volatile memory, or by switches or dials.

A true plug-and-play implementation would preferably not require such a
setup from the user. In some applications, each setup step performed by the
user is considered a “hazard” as there are always some users that will do
wrong what they can do wrong.

There are some work-a-rounds for this problem, all with their own set of draw-
backs. See the FAQ Appendix A for more information on possible work-a-
rounds.

Note: In carefully controlled situations, multiple nodes may transmit the same
message identifer to signal a request or condition, as long as the message does
not contain any data. If more than one node attempts to transmit the message
at the same time, a single message will appear on the bus as all nodes will think
that they transmitted their message. It is then up to any listening node to deter-
mine what to do next, for example polling all nodes to see which one transmit-
ted the message. An example of this is the Dynamic SDO Request message
described in Section 3.2.2.

225

Chapter 5: Underlying Technology: CAN

In low-level hardware, each node on the network actively monitors the network and
checks the CRC of every message. Figure 5.13 illustrates a successful CRC compari-
son. In this case node 1 transmits a message and during transmission also calculates
the cyclic redundancy checksum. The checksum covers all bits from the first bit of the
message identifier up to the last bit of the last data byte transmitted. The calculated
15-bit checksum, in this case 4A2Fh, is transmitted right after the last data bit.

Any other node on the network which receives the data frame actively calculates the
checksum. In this case node 2 receives the message, calculates the checksum and com-
pares the one calculated with the one received via the network. If the two match, it
pulls the acknowledgement bit to the dominant state as a confirmation that the recep-
tion process was completed successfully.

Because every node on the network performs this task, one might get the impression
that the acknowledgement only confirms that at least one node received the message
correctly. However, a look at the case for a mismatch illustrates that it actually means
that every node on the network received it correctly, because if a single node detects a
mismatch it will destroy the faulty message for every node.

It should be noted that the above is only true for nodes that are in error active mode.
A node that is error passive or even “bus off” does not destroy messages with a CRC
error.

Figure 5.13 Cyclic Redundancy Check – Match

CAN_H

Transmitting Node Receiving Node

CAN_L

Calculated
CRC:

4A2Fh

CRC

Calculated
CRC:
4A2Fh

Transmitted
CRC:

4A2Fh

Received
CRC:
4A2Fh

≈
≈

Match,
set ACK

DataDLC Transmitter
recognizes ACK

Embedded Networking with CAN and CANopen

226

Figure 5.14 Cyclic Redundancy Check – Mismatch

In Figure 5.14 the scenario from Figure 5.13 is modified slightly. In this case, the CRC
transmitted gets changed during reception.

As a result of the change, a different checksum is received by node 2. Node 2 detects
the mismatch and instead of setting the acknowledgement bit, it generates an Error
Frame which is recognized by all other nodes on the network (including the one trans-
mitting the message). Every node recognizes the error and discards the current mes-

It should be noted that an error can also be caught by the transmitter, if it is a
global change from a recessive bit (sending) to a dominant bit (detected by
read-back) outside of the part of the message used for arbitration (mostly the
identifier). In this case the transmitter will abort transmission and issue an
Error Frame immediately.

The Error Frame is a sequence of 6 or more consecutive dominant bits followed
by an error delimiter of 8 recessive bits. Due to bit stuffing, there is no way that
6 consecutive dominant bits could occur during a regular data frame. An error
frame detected within a data frame is an indication to all nodes that something
is wrong with this data frame and that it should be discarded.

Mismatch,
send ERR

CAN_H

Transmitting Node Receiving Node

CAN_L

Calculated
CRC:

4A2Fh

Calculated
CRC:
4A2Fh

Transmitted
CRC:

4A2Fh

Received
CRC:
4A3Fh

≈
≈

CRCDataDLC

CRC bit switched
during reception

ALL nodes recognize error
frame and discard message;

transmitter tries again

227

Chapter 5: Underlying Technology: CAN

sage. After a specified timeout, the inter-frame space, the transmitting node will
automatically re-try to transmit the message data frame again.

Figure 5.15 CAN Controller Error States and “Bus Off”

A question that typically arises at this point is What happens if the check sum generator of
a node is faulty? It would destroy every communication attempt on the network.

To avoid such an error state, CAN nodes implement different error states. Figure 5.15
shows these error states and the transitions.

Per default all initialized nodes are “Error Active.” In this state, a node actively per-
forms all the previously described CRC comparisons as a result of a software initial-
ization in the microcontrollers hosting the CAN controllers, typically executed after a
power-up or reset.

There are two error counters, a receive error counter (REC) and a transmit error coun-
ter (TEC). These get incremented by a certain value with each error detected by the
node. The more severe the error, the higher the increment value. However, they also
get decremented with each message successfully received or transmitted.

If any of the two counters in a node reaches 127, the node goes into the “Error Pas-
sive” mode. In this mode, a node can still send and receive messages, but it does not
actively destroy message frames on the bus. Because the error counters can get decre-
mented, a self recovery from temporary network faults is possible.

Bus
off

Error
active

Reset

Error
passive

REC > 127 or TEC > 127

REC <= 127 and TEC <= 127REC <= 127 and
TEC <= 127

TEC > 255

REC > 127 or
TEC > 127

Timeout or
wait for user
interaction

Embedded Networking with CAN and CANopen

228

If, on the other hand, the values of the error counters increment further and the trans-
mit error counter overflows (greater than 255) the node goes into “Bus Off.” Bus Off
means that the CAN controller shuts down and stops transmitting or receiving CAN
messages. Bus Off is a serious network error and self recovery is not possible. The Bus
Off state can only be left by re-initializing the CAN controller.

5.2.10 The Safety of CAN: Error Statistics

The overall error statistics of a CAN network depend on several factors. As described
earlier, any single node detecting an error will actively destroy the message for all
nodes, so the more nodes that are connected and participating in the communication
the more reliable the network becomes. Other factors include the level of electromag-
netic interference along the network cable and the kind of shielding used. The differ-

How to treat a “Bus Off”

The Bus Off state is typically reported to the microcontroller by an error inter-
rupt. What exactly happens in this interrupt service routine depends on the
application software.

Because Bus Off is an indication of a serious network error, just re-initializing
the CAN controller might not fix the problem. You should consider a con-
trolled shut-down of the entire system if it is feasible.

However, if your application can not afford an immediate shut-down (like
many automotive systems), the only thing you can do is to re-try. Reset the con-
trollers involved and try again. To give other nodes a chance to catch-up or
recover, the re-initialization should not be immediate (for example, by imple-
menting an immediate reset upon Bus Off detection). Instead, there should be a
minimal timeout before re-initializing. Typically the timeout should be in the
hundreds of milliseconds.

229

Chapter 5: Underlying Technology: CAN

ential signal provides more stable communication in noisy environments, but still
CAN is not immune to interference.

There are several research papers available online that examine the performance, reli-
ability and vulnerability of CAN. See [Charzinski], [Nolte] and [Zuberi] in Appendix
J. Interested readers should have no problem locating the papers using an online
search engine.

CAN Error Statistics

It is often said that with statistics you can prove anything...

Nevertheless, the network reliability of CAN is very high. To those who are
familiar with Cyclic Redundancy Checksums this should not come as a sur-
prise. Just to give a comparison: on Ethernet protocols a 16 bit checksum is typ-
ically used to cover message blocks of up to 1,500 bytes. In CAN, a 15-bit
checksum covers a maximum of 8 data bytes.

The guaranteed Hamming Distance for CAN is 6. The Hamming Distance is a
measurement for the checksum reliability. In this case it means that up to 5 bit
errors (bits randomly flipped in the data covered by the checksum and in the
checksum itself) can be detected reliably.

One of the most stringent statistical requirements set by some automotive
applications is fulfilled by CAN: if a network based on 250kbps operates for
2000 hours per year at an average busload of 25% an undetected error occurs
only once per 1000 (one thousand) years.

An “undetected error” means that multiple bits in a message get distorted in
such a way that the CRC does not detect it and a message with the wrong iden-
tifier or the wrong data contents gets through.

Embedded Networking with CAN and CANopen

230

5.3 Selecting a CAN Controller

“Just because something doesn't do what you
planned it to do doesn't mean it's useless.”

Thomas Edison

The first CAN controllers implemented in the early eighties were the Intel 82526 and
the Philips 82C200. Their features were quite different. The Philips 82C200 only pro-
vided a very basic set of communication functions, and thus was dubbed a “Basic
CAN controller.” The Intel 82526 (its successor 82527 is still used today) was referred
to as a “Full CAN controller.” Today there are so many variations of CAN controllers
that the terms Basic or Full CAN often cannot be applied anymore and a more specific
one-to-one comparison becomes necessary.

In general, all CAN controllers available today can be used to implement CANopen –
even those that were designed with other protocol structures in mind.

5.3.1 Required Performance

The required communication performance, which of course depends on the specific
application and implementation, is a crucial selection criterion. In any case, the worst-
case scenario for CAN communication can be summarized as follows: The highest bit
rate is 1Mbps. The longest possible message contains 8 data bytes. The shortest possi-
ble message (0 data bytes) takes about 50 bit times on the bus. At 1Mbps, 50 bit times
correspond to 50 microseconds.

If the goal of an application is to handle CAN interrupts in real-time, the microcon-
troller would need to “digest” an incoming message with 8 data bytes in less than 50

Objective

In this section we point out the main benefits and drawbacks of specific CAN
implementations with a special focus on suitability for CANopen. Several of
the major chip manufacturers producing CAN devices add their own twist to
the CAN controllers by incorporating some additional hardware functionality.
The main goals for these customizations are usually either to lower the burden
on the host MCU (like filtering, buffering and/or queuing incoming messages)
or providing extra safety and security (producing additional or more detailed
error detection mechanisms).

231

Chapter 5: Underlying Technology: CAN

microseconds. Potentially this is the shortest time the next receive interrupt could
occur.

However, to leave enough MCU operating time for the real application (whatever is
handled besides CAN communication), the “digesting” should take far less than 50
microseconds.

Experienced users of 8-bit microcontrollers will immediately see that such a worst-
case scenario could be very challenging to some microcontrollers, and could easily
keep them busy with nothing but CAN communication. However, it is seldom the
case that a single node needs to receive and work on 100% of the messages on the bus.
Typically a node only needs to listen to a certain percentage of the messages. While
this helps to reduce the overall average MCU operating time required for handling
the CAN communication, work-a-rounds are still needed to handle bursts of back-to-
back messages that a node might need to receive.

Fortunately, modern CAN interfaces have hardware filtering and buffering features
that help with the task of ignoring unwanted communication and buffering back-to-
back messages.

5.3.2 Hardware Filtering with Match and/or Mask

The functionality of hardware filters is very similar on many CAN devices. While
receiving a CAN message, the identifier (and sometimes even the data) can be com-
pared to a configured filter. Only if the incoming message matches the filter does the
message get stored into a receive buffer. The major differences in filters are usually the
width of the filter, and whether or not it is a “match only” filter or also allows a mask
to be used. A mask allows for the setting of individual bits as “don’t cares,” so a com-
bination of match and mask registers can be used to select range filters, such as receiv-
ing all messages with an identifier in the range of 000h to 0FFh.

The filter width specifies how many bits of an incoming CAN message can be pro-
cessed. For a standard CAN message identifier at least 11-bits are required. For an
extended CAN message identifier it is 29-bits.

Where a “match only” filter looks for one exact match (for example, exactly one iden-
tifier), a combination of match and mask allows for filtering on message groups (for
example, identifiers 100h to 11Fh). Usually, a bit set in the mask register means that
the corresponding bit in the CAN message is a “don’t care” value for the purposes of
acceptance filtering. If a bit is cleared, it must match the value in the match register.

Embedded Networking with CAN and CANopen

232

5.3.3 Different CAN Implementations

5.3.3.1 Traditional Basic CAN

Figure 5.16 Block Diagram of a Basic CAN Controller

The first “Basic” CAN interface was implemented by the Philips 82C200. In compari-
son to the earlier Intel 82526 it only provided "basic" functionality. Basic CAN inter-
faces only offer a limited number of receive buffers and filters (typically one to three).
If a node using such a controller needs to listen to a number of different messages (dif-
ferent CAN message identifiers), the filters usually have to be set “wide open” caus-
ing an interrupt with every single message on the bus. Obviously, the microcontroller
will receive many CAN interrupts, as it has to check in software to see if a message
can be ignored or needs to be worked on.

Today some CAN controllers have an “extended” Basic CAN interface that has addi-
tional buffers that can be used for either receive or transmit. However, using multiple
buffers is the main idea of the Full CAN controller.

C
A

N
 B

us
 In

te
rf

ac
e

H
os

t I
nt

er
fa

ce

Mask & Match
ID Filter

Receive
Buffer(s)
Receive
Buffer(s)

Receive
Buffer(s)

Control
Registers

Transmit
Buffer(s)

CAN
Protocol
Handler

233

Chapter 5: Underlying Technology: CAN

5.3.3.2 Traditional Full CAN

Figure 5.17 Block Diagram of a Full CAN controller

The very first CAN controller, the Intel 82526, used the so-called “Full-CAN” imple-
mentation. Full CAN controllers have a number of message objects (typically 15).
Each message object is bi-directional (can be configured to either transmit or receive),
each has its own transmit/receive buffer for one message, and each has one filter
match register. This allows developers to set a message object to listen for exactly one
message (one identifier).

As long as the total number of messages a node needs to listen to is smaller than the
number of message objects available, these interfaces are very efficient. They will only
cause an interrupt to the MCU if a “wanted” message is received. However, as soon as
many different identifiers need to be received, there is no true benefit to a Full CAN
interface over the Basic CAN interface. This is the case when implementing CANopen
masters or managers that need to communicate with many or all nodes on the net-
work.

In addition, the Full CAN mechanism does not offer any protection from a back-to-
back worst-case scenario. Each message object has a single buffer and a matching
incoming message will override the buffer’s contents, so it is possible for messages to
get lost. As long as a buffer is configured for a single message identifier, this scenario
is not too problematic, as it is unlikely that the producer of that message will produce
them back-to-back. But if any of the message objects are configured to receive multi-

C
A

N
 B

us
 In

te
rf

ac
e

H
os

t I
nt

er
fa

ce

Control
Registers

Message
Object 1

CAN
Protocol
Handler

Match
ID

Message
Object 2

Message
Object 14

...

Match
ID

Match
ID

G
lo

ba
l M

as
k

Fi
lte

r f
or

 ID

Mask
ID

Receive
Buffer

Embedded Networking with CAN and CANopen

234

ple CAN identifiers (as required by most CANopen masters or managers), the micro-
controller needs to be prepared for the possibility that these could come in back-to-
back. On a 1Mbps CAN network that means about 50 microseconds from a receive
interrupt occurrence to a potential overwrite of the message by the next incoming
message.

5.3.3.3 FIFOs

Figure 5.18 Block Diagram of Philips’ PeliCAN (SJA1000, 87C591 and LPC99x)

The only way to get around the back-to-back message problem and the high perfor-
mance and timing demands on the interrupt service routine is with a receive FIFO
buffer (First In – First Out). A typical implementation features a number of filters that
include both match and mask registers. Upon a filter match, the incoming message is
moved into the FIFO buffer. An interrupt request to the MCU is made depending on
configuration; either a certain fill-level is reached or a high priority filter received the
last incoming message.

Even if such a FIFO can only hold 64 bytes it is still big enough to improve upon the
back-to-back scenario mentioned earlier. If the FIFO is configured to cause an inter-
rupt with every single incoming (matched) message, the MCU has at least 500 bit
times until the FIFO will overflow. This is about 10 times more time available to the
MCU than with Basic CAN or Full CAN implementations.

On the downside, messages in the FIFO cannot pass each other. So if the FIFO already
contains several messages and an additional, but high priority message comes in, the
MCU first needs to process all messages previously stored in the FIFO before it gets
access to the high priority message. In a Full CAN interface it is up to the interrupt

C
A

N
 B

us
 In

te
rf

ac
e

H
os

t I
nt

er
fa

ce

Extended
Match & Mask

Filter for
up to 8 IDs

Control
RegistersCAN

Protocol
Handler Transmit

Buffer

Extended
Receive
Buffer
FIFO

235

Chapter 5: Underlying Technology: CAN

service routine to determine in what order the message objects are checked, and it
may be possible for a higher priority message to pass previously received, lower pri-
ority messages.

5.3.3.4 Enhanced Full CAN with Receive FIFO

Figure 5.19 Philips’ Enhanced CAN Interface of the XA-C37

The latest developments do not have standardized names because chip manufacturers
have come up with their own customized improvements for the CAN interfaces. Sev-
eral chip manufacturers now offer devices that combine the benefits of Full CAN and
a FIFO.

The most powerful approach is a Full CAN implementation with a dedicated FIFO for
each single message object. Although powerful, these are also the most complex con-
trollers to configure, especially if each individual FIFO can be freely located in RAM
and can be of individual lengths.

Another alternative is to be able to take a Full CAN implementation and concatenate
message objects to a FIFO. So instead of one message object only having one buffer, a
FIFO can be formed “borrowing” the buffers of other message objects. Although fairly
flexible, the disadvantage is obvious - with each buffer added to a FIFO, one message
object is lost. So the value of this feature increases with a high number of message
objects, but decreases as the number of message objects decreases.

C
A

N
 B

us
 In

te
rf

ac
e

H
os

t I
nt

er
fa

ce

Control
Registers

FIFO 0
CAN

Protocol
Handler FIFO 1

FIFO 31
...

Mask &
Match ID

Mask &
Match ID

Mask &
Match ID

Embedded Networking with CAN and CANopen

236

5.3.4 Physical Interfaces of CAN Controllers

A variety of interfaces have been implemented for the communication between the
microcontroller and the CAN controller. The typical interface is “memory-mapped,”
meaning that the SFRs (the Special Function Registers) that control the CAN interface
are mapped into the microcontroller’s memory. Using memory read and write
instructions the microcontroller can then access the registers; for example, those con-
taining the bytes of a single CAN message. This method is used for both “stand-
alone” (external to the microcontroller) and “on-chip” CAN controllers.

CAN controllers with many features also require many SFRs. For example a full-CAN
style controller typically needs 16 registers per message object - four for the message
ID, one for the length, up to eight data bytes and some control and/or filter mask reg-
isters.

On 8-bit microcontrollers the SFRs are typically located in internal data memory –
which in the case of the 8051 is limited to a total of 256 bytes. Obviously there is not
enough room in that address space to map all CAN registers into it, since that address
space is also needed for non-CAN related registers.

Semiconductor manufacturers took different approaches to solve this problem on
8051 architectures. Some have chosen to place the CAN SFRs into the XDATA seg-
ment which is normally used for external memory. However, XDATA access is slower
than internal memory access.

Philips Semiconductors chose a different path using just two SFRs: a selection or
pointer register and a data register. By setting the selection/pointer register, the appli-
cation can select which of 256 “hidden” CAN SFRs should be made available in the
data register. A read or write instruction from or to the data register then performs a
read or write to the selected CAN register. In addition, the read or write from or to the
data register also auto-increments the selector/pointer. This allows the application to
continuously read from or write to the data register if consecutive registers are to be
accessed.

Sometimes a “stand-alone” CAN controller is equipped with another serial interface
(I2C or similar) towards the microcontroller. Before using one of these controllers, one
should carefully examine the worst-case bus speed and bus load that could occur. The
burden on the microcontroller can be quite high because the “regular” serial protocols
require the microcontroller to react (typically via an interrupt) upon every byte trans-
mitted. Using a memory-mapped CAN controller, the microcontroller only needs to

237

Chapter 5: Underlying Technology: CAN

react upon an entire message, so there are fewer interrupts that the microcontroller
needs to deal with.

5.3.5 Code, Data Memory and CPU Performance Requirements

Another important selection criterion comes not from the CAN interface imple-
mented on a specific microcontroller, but from the microcontroller or microprocessor
itself. Some CANopen implementations can be quite demanding on memory and
CPU performance requirements. Obviously CANopen masters/managers require
more storage space for code and variables and more CPU power than average CANo-
pen slave nodes. However, some CANopen slave nodes also might require more
resources than an 8-bit microcontroller can provide.

While a specific implementation of a CAN controller can take workload from the
microcontroller or microprocessor using it, the overall performance of a CANopen
implementation also depends on the resources provided by the main processor. For
example, a full-CAN style CAN controller can be setup to exclusively use one mes-
sage object for each CAN message received or transmitted by a CANopen slave node
(using the hardware filters provided, a message object can be assigned to one specific
message ID). Typically the messages handled by a CANopen slave are one message
object for receiving the NMT Master message, one for the heartbeat message pro-
duced, two for the SDO request and response channels and one for each PDO. For
simple CANopen slaves this allows for a very efficient usage of the resources pro-
vided by the CAN controller.

However, if the nodes get more complex (increasing number of PDOs and/or monitor-
ing of several heartbeats), it may be the case that the total number of CAN messages
that need to be handled exceeds the number of message objects provided by the CAN
controller. Once that point is reached the benefits of the “full-CAN” style CAN con-
troller vanish. At this point one message object needs to be “opened” to receive all
incoming messages (by removing all hardware filters). The result is that the CAN
receive interrupt now gets far more messages to process and needs to run at a higher
priority to deal with the additional network traffic. The interrupt service routine
needs to look at the received message and decide in software if this message is needed
by the local node or not. If it is needed, it needs to be removed from the CAN buffer
before the next incoming CAN message overwrites the data. In order to achieve this,
many implementations use additional memory buffers for the receive messages,
requiring additional RAM.

In these cases the SJA1000-style CAN controllers from Philips Semiconductors are
more suitable. They already have a receive buffer built-in, so the worst-case timing for

Embedded Networking with CAN and CANopen

238

a potential over-write of that buffer is much longer. As a general guideline, on an
SJA1000 it takes about 10 times longer for a potential overwrite to occur, compared to
a “Basic” CAN controller or a “Full” CAN controller with one message object set to
receive everything.

To get an estimate of the CPU load required to handle CANopen, one should evaluate
the CPU load available for handling the CAN communication (in comparison to how
much CPU load is required for handling the application), the desired CAN bit rate,
and the instruction execution rate of the microcontroller.

The question is On average, how many instructions can the microcontroller use for work on
the CANopen stack for each CAN bit time? (i.e. InstructionsPerBitTime).

To get the number of InstructionsPerBitTime, one first calculates the CAN bit time.
For example, at a bit rate of 1Mbps the bit time is 1 microsecond.

The next number needed is the number of instructions the microcontroller can execute
during that time. A regular 8051 running at 12MHz would execute only one instruc-
tion per bit time. However a “6-clock” (double speed) part running at 24MHz would
execute four.

Finally, it needs to be determined how much overall CPU load (as a percentage) is
available for handling the CANopen communication, and this is applied to the num-
ber of instructions executed per CAN bit time. For example, if there are four instruc-
tions per bit time and the overall CPU load available for CANopen is 33% the result
for “InstructionsPerBitTime” would be 1.333 instructions.

When it comes to CPU performance requirements for CANopen implementa-
tions, it is unfortunately impossible to make exact comparisons as there are too
many differences in the CAN controllers, the microcontroller architectures and
the quality of the source codes and compilers.

The following is intended only as a rough estimate to give the reader some
guidance as to whether or not the performance of the microcontroller chosen is
sufficient, or if more detailed examinations have to be made.

For 16-bit devices, multiply the result InstructionsPerBitTime by 1.5 and for 32-
bit devices – don’t even do this calculation, you should have enough perfor-
mance.

239

Chapter 5: Underlying Technology: CAN

If the resulting InstructionsPerBitTime is below 2, one would need to evaluate the
entire system and scenario thoroughly and very carefully.

• If the resulting InstructionsPerBitTime is above 5, there should be ample
performance for handling any CANopen implementation.

• For everything in between it might be necessary to guarantee a certain over-
all efficiency either by using an advanced CAN controller or by optimizing
the CANopen software towards the specific microcontroller or a combina-
tion of both.

5.3.6 Controller Selection Summary

Selecting the CAN controller that is right for a particular application goes hand-in-
hand with the selection of the microcontroller unit (MCU) used to run the application
software.

Basic CAN controllers can dramatically increase the workload for the MCU and
should only be considered for simple, minimal CANopen slave nodes in minimal net-
works. Because a lot of message filtering has to be done in software, the workload to
handle the communication will greatly increase with the number of nodes connected
to the network.

Full CAN controllers are ideal for CANopen slave nodes where the number of differ-
ent CAN messages received does not exceed the number of “message object buffers”
implemented in the controller. In this case, one message object can be configured to
exclusively receive CAN messages with one particular CAN message identifier. If,
however, the implemented node needs to receive more different CAN messages than
message objects are available (for example, complex slaves or a CANopen master lis-
tening to many PDOs), the Full CAN interface does not have any advantage over the
Basic CAN interface.

CAN controllers with one or multiple receive FIFO buffer(s) are suitable for any
CANopen implementation, both slaves and masters or managers. Full CAN control-
lers that have the capacity to combine several message objects into a FIFO also fall into
this category. CANopen nodes that need to receive many or all CAN messages on the
network benefit greatly from these implementations, as these are the only ones that
protect the application from high real-time demands. If a Basic or Full CAN controller
is used to receive most or all CAN messages, the CAN interrupt service routine must
often be implemented with the highest priority level. This is because after some 50 bit
times on the bus (at 1Mbps about 50 microseconds) a data overrun could potentially

Embedded Networking with CAN and CANopen

240

occur. Using a hardware FIFO buffer, this time is multiplied by a factor of 10 or more,
depending on the size of the FIFO.

5.4 CAN Development Tools

There is a wide variety of development tools available that assist engineers in the
development, debugging and testing process. When selecting tools like network mon-
itors, analyzers, loggers, stimulators and simulators, one needs to evaluate what kind
of functionality is available and which upgrade or options paths are available towards
CANopen. In the same way an oscilloscope only offers limited visibility when looking
at a CAN data frame, CAN monitors and analyzers lack functionality when the final
application is CANopen.

The tool used most often is a network monitor or analyzer. These come in a very wide
variety of both functionality and pricing. As with any development tool, additional
functionality directly relates to development time saved. When calculating project
budgets, the cost of the tool needs to be evaluated in comparison to the time needed
for development, debugging and testing. It should also be considered that the tools
can be re-used in future projects. However, engineering time spent on debugging is
always a loss of time and money.

Objective

Unfortunately, there is no standard definition of what features a CAN monitor,
CAN analyzer or CANopen configuration tool must have. As a result, there are
many different products on the market with similar names but very different
prices. It is not uncommon that a high-end tool costs ten times as much as a
low-end tool.

In this section we do not recommend or compare any specific tools. Instead, we
give the reader a list of functions that we found useful when using CAN moni-
tors and analyzers. The reader can use this list when drawing comparisons
between different commercial products.

241

Chapter 5: Underlying Technology: CAN

5.4.1 Functions Expected of a CAN Interface

5.4.1.1 Basic Functions

• Support a variety of CAN PC interfaces: ISA, PCI, PCMCIA/CardBus, “Don-
gle” for COM or LPT, USB and others

• 9-pin D-Sub male connector on CAN interface

• ISO-11898 compliant high-speed transceiver

• Support all CANopen bit rates: 1Mbps, 800kbps, 500kbps, 250kbps,
125kbps, 50kbps, 25kbps and 10kbps

5.4.1.2 Advanced Functions

• Able to use a variety of transceivers

• Support all CAN bit rates: from 1kbps to 1Mbps

• Support up to 100% busload on 1Mbps network

• Multiple CAN interfaces in one hardware

• Produce a high-resolution timestamp

• Able to generate Error Frames

5.4.2 Functions Expected of a CAN Monitor or Analyzer

5.4.2.1 Basic Functions

• Runs on all current Microsoft Windows operating systems

• Trace display (trace of all messages on the bus)

o Timestamp

o Chronological display or fixed position (new message with same ID
overwrites previous display)

• Transmission of CAN messages

o Multiple messages configurable

o Transmit on key pressed

o Transmit in reply to a specific message received

Embedded Networking with CAN and CANopen

242

5.4.2.2 Advanced Functions

• Symbolic display

o Replace identifiers with symbolic names

o Show single variables from CAN messages (for example display byte 2
and 3 of a CAN message as a word called “RPM”)

o Support higher-layer protocols such as CANopen (knows and displays
all the symbols known in CANopen)

o For CANopen support: recognizes EDS files, and can extract symbolic
information from EDS files

• Trace display

o High-resolution timestamp

o Fully support “symbolic display” as described above

• Graphical Display

o Draws graphs showing how variables change over time

• Transmission of CAN messages

o Transmit periodically (every X milliseconds)

o Allow the data to be changed with each message sent

o Simulate specific nodes (script or program controlled reactions)

• Logging: record and replay messages

• Scripting language, usable to simulate nodes that are physically not yet
available

243

Chapter 5: Underlying Technology: CAN

Figure 5.20 Screen Shot of Vector's CANalyzer with CANopen Option

5.4.3 Functions Expected of a CANopen Configuration Tool and Monitor

5.4.3.1 Basic Functions

• Runs on all current Microsoft Windows operating systems

• Send NMT message (start, stop nodes)

• Implements SDO write and read access

o Access any OD entry of any node on the network

o Support both expedited and segmented transfer

o Read/write from/to window or file

• CANopen-aware trace display

Embedded Networking with CAN and CANopen

244

• Transmission of PDO or other CAN messages

o Multiple messages configurable

o Transmit on key pressed

o Transmit in reply to a specific message received

5.4.3.2 Advanced Functions

• Network Scan (find and display all nodes found)

• Implements SDO write and read access

o Support of block transfer mode

• Supports EDS files (extracts symbol information)

• Entire Network Configuration (versus node-oriented configuration)

o Uses dynamic mapping and linking to make point-to-point connections

o Graphical representation of network (graphic display of each node
found)

• Can assume NMT and/or CANopen Manager functionality

o Produce SYNCs

o Monitor Heartbeats (or execute Node Guarding)

• Scripting language

245

 6 Implementing CANopen

“I love deadlines. I love the whooshing sound
they make as they fly by.”

“A common mistake that people make when trying to
design something completely foolproof is to

underestimate the ingenuity of complete fools.”

Douglas Adams

Objective

This chapter is for readers that need to develop and build a CANopen node. If
you are integrating a CANopen network consisting of off-the-shelf products,
you might want to skip this chapter.

When it comes to implementing CANopen, the “openness” of CANopen pro-
vides several benefits. However, there are also drawbacks involved.

In this chapter we show development engineers these benefits and drawbacks
while comparing and contrasting different implementation approaches.

Embedded Networking with CAN and CANopen

246

6.1 Communication Layout and Requirements

Before one can start to make decisions about how to implement specific nodes of a
CANopen network, it is essential to get an overview of the overall communication
requirements. A reasonable understanding about the amount of communication that
needs to be handled by individual nodes is required. This process also includes select-
ing the specific CANopen features that need to be implemented by each node. Are
they following a specific device profile? And if yes, do all features of the device profile
get implemented or can certain features be omitted?

To get a first impression of the required bandwidth, it is a good idea to start a table or
spreadsheet with the maximum number of nodes and a list of all the process data
variables that are produced by the nodes and transmitted in PDOs. For each process
data variable produced, the table should have one line with the following columns:
Node ID (or name), Name of the variable, data type and/or length of the variable and
worst case transmission frequency. The transmission frequency should be in millisec-

Making a decision on which of the available paths is the best for a specific
product is a multiple-step process. In general, you will need to:

• Generate an overall communication layout

• Define the CANopen features required for each node

• Evaluate which implementation method fits best

For latest hints on implementation options and code examples visit this book’s
companion website at

www.CANopenBook.com

Objective

The first steps in any embedded network design should be to gather as much
information as possible about the communication requirements. Only with that
information can we make an estimate about the required bandwidth and
response times.

247

Chapter 6: Implementing CANopen

onds. Typically it is the event time or inhibit time (whichever is smaller) to be used for
the message that contains this variable.

An example is given in Figure 6.1. The column Ovr shows the number of bits of a
PDO message that are not data bits, and the bps column indicates the bits per second.
The overhead cannot be determined exactly, due to the bit stuffing done by CAN.
However, 50 bits per message is an appropriate average for the purpose of getting an
overview. For node 4 the overhead is only added once since the three variables
Buttons_1 through Buttons_3 can all go into one PDO.

The formulas used are quite simple: “bps” is the total number of bits produced every
second:

The bandwidth used by an individual variable is:

Figure 6.1 Worksheet with Produced Process Variables

Having these values and formulas in a spreadsheet allows developers to quickly mod-
ify timing or speed values, or to add or remove variables and see what kind of impact
the changes would have on total bandwidth usage.

bps 1,000
Time (ms)
------------------------- Bytes 8 Ovr+×()×=

% of total bandwidth bps
bus speed (kbps)
--=

35.072%Total:

1.280%160501Buttons_34

1.280%160501Buttons_24

9.280%116050501Buttons_14

21.120%264050252RPM_13

2.112%264502502Temp_12

% of totalbpsOvrTime (ms)BytesVariableNode

kbps125Speed:Produced Variables

Embedded Networking with CAN and CANopen

248

The spreadsheet and several other examples can be downloaded from www.CANo-
penBook.com.

6.2 Comparison of Implementation Methods

When it comes to implementing CANopen nodes, there are three primary implemen-
tation options available:

• Develop both hardware and software from scratch

• Develop the hardware from scratch and develop the software using a com-
mercial CANopen stack (software library or source code)

• Design the hardware to use CANopen communication processors (periph-
eral chips or modules that implement CANopen)

How much bandwidth usage is acceptable?

Please note that the given formulas are only rough calculations and do not
account for all effects like bit stuffing or re-transmission of faulty messages. We
also did not yet include heartbeats, node guarding and other potential mes-
sages.

The bandwidth calculation method described here is good enough as long as
your total bandwidth usage stays below 80%. If your usage is beyond 80% you
should seriously consider choosing a higher bit rate for the CAN bus or reduc-
ing the amount of communication.

If neither are possible, you would need to do a more detailed analysis of your
worst case scenario. See publications such as [Lawrenz97] and [Etschberger01]
for more hints on bandwidth calculations.

Objective

In this section we introduce the major CANopen implementation options avail-
able and compare them with each other in regards to their individual benefits
and drawbacks.

249

Chapter 6: Implementing CANopen

None of the above can immediately be identified as the best method; the appropriate-
ness of each depends on the application requirements. For some applications, porta-
bility to different microcontroller platforms might be important in order to build a
variety of CANopen enabled products. Other applications might demand a certain
performance, or require that a specific microcontroller be used.

More hints on selecting the appropriate method are listed in Section 6.7.

6.2.1 Develop Hardware and Software from Scratch

Although this route might sound tempting for many engineers it has several pitfalls,
including the longest time for development, debug and test, as well as various “speci-
fication misinterpretation hazards.”

However, the biggest pitfall is the incompleteness of the CANopen specifications,
especially in regards to error behavior. On one hand, the specifications lack a detailed
description of error behavior. For example, which errors should a CANopen compli-
ant node report when a particular access sequence is wrongfully executed? On the
other hand, this error behavior is checked by the CANopen conformance test.

As a result, developing a fully CANopen compliant software protocol stack is far
more complex than a TCP/IP stack where good documentation and implementation
examples are readily available. Yet many developers would consider buying a com-
mercial TCP/IP stack implementation because they do not want to re-invent the
wheel. In comparison, developing a CANopen stack from scratch is like re-inventing
the wheel and the engine driving it. Before deciding on that path, engineers and man-
agers should carefully evaluate all options.

However, the picture is quite different if 100% CANopen conformance is not really
required. If all nodes of an application are designed and developed by the same engi-
neering team and are never sold as “CANopen compliant off-the-shelf” products it is
perfectly acceptable to deviate from the standard – indeed this is part of the openness
of CANopen. The typical approach is to design the in-house CANopen nodes in a way
that they have enough CANopen compliance to be able to communicate with other,
third party, fully compliant CANopen nodes even if they are not 100% CANopen
compliant themselves.

To assist engineers with the process of deciding if such an approach is feasible for
their application, the authors developed MicroCANopen. MicroCANopen is a mini-
mal CANopen implementation that can be downloaded for free from www.Micro-
CANopen.com. MicroCANopen is introduced in detail in Section 6.3.

Embedded Networking with CAN and CANopen

250

MicroCANopen has some clear limitations that are a direct result of making the
implementation “minimal” in terms of memory (both code and data) and CPU perfor-
mance required:

• Object Dictionary entries are limited to 32-bit, no larger entries supported

• Entire CANopen configuration is “static”: it is hard-coded and cannot
change during operation

• Not all PDO triggering methods are supported

• Only the newer heartbeat is supported, not the original node guarding

6.2.2 Using Commercial CANopen Software

A very common approach to developing CANopen nodes is to buy CANopen soft-
ware in the form of libraries or source code that implement CANopen. Such commer-
cial solutions are available for a wide variety of microcontrollers and microprocessors
from various companies. For a current listing of companies offering such products,
see www.canopen.org and www.canopen.us.

There are several benefits to using commercial CANopen software. The vendor typi-
cally guarantees CANopen conformance of their stack and the examples delivered
with the product. In addition, these codes are highly adaptable and portable, support-
ing a wide variety of microcontrollers.

Engineers using a commercial CANopen solution can get quick results on the CANo-
pen side of the project and can thus concentrate on the application side. Indeed, expe-
rienced engineers and consultants can create the prototype of a new CANopen node
within a week if it is based on a commercial software stack with which they are famil-
iar.

Like all CANopen implementation paths, the commercial CANopen software solu-
tions have some pitfalls, too. The primary development goal for most commercial
solutions is portability. The manufacturers want the code to be executable on the wid-
est variety of processors possible. That literally includes the high-end PC as well as
the low-end 8-bit microcontroller. Obviously there must be performance drawbacks
somewhere, as the price for portability is “software overhead” in the form of addi-
tional function interfaces or process queues.

Usually the 8-bit microcontrollers with both limited memory space and CPU perfor-
mance are the ones that do not get “optimal” support from commercial CANopen

251

Chapter 6: Implementing CANopen

software. Depending on the configuration, portable CANopen stacks for 8-bit micro-
controllers tend to require at least 12 kbytes to 48 kbytes of code and 500 to 1000 bytes
of RAM. However, this is more than some of the smallest microcontrollers with CAN
interface have available on-chip.

Besides using additional off-chip resources, the only solutions for such devices are
highly customized implementations that typically are less portable, but strongly opti-
mized towards the microcontroller used. There are several companies offering con-
sulting services specializing in such optimized CANopen implementations. On some
processor architectures the gain can be a factor of 2 or 3 – an optimized CANopen
implementation is about 2-3 times faster than the “generic portable” implementation
and requires only 1/3 to 1/2 of the memory.

6.2.3 Using CANopen Processors or Modules

Several companies offer CANopen chips, co-processors, modules or dongles that
implement the CANopen protocol “in hardware.” Typically the protocol is not han-
dled in hardware, but by a regular microcontroller that is pre-programmed with soft-
ware to handle the CANopen communication.

Usually there are two types of such CANopen implementations; one that is a stand-
alone CANopen I/O node by itself, and one that requires a host processor.

The first provides direct access to digital and analog inputs and outputs. One needs to
simply design the chip or module into the hardware and directly connect the inputs
and outputs to the chip or module. No further software development is required.
Obviously this is one of the fastest implementation methods available, as it com-
pletely skips the software development process.

The second type, where a host processor is required, is more of a CANopen periph-
eral or communication coprocessor. It provides a communication channel to the host
processor, like a serial interface or a shared, external memory area. The host processor
and the CANopen coprocessor primarily exchange process data variables. When and
how those are transmitted via CANopen is entirely handled by the coprocessor. This
keeps the software interface between host and coprocessor minimal, as only a few
commands need to be supported and the host does not need to know much about
CANopen other than how to identify process data variables.

In summary, the main benefit of these hardware solutions is the need for little or no
software development, resulting in the shortest development times.

Embedded Networking with CAN and CANopen

252

One of the drawbacks is the limited flexibility. Because the developer does not have
access to the code within the coprocessor, customized CANopen enhancements are
difficult or impossible to implement. An application would need to stick with the
exact features provided by the chip or module.

In addition, all “common sense hardware purchasing guidelines” apply: What’s the
cost and availability of the parts in the volumes required? What kind of long-term
supply guarantees are there?

6.3 Simple Do-It-Yourself Implementation:
MicroCANopen

“Beware of bugs in the above code; I have only
proved it correct, not tried it.”

Donald Knuth

MicroCANopen was introduced by the Embedded Systems Academy as an “entry-
level” alternative to CANopen for deeply embedded applications with limited
resources. Code and data sizes required depend on the microcontroller used and
functionality desired. On an 8051 with on-chip CAN interface MicroCANopen
requires as little as 4 kbytes of code and some 200 bytes of RAM, compared to the 50+
kbytes of code and 1 kbyte of RAM for some “full-featured” CANopen implementa-
tions. The small size of MicroCANopen makes it especially suitable for some of the
smallest CAN microcontrollers around, such as the Philips LPC99x microcontroller

Objective

For those engineers that are not yet ready to make the step towards a full-
grown, higher-layer CANopen implementation, “MicroCANopen” might be
an alternative. MicroCANopen is not an existing standard, just a concept
which suggests that rather than shooting for full CANopen compliance it
might be better to just adapt the basic ideas of CANopen to your own network
layout to get a quick start. If the design requires more complex CANopen fea-
tures (or full compliance) in the future, the system would not need to be re-
invented, since the communication basics are already in place and compatible.

253

Chapter 6: Implementing CANopen

family. Table 6.1 shows a feature comparison between MicroCANopen and CANo-
pen. Code examples for MicroCANopen are available at www.MicroCANopen.com.

CANopen MicroCANopen

CAN bit rates (in kbps) 10, 20, 50, 125, 250, 500,
800, 1000

10, 20, 50, 125, 250, 500,
800, 1000

Max. nodes per segment 127 127

Network Management

Originally designed to
use a Master or Man-
ager, but can operate
without

Originally designed to oper-
ate without a Master or
Manager, but can use one

Node guarding / heartbeat
Node guarding done by
master or heartbeat mon-
itoring by any node

All nodes produce heart-
beat, can be monitored by
communication partners

Configuration of nodes
Nodes can typically be
configured via the net-
work

Nodes are pre-configured,
configuration cannot
change during operation

Object Dictionary:
ID entries

Available, optional with
ASCII string Available, 32-bit IDs only

Object Dictionary:
Process data variables

Available, often with mul-
tiple access (8/16 bit)

Not available in OD, only in
process data messages

Object Dictionary:
Process data configuration Available Not available

Object Dictionary:
Support of long variables

Supports variables and
data fields of any length

A single OD entry may not
be longer than 4 bytes

Mapping of multiple vari-
ables into one CAN mes-
sage

Supports dynamic re-
mapping of variables into
CAN messages

One fixed, pre-configured
mapping

Triggering methods of
CAN messages with pro-
cess data

Any combination of time-
based, polled, change-of-
state, synchronized or
manufacturer specific;
Inhibit time supported

Time-based and/or change-
of-state only; Inhibit time
supported

Table 6.1 Comparison of CANopen and MicroCANopen

Embedded Networking with CAN and CANopen

254

6.3.1 Basic Concepts of MicroCANopen

To be able to implement a minimal CANopen-like system, a few basics and limitations
need to be addressed. Please note that some of these are not limitations of CANopen,
but limitations necessary to achieve this “minimal” version of CANopen.

6.3.1.1 Bit Rate/Bit Timing

All network nodes start up with the same CAN bus bit rate. The bit rate used in one
system/application may be 10 kbps, 20 kbps, 50 kbps, 125 kbps, 250 kbps, 500 kbps,
800 kbps or 1 Mbps.

6.3.1.2 Node ID

Each network node has a unique Node ID, and this ID is in the range of 1 to 127,
allowing for a total of 127 nodes in the system. This ID must be assigned and known
to the node before it gets onto the live network.

6.3.1.3 Byte Ordering

In multi-byte variables the bytes are ordered by significance, the lowest significant
byte coming first.

6.3.1.4 Process Variables

Any single variable shared via the network is 1, 2, 3 or 4 bytes in length. Note that as in
CANopen, multiple variables can go into a single CAN message. For ease of use,
MicroCANopen supports a process image where all process variables communicated
via the network are stored in one array of bytes.

6.3.1.5 Network Management Master (NMT)

A typical CANopen network would expect the presence of a CANopen NMT Master
to actually start and monitor the nodes. In deeply embedded applications where all
nodes are pre-configured and know what they need to do, a master might not be
required.

Beginning with DSP302 Version 3.21 [CiADSP302], CANopen provides a standard-
ized method of operating without a master by allowing the slave nodes to start auton-
omously. In MicroCANopen it is assumed that this is the default operation mode:
there is no master present and that all nodes automatically startup after power-up.

255

Chapter 6: Implementing CANopen

6.3.2 Functionality of a Single MicroCANopen Node

Each MicroCANopen node implements a minimal CANopen Object Dictionary. The
Object Dictionary (OD) of a regular CANopen implementation holds all process vari-
ables that a node needs to receive or transmit. Each entry implemented has a unique
16-bit Index and 8-bit Subindex value that identifies one process variable in this CAN-
open node. Note: This is different from the CAN ID, which identifies a unique mes-
sage on the bus.

In MicroCANopen, only the OD entries listed in Table 6.2 are implemented. The pro-
cess data variables are not implemented in the OD, they are only available via the pro-
cess data messages listed in Table 6.3 and Table 6.4.

The main functionality of any CANopen implementation is to receive and transmit
messages. MicroCANopen nodes produce and consume the following CAN mes-
sages:

• Upon startup, a MicroCANopen node transmits a boot-up message and
continues to regularly transmit a heartbeat message in the specified heart-
beat time interval. Other nodes can take this as an indication about the cur-
rent status of this MicroCANopen node.

• Read accesses to the Object Dictionary are accepted and replied to. This
allows standardized CANopen configuration tools or Network Manage-
ment Masters to recognize a MicroCANopen node.

Index Subindex Description
1000h 0 32-bit Device Type, typically set to represent generic I/O

1001h 0 8-bit Error Register

1018h 0 8-bit entry of 4 – number of Subindexes in this record

1018h 1 32-bit Vendor ID

1018h 2 32-bit Product Code

1018h 3 32-bit Revision Number

1018h 4 32-bit Serial Number (optional)

Table 6.2 CANopen Object Dictionary Entries Implemented by
MicroCANopen

Embedded Networking with CAN and CANopen

256

• Up to 4 separate transmit messages with process data can be triggered indi-
vidually by a timer (every x milliseconds) or automatically by a detected
change-of-state (COS) in the data to be transmitted.

• Up to 4 separate receive messages with process data can be received.

6.3.3 Assigning CAN Message Identifiers

MicroCANopen and CANopen both use CAN base frames (11-bit identifier field). The
CAN message identifiers used in the system are assigned in accordance with the
CANopen pre-defined connection set, which embeds the Node ID number into the
identifier field. For transmitting data a MicroCANopen node uses the CAN IDs speci-
fied in Table 6.3. As an example, the node with ID 3 uses CAN ID 703h to transmit the
boot-up message.

Table 6.4 shows the CAN IDs a MicroCANopen node listens for. The entries marked
with “*” can be customized to ensure that a node directly listens to the process data
message it needs to receive. So if we want the RPDO2 of node number 5 to directly
consume TPDO1 of node number 8, the CAN ID listened to would need to be changed
from 305h (default receive ID for RPDO2 of node 5) to 188h (transmit ID for TPDO1 of
node 8).

CAN ID Used for transmitting
080h + Node ID Emergency Message (optional)

180h + Node ID Transmit Process Data Message 1 (TPDO1)

280h + Node ID Transmit Process Data Message 2 (TPDO2)

380h + Node ID Transmit Process Data Message 3 (TPDO3)

480h + Node ID Transmit Process Data Message 4 (TPDO4)

580h + Node ID Service Data Response (SDO tx)

700h + Node ID Boot-up message and heartbeat

Table 6.3 CAN Identifiers for Transmitting Data

257

Chapter 6: Implementing CANopen

A CANopen Network Management Master or generic configuration tool can access a
single node by using the appropriate SDO “channel.” A channel consists of two mes-
sages, one used for the SDO request from the configuration tool to the node and one
used for the SDO response from the node back to the requester. Thus to access node
number 3, a configuration tool would use CAN ID 603h and would expect a response
coming back using CAN ID 583h.

Figure 6.2 shows a screenshot of a trace window with CANopen messages. The trace
recoding was made with Vector’s CANalyzer and shows the power-up cycle of a
MicroCANopen node with the node ID 3. After transmitting the boot-up message,
node 3 starts transmitting its heartbeat about every 2.5 seconds. Using a CANopen
configuration tool such as Vector’s CANsetter (see Figure 6.3) a read request is made
to the Object Dictionary entry at Index 1018h, Subindex 1. That location contains the
Vendor ID, in this case 00455341h.

After receipt of the NMT Master message “Start Node” the MicroCANopen node
starts transmitting the process data messages with the CAN IDs 183h and 283h.

CAN ID Used for receiving
000h Network Management Master Message (NMT)

* 200h + Node ID Receive Process Data Message 1 (RPDO1)

* 300h + Node ID Receive Process Data Message 2 (RPDO2)

* 400h + Node ID Receive Process Data Message 3 (RPDO3)

* 500h + Node ID Receive Process Data Message 4 (RPDO4)

600h + Node ID Service Data Request (SDO rx)

Table 6.4 CAN Idenifiers for Receiving Data

Embedded Networking with CAN and CANopen

258

Figure 6.2 Vector CANalyzer Trace Recording of Power-up Cycle

Figure 6.3 Reading Object Dictionary Entry [1018h,01h] (Vendor ID) from Node 3

6.3.4 Message Contents

Now that the CAN identifiers are assigned, it is time to examine the required message
contents. The process data messages (PDOs or Process Data Objects), are the easiest.

259

Chapter 6: Implementing CANopen

They may simply be filled with one or more variables (as mentioned before, only use
1, 2, 3 or 4 byte variables and ensure the byte ordering for multiple byte variables).
Figure 6.4 illustrates an example of how the 8 bytes of a CAN message could be used
in a PDO; bytes 1 and 2 contain the 8-bit variables A and B. Bytes 3 and 4 are used for
the 16-bit variable C and bytes 5 and 6 are used for variable D. Bytes 7 and 8 remain
unused and are not transmitted.

Figure 6.4 Example for PDO Mapping of Variables

6.3.5 Message Triggering

In CANopen there are several conditions that can trigger the transmission of a mes-
sage. For a minimal implementation we will focus on the following triggering meth-
ods:

6.3.5.1 Boot-up and Heartbeat Message

As soon as the internal initialization is completed, MicroCANopen nodes transmit
their boot-up message. If the node is configured to auto-start, it is followed by a con-
tinuous heartbeat. The heartbeat frequency is configurable and is typically in the area
of hundreds to thousands of milliseconds, depending on application requirements.
The timer resolution is a multiple of milliseconds.

6.3.5.2 Service Data

A master or configuration tool initiates any SDO communication. The MicroCANo-
pen nodes may not trigger SDO communication by themselves, only in response to a
request. Any SDO request directed at a node requires a response, which can either be
the correct SDO response or an appropriate abort message.

6.3.5.3 Process Data

CANopen supports several triggering mechanisms for PDO messages containing the
process data. Of the available mechanisms MicroCANopen nodes support event timer
transmission and event change (COS, or change-of-state) transmission. In event timer
mode a PDO is transmitted every n milliseconds. In event change mode the PDO is

B
Byte 2

CAN-ID
C D

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

UnusedA
Byte 1

Embedded Networking with CAN and CANopen

260

transmitted whenever a change-of-state is detected in any of the data to be transmit-
ted.

To avoid situations where frequently changing data continuously triggers messages,
the MicroCANopen nodes support the “inhibit time” feature of CANopen. This timer
prohibits event change PDOs from being transmitted back-to-back. With each trans-
mit an “inhibit timer” is started and the next transmission will not occur until the
timer expires.

6.3.6 Implementing MicroCANopen

In MicroCANopen there are two software communication interfaces to deal with. To
the bottom, an interface to a CAN driver is needed that provides some minimal func-
tionality to receive and transmit CAN messages. To the top, a user's interface for the
application is needed.

6.3.6.1 The MicroCANopen hardware driver interface

Portability to different microcontrollers is not easy to achieve due to the major differ-
ences in the implementations of CAN controllers. For this implementation we simply
assume that the drivers are taking care of all real-time issues including the CAN inter-
rupt service routine and providing both a receive and a transmit queue. In order to
avoid making the CANopen communication a high priority within the embedded
system, MicroCANopen is implemented as a background task that can be called
within the main while(1) loop.

Listing 6.1 shows the "mcohw.h" file specifying the driver functions required by
MicroCANopen. The first functions are needed for initialization of the hardware. In
addition, the driver must implement some sort of receive and transmit queue for mes-
sages. These queues are accessed by the “PullMessage” and “PushMessage” func-
tions.

/**

MODULE: MCOHW

CONTAINS: Hardware driver specification for MicroCANopen implementation

 The specific implementations are named mcohwXXX.c, where

 XXX represents the CAN hardware used.

COPYRIGHT: Embedded Systems Academy, Inc. 2002.

 All rights reserved. www.microcanopen.com

 This software was written in accordance to the guidelines at

 www.esacademy.com/software/softwarestyleguide.pdf

DISCLAIM: Read and understand our disclaimer before using this code!

 www.esacademy.com/disclaim.htm

261

Chapter 6: Implementing CANopen

LICENSE: Users that have purchased a license for PCANopenMagic

 (www.esacademy.com/software/pcanopenmagic)

 may use this code in commercial projects.

 Otherwise only educational use is acceptable.

VERSION: 1.00, Pf/Aa/Ck 07-OCT-02

HISTORY: 1.00, Pf 07-OCT-02, First Published Version

Implementation recommendations:

1.) CAN interrupt

The CAN interrupt should check all the possible error flags and set the

global variable gMCOHW_status accordingly. Fatal errors must result in

a call to MCOUSER_FatalError with an error code in the range of 0x8000

to 0x87FF.

If a transmit queue is implemented, the transmit interrupt should be used

to trigger transmission of the next message in the transmit queue.

On "Basic CAN" controllers the receive interrupt copies the incoming message

into a receive queue. CAN controllers with "Full CAN" style capabilities

or internal receive queue might not need to maintain a software queue.

In case a hardware queue or buffers are used, the interrupt should still

check for a potential overrun and set bit RXOR in gMCOHW_status in case

of an overrun.

2.) Timer interrupt

A 1ms timer interrupt needs to implement a local 1ms WORD timer tick.

The timer tick is only accessible via the functions MCOHW_GetTime and

MCOHW_IsTimeExpired to avoid data inconsistency.

In case only a multiple of 1ms is available on a system, the timer tick

would need to be incremented in each interrupt in a way that the timer

tick is still accurate (for example increment by 4 all 4ms).

***/

#include "mco.h"

// Status bits for function MCOHW_GetStatus

#define INIT 0x01

#define CERR 0x02

#define ERPA 0x04

#define RXOR 0x08

#define TXOR 0x10

#define BOFF 0x80

/**

DOES: This function returns the global status variable.

CHANGES: The status can be changed anytime by this module, for example from

 within an interrupt service routine or by any of the other

Embedded Networking with CAN and CANopen

262

 functions in this module.

BITS: 0: INIT - set to 1 after a completed initialization

 left 0 if not yet inited or init failed

 1: CERR - set to 1 if a CAN bit or frame error occurred

 2: ERPA - set to 1 if a CAN "error passive" occurred

 3: RXOR - set to 1 if a receive queue overrun occurred

 4: TXOR - set to 1 if a transmit queue overrun occurred

 5: Reserved

 6: Reserved

 7: BOFF - set to 1 if a CAN "bus off" error occurred

**/

BYTE MCOHW_GetStatus

 (

 void

);

/**

DOES: This function implements the initialization of the CAN interface.

RETURNS: 1 if init is completed

 0 if init failed, bit INIT of MCOHW_GetStatus stays 0

**/

BYTE MCOHW_Init

 (

 WORD BaudRate // Allowed values: 1000, 800, 500, 250, 125, 50, 25, 10

);

/**

DOES: This function implements the initialization of a CAN ID hardware

 filter as supported by many CAN controllers.

RETURNS: 1 if filter was set

 2 if this HW does not support filters

 (in this case HW will receive EVERY CAN message)

 0 if no more filter is available

**/

BYTE MCOHW_SetCANFilter

 (

 WORD CANID // CAN-ID to be received by filter

);

/**

DOES: This function implements a CAN transmit queue. With each

 function call is added to the queue.

RETURNS: 1 Message was added to the transmit queue

 0 If queue is full, message was not added,

 bit TXOR in MCOHW_GetStatus set

NOTES: The MicroCANopen stack will not try to add messages to the queue

 "back-to-back". With each call to MCO_ProcessStack, a maximum

 of one message is added to the queue. For many applications

 a queue with length "1" will be sufficient. Only applications

 with a high busload or very slow bus speed might need a queue

263

Chapter 6: Implementing CANopen

 of length "3" or more.

**/

BYTE MCOHW_PushMessage

 (

 CAN_MSG *pTransmitBuf // Data structure with message to be send

);

/**

DOES: This function implements a CAN receive queue. With each

 function call a message is pulled from the queue.

RETURNS: 1 Message was pulled from receive queue

 0 Queue empty, no message received

NOTES: Implementation of this function greatly varies with CAN

 controller used. In an SJA1000 style controller, the hardware

 queue inside the controller can be used as the queue. Controllers

 with just one receive buffer need a bigger software queue.

 "Full CAN" style controllers might just implement multiple

 message objects, one each for each ID received (using function

 MCOHW_SetCANFilter).

**/

BYTE MCOHW_PullMessage

 (

 CAN_MSG *pTransmitBuf // Data structure with message received

);

/**

DOES: This function reads a 1 millisecond timer tick. The timer tick

 must be a WORD and must be incremented once per millisecond.

RETURNS: 1 millisecond timer tick

NOTES: Data consistency must be insured by this implementation.

 (On 8-bit systems, disable the timer interrupt incrementing

 the timer tick while executing this function)

 Systems that cannot provide a 1ms tick may consider incrementing

 the timer tick only once every "x" ms, if the increment is by "x".

**/

WORD MCOHW_GetTime

 (

 void

);

/**

DOES: This function compares a WORD timestamp to the internal timer tick

 and returns 1 if the timestamp expired/passed.

RETURNS: 1 if timestamp expired/passed

 0 if timestamp is not yet reached

NOTES: The maximum timer runtime measurable is 0x8000 (about 32 seconds).

 For the usage in MicroCANopen that is sufficient.

**/

BYTE MCOHW_IsTimeExpired

 (

Embedded Networking with CAN and CANopen

264

 WORD timestamp // Timestamp to be checked for expiration

);

/**

// Recommended implementation for this function (8051 version):

{

WORD time_now;

 EA = 0; // Disable Interrupts

 time_now = gTimCnt;

 EA = 1; // Enable Interrupts

 timestamp++; // To ensure the minimum runtime

 if (time_now > timestamp)

 {

 if ((time_now - timestamp) < 0x8000)

 return 1;

 else

 return 0;

 }

 else

 {

 if ((timestamp - time_now) > 0x8000)

 return 1;

 else

 return 0;

 }

}

Listing 6.1 Driver Functions Required by MicroCANopen

6.3.6.2 The MicroCANopen user interface

Listing 6.2 shows parts of the "mco.h" file which specifies the functions provided for
the application interface. The function “ProcessStack” must be called frequently as a
background task (for instance calling it from the while(1) loop in main). The only mes-
sages made transparent to the application are those with process data. All service
messages are handled within “ProcessStack” without additional interfacing to the
application. The “ReceivedPDO” function is a call-back function, which means it must
be implemented by the user/application. It gets called from within the stack whenever
new process data arrives. The default is that this function is called from within “Pro-
cessStack” – meaning that there is an unpredictable delay from the time a message
arrives until this function actually gets called. Experienced users facing tougher real-
time requirements can modify the code and call this function from within the inter-
rupt service routine (ISR) receiving the CAN messages. However, in this case it must
be ensured that the code executed within the callback function is absolutely minimal,
as it will add to the execution time of the ISR.

265

Chapter 6: Implementing CANopen

/**

MODULE: MCO

CONTAINS: MicroCANopen implementation

COPYRIGHT: Embedded Systems Academy, Inc. 2002-2003.

 All rights reserved. www.microcanopen.com

 This software was written in accordance to the guidelines at

 www.esacademy.com/software/softwarestyleguide.pdf

DISCLAIM: Read and understand our disclaimer before using this code!

 www.esacademy.com/disclaim.htm

LICENSE: Users that have purchased a license for PCANopenMagic

 (www.esacademy.com/software/pcanopenmagic)

 may use this code in commercial projects.

 Otherwise only educational use is acceptable.

VERSION: 1.20, Pf/Aa/Ck 19-AUG-03

HISTORY: 1.20, Pf 19-AUG-03, Code changed to use process image

 1.10, Pf 27-MAY-03, Bug fixes in OD (hi byte was corrupted)

 OD changed to indefinite length

 Support of define controled MEMORY types

 1.01, Pf 17-DEC-02, Made Object Dictionary more readable

 1.00, Pf 07-OCT-02, First Published Version

***/

/**

GLOBAL TYPE DEFINITIONS

**/

// Standard data types

#define BYTE unsigned char

#define WORD unsigned int

#define DWORD unsigned long

// Boolean expressions

#define BOOLEAN unsigned char

#define TRUE 0xFF

#define FALSE 0

// Data structure for a single CAN message

typedef struct

{

 WORD ID; // Message Identifier

 BYTE LEN; // Data length (0-8)

 BYTE BUF[8]; // Data buffer

} CAN_MSG;

// This structure holds all node specific configuration

typedef struct

{

Embedded Networking with CAN and CANopen

266

 BYTE Node_ID; // Current Node ID (1-126)

 BYTE error_code; // Bits: 0=RxQueue 1=TxQueue 3=CAN

 WORD Baudrate; // Current Baud rate in kbps

 WORD heartbeat_time; // Heartbeat time in ms

 WORD heartbeat_timestamp; // Timestamp of last heartbeat

 CAN_MSG heartbeat_msg; // Heartbeat message contents

 BYTE error_register; // Error regiter for OD entry [1001,00]

} MCO_CONFIG;

// This structure holds all the TPDO configuration data for one TPDO

typedef struct

{

#ifdef USE_EVENT_TIME

 WORD event_time; // Event timer in ms (0 for COS only operation)

 WORD event_timestamp; // If event timer is used, this is the

 // timestamp for the next transmission

#endif

#ifdef USE_INHIBIT_TIME

 WORD inhibit_time; // Inhibit timer in ms (0 if COS not used)

 WORD inhibit_timestamp; // If inhibit timer is used, this is the

 // timestamp for the next transmission

 BYTE inhibit_status; // 0: Inhibit timer not started or expired

 // 1: Inhibit timer started

 // 2: Transmit msg waiting for expiration of inhibit

#endif

 BYTE offset; // Address of data in process image

 CAN_MSG CAN; // Current/last CAN message to be transmitted

} TPDO_CONFIG;

// This structure holds all the RPDO configuration data for one RPDO

typedef struct

{

 WORD CANID; // Message Identifier

 BYTE LEN; // Data length (0-8)

 BYTE offset; // Address of data in process image

} RPDO_CONFIG;

/**

GLOBAL FUNCTIONS

**/

/**

DOES: This function initializes the CANopen protocol stack.

 It must be called from within MCOUSER_ResetApplication.

**/

void MCO_Init

 (

 WORD Baudrate, // CAN baudrate in kbps(1000,800,500,250,125,50,25 or 10)

 BYTE Node_ID, // CANopen node ID (1-126)

 WORD Heartbeat // Heartbeat time in ms (0 for none)

267

Chapter 6: Implementing CANopen

);

/**

DOES: This function initializes a transmit PDO. Once initialized, the

 MicroCANopen stack automatically handles transmitting the PDO.

 The application can directly change the data at any time.

NOTE: For data consistency, the application should not write to the data

 while function MCO_ProcessStack executes.

**/

void MCO_InitTPDO

 (

 BYTE PDO_NR, // TPDO number (1-4)

 WORD CAN_ID, // CAN identifier to be used (set to 0 to use default)

 WORD event_tim, // Transmitted every event_tim ms

 // (set to 0 if ONLY inhibit_tim should be used)

 WORD inhibit_tim,// Inhibit time in ms for change-of-state transmit

 // (set to 0 if ONLY event_tim should be used)

 BYTE len, // Number of data bytes in TPDO

 BYTE offset // Offset to data location in process image

);

/**

DOES: This function initializes a receive PDO. Once initialized, the

 MicroCANopen stack automatically updates the data at offset.

NOTE: For data consistency, the application should not read the data

 while function MCO_ProcessStack executes.

**/

void MCO_InitRPDO

 (

 BYTE PDO_NR, // RPDO number (1-4)

 WORD CAN_ID, // CAN identifier to be used (set to 0 to use default)

 BYTE len, // Number of data bytes in RPDO

 BYTE offset // Offset to data location in process image

);

/**

DOES: This function implements the main MicroCANopen protocol stack.

 It must be called frequently to ensure proper operation of the

 communication stack.

 Typically it is called from the while(1) loop in main.

**/

BYTE MCO_ProcessStack

 (// Returns 0 if nothing needed to be done

 // Returns 1 if a CAN message was received or sent

 void

);

/**

USER CALL-BACK FUNCTIONS

These must be implemented by the application.

**/

Embedded Networking with CAN and CANopen

268

/**

DOES: This function resets the application. It is called from within the

 CANopen protocol stack, if a NMT master message was received that

 demanded "Reset Application".

**/

void MCOUSER_ResetApplication

 (

 void

);

/**

DOES: This function both resets and initializes both the CAN interface

 and the CANopen protocol stack. It is called from within the

 CANopen protocol stack, if a NMT master message was received that

 demanded "Reset Communication".

 This function should call MCO_Init and MCO_InitTPDO/MCO_InitRPDO.

**/

void MCOUSER_ResetCommunication

 (

 void

);

/**

DOES: This function is called if a fatal error occurred.

 Error codes of mcohwxxx.c are in the range of 0x8000 to 0x87FF.

 Error codes of mco.c are in the range of 0x8800 to 0x8FFF.

 All other error codes may be used by the application.

**/

void MCOUSER_FatalError

 (

 WORD ErrCode // To debug, search source code for the ErrCode encountered

);

Listing 6.2 Application Interface Functions Provided by MicroCANopen

6.3.6.3 Debugging and Testing

Several tools are available for debugging and testing CANopen nodes. Besides moni-
tor and analysis tools, CANopen-specific tools to maintain and access the Object Dic-
tionary are very helpful. Figure 6.5 shows Vector’s CANeds, an editor for CANopen
electronic data sheets and device configuration files (EDS, DCF). These files specify
which OD entries are implemented by a particular node. Configuration tools, analysis
tools or NMT Master implementations can use this information to directly access the
OD entries of that particular node.

269

Chapter 6: Implementing CANopen

Figure 6.5 Vector’s CANeds Editor for the Generation of Electronic Data Sheets

6.3.7 Summary: What Does it Do?

The communication methods implemented in MicroCANopen allow the sharing of
process data among several CAN nodes in a CANopen-style manner. Data can be
transmitted with a pre-set frequency (every n milliseconds) or on COS (change-of-
state). MicroCANopen is sufficiently CANopen compatible that regular CANopen
configuration tools, monitors/analyzers and master implementations such as those
available from Vector CANtech can be used with it.

Listing 6.3 shows an example of the main function implementing a MicroCANopen
node, in this case a temperature sensor with some digital outputs. The CAN bit rate is
125 kbps, the Node ID is 3, the heartbeat time is 2.5 seconds and the temperature
value is transmitted every 500 milliseconds.

The process data is organized in a process image, the variable gProcImg, an array of
bytes. The offset VAR_temp and VAR_digiout are defined to provide symbolic access
to the offsets.

// Process Image to hold all process data, in total room for 16 bytes

BYTE gProcImg[16];

#define VAR_temp 0 // offset for temperature variable

Embedded Networking with CAN and CANopen

270

#define VAR_digout 2 // offset for a digital output

void main (void)

{

 InitIO();

 // 125kbps, Node ID 3, 2.5s heartbeat

 MCO_Init(125,3,2500);

 // TPDO1, default CAN ID, 500ms timer, no inhibit, 2 bytes of data

 MCO_InitTPDO(1,0,500,0,2,VAR_temp);

 // RPDO1, default CAN ID, 1 byte of data

 MCO_InitRPDO(1,0,1,VAR_digout);

 EA = 1; // End of initialization, Enable all interrupts

 while(1)

 {

 MCO_ProcessStack();

 // Process the data

 gProcImg[VAR_temp+1] = GetHiByteFromADConverter();

 gProcImg[VAR_temp] = GetLoByteFromADConverter();

 ApplyDigitalOutput(gProcImg[VAR_digout]);

 } // end of while(1)

}

Listing 6.3 Implementing a Temperature Sensor with MicroCANopen

6.3.8 Flow Charts for the Main Function Blocks

The following five flow charts illustrate how the MicroCANopen implementation
operates. Some of the charts are broken into two parts for readability. Larger copies of
all the flowcharts are available at www.CANopenBook.com. The main function exe-
cuted is illustrated in Flow Chart 6.1. After checking whether this is the first time the
function is called, it polls the next receive message from the driver. If a message was
received and it is an NMT Master message, an RPDO message or an SDO request, the
associated code sections get executed - see Flow Chart 6.2, Flow Chart 6.3 and Flow
Chart 6.4.

If no message was received or the message received was not for the local node to han-
dle, ProcessStack continues with potential transmissions that are due. First, the TPDO
transmissions are checked (Flow Chart 6.5). If no TPDO transmission is due, the heart-
beat producer time is verified. If it is expired, a heartbeat message is generated.

271

Chapter 6: Implementing CANopen

Flow Chart 6.1 Process Stack (Continued Next Page)

First time start-up settings
Transmit boot message and

Set NMT State

Return

true

false
Check if this is right after

boot-up
Do we run this after

MCO_Init?

Return

true

falseIs it NMT master message?

Handle SDO Request

Return

true

falseCheck if it is SDO request
message

Handle RPDO

true

falseCheck if it is RPDO message
Is node in operational mode?

true

falseWork on next incoming
Messages: Was a

Message received?

MCO_ProcessStack

Return

Handle NMT Message

Handle other cases

Embedded Networking with CAN and CANopen

272

Flow Chart 6.1 Process Stack (Continued)

Handle TPDO Transmit

Return

true

falseCheck Next TPDO for transmit
Is node in operational mode?

Transmit Heartbeat
Reset heartbeat timestamp

Set return value to 1

true

falseHas heartbeat time already
expired?

true

falseProduce heartbeat
Is heartbeat time >0?

Return

Handle other cases

273

Chapter 6: Implementing CANopen

Flow Chart 6.2 Handle NMT Message

Start node

break

Stop node

break

Enter pre-operational mode

break

Reset node

break

Reset communication

break

default

break

Examine NMT Command

Return

true

falseIs NMT message for this node
or not?

Handle NMT Message

Embedded Networking with CAN and CANopen

274

Upon reception of an NMT message the current state of the node must be switched
according to the command received.

Flow Chart 6.3 Handle RPDO Message

When handling a Receive PDO, MicroCANopen runs through a loop checking all con-
figured RPDOs to see if the identifier of the message received matches any of the iden-
tifiers used for the RPDOs. If a match is found, the data received is copied to the
appropriate process variable.

Handling an SDO Request is simplified to the point where only two OD entries are
treated directly: [1001h,00h] the Error Register and [1017h,00h] Producer Heartbeat
Time. For all other entries it is assumed that they are constant read-only values com-
ing from the lookup table, accessed by function Search_OD().

Handle RPDO Message

Set index to 0

Copy the received RPDO data
into RPDO process variable

Set index to number of RPDOs

true

falseDoes message identifier
match with this RPDO?

Increment index

true

falseWhile index smaller than
number of RPDOs

Return

Return

275

Chapter 6: Implementing CANopen

Flow Chart 6.4 Handle SDO Request (Continued Next Page)

Get SDO command
Get index and subindex
Copy Multiplexor into

response message

Look for index, subindex in
Object Dictionary
->Search_OD()

Copy response from SDO
response table

Return

true

false Read command?

true

falseOD entry found

true

falseRead or write command?

Handle SDO Request
Handle an incoming SDO request

And send response

Abort with UNSUPPORTED
COMMAND ERROR

true

falseThis is NOT the “Abort
Received” message?

Return

Send SDO Abort Error

Return

Check Special OD Entries

Embedded Networking with CAN and CANopen

276

Flow Chart 6.4 Handle SDO Request (Continued)

Copy heartbeat time into
response message and send

Return

Copy error register into
response message and send

true

false Read command?

true

falseAre we accessing the
Error Register
[1001,00]?

Return

true

falseRead command?

Write new heartbeat time
And send response message

Return

true

false Expedited write command
with 2-bytes of data?

true

falseAccess to [1017,00] -
heartbeat time?

Send SDO Abort Error

Return

Check Special OD Entries
Error Register and Heartbeat

277

Chapter 6: Implementing CANopen

Flow Chart 6.5 Handle TPDO Transmit (Continued Next Page)

Handle TPDO Transmit

Select next TPDO to handle

Get TPDO process data

Transmit this TPDO

Return

true

false(if USE_EVENT_TIME): Does
this TPDO use the event

timer and has it expired?

true

falseIs this TPDO enabled?
TPDO <> 0?

Return

true

false(if USE_INHIBIT_TIME): Does
this TPDO use the inhibit

timer?

Inhibit Time Processing

Embedded Networking with CAN and CANopen

278

Flow Chart 6.5 Handle TPDO Transmit (Continued)

Only one TPDO per call to ProcessStack is checked for transmission. This is done to
avoid bursts of back-to-back TPDOs that may be due for transmission. When using an
Event Time (TPDO is transmitted every X milliseconds), the handling of the TPDO is
simple. If the time is expired, re-set the timer and transmit the TPDO. However, if
change-of-state detection is used with an Inhibit Time, the first step is to check if the
TPDO is already due for transmission and is just waiting for the Inhibit Time to
expire. If that is not the case, the last transmitted data needs to be compared with the
current data (trying to detect a change-of-state). If the data changed, it needs to be
copied to the transmit buffer. However, it can only be transmitted if the Inhibit Time
has already expired – otherwise transmission needs to wait. The Inhibit Time is reset
with every transmission of the TPDO.

Transmit this TPDO

true

falseDid inhibit time expire?

Application data changed!
Copy application data

Transmit this TPDO

Return

true

falseDid inhibit time already
expire?

Inhibit time not expired - next

true

falseCOS transmission type
Has application data changed?

true falseIs new transmit message
already waiting?

Return

Inhibit Time Processing

279

Chapter 6: Implementing CANopen

6.4 Using CANopen Hardware Modules or Chips

One of the fastest ways to design and implement a CANopen node is to use existing
CANopen hardware in the form of CANopen chips or modules. What all these solu-
tions have in common is that the CANopen protocol stack is pre-programmed into a
microcontroller which can be incorporated into a hardware design either directly or in
the form of a module (daughter-board). Typically at least two operation modes are
supported: some sort of “stand-alone” operation and a “communication co-proces-
sor” operating mode.

6.4.1 Stand-Alone Operation

In stand-alone operation a CANopen hardware solution directly implements a spe-
cific Device Profile and provides the inputs and outputs required for a particular
application. This allows the chip to be used for this particular application without the
requirement of an additional microcontroller. A simple example would be that of a
Generic I/O node, where the CANopen chip or module directly provides the digital
and analog inputs and outputs on pins of the chip or module. Figure 6.6 shows how
Philips’ CANopenIA solution works in the stand-alone mode. It provides a total of 20
digital signals (configurable in groups of 4 bits to be used either as inputs or outputs).
Analog signals are provided using external D/A or A/D chips with SPI interface.

Objective

This section explains how CANopen modules or chips can be used to develop
a CANopen node. It also discusses the typical operation modes; “stand-alone”
usage or usage as a “communication co-processor.” Examples given are for the
Philips CANopenIA technology.

Embedded Networking with CAN and CANopen

280

Figure 6.6 CANopenIA in Stand-Alone Mode

This mode is most suitable when a specific device profile needs to be implemented,
such as an encoder, joystick or battery. It allows for the direct connection of a stan-
dardized device to a CANopen network using the CANopen chip or module.

6.4.2 Co-Processor Operation

In co-processor mode, a CANopen chip or module acts as a peripheral chip to another
host controller. The interface between the host and the CANopen hardware is often
implemented using a serial port or a shared memory area. Figure 6.7 shows how
Philip’s CANopenIA chip operates in the “co-processor” mode. In order to simplify
the software requirements on the host, the only data exchanged is the process data.
The entire CANopen side of what happens with the data (and when) is handled by
the CANopenIA chip.

CANopenIA

CAN Interface

SPI Interface

External Bus
20 Bits of
Digital I/O

Address
bus disabled

A/D COMPONENT
Hi-Resolution
analog value

INTERNAL CODE ROM
CANopenIA core code

CANopenIA application code

CANopen

EEPROM
CANopen

configurationAnalog I/O

281

Chapter 6: Implementing CANopen

Figure 6.7 CANopenIA in Co-Processor Mode

This mode is most suitable for applications that require a certain amount of customi-
zation (as opposed to implementing a standardized Device Profile) and which will
benefit from off-loading the burden of processing a communication protocol stack to a
co-processor. An example would be adding a CANopen interface to an existing
design, where the current main controller does not have enough memory and/or per-
formance left to implement an entire CANopen protocol stack.

6.4.3 Setup and Configuration

Different CANopen chip or module solutions use a variety of configuration options.
Typically the CANopen related configuration (for example, the PDO communication
and mapping parameters) is stored in non-volatile memory and can be changed with
standard or customized CANopen configuration tools. In the case of the CANopenIA
this includes the hardware setup of the pins, establishing which pins are used, and
how they are used (for example, input or output).

The other essential settings of any CANopen node are the bit rate used on the CAN
bus and its Node ID. A total of seven bits are required to set the Node ID (1-127) and
three bits are required to select one of the eight bit rates supported by CANopen.
Depending on the application, these parameters are either set in software (using setup
software, and stored in non-volatile memory) or by hardware (switches or dials).
When set in hardware a total of 10 bits need to be provided to the CANopen chip or
module. In order to keep the number of pins used for these settings to a minimum, the
CANopenIA uses shift registers. A total of 10 switches, dials or jumpers are connected
to the shift registers and can be used to set the Node ID and the bit rate used. Upon

CANopenIA

CAN Interface

SPI Interface

External Bus

INTERNAL CODE ROM
CANopenIA core code

CANopenIA application code

CANopen

EEPROM
CANopen

configuration

PROCESS DATA
Shared process

data or image

Host Processor

UART

Communicating with Host
using shared memory or

serial interface

Embedded Networking with CAN and CANopen

282

boot-up this information is shifted into the CANopenIA serially, only requiring a total
of three pins.

6.5 Using CANopen Source Code

One of the most common approaches in designing and implementing a CANopen
node is to purchase a code library or the source code for a CANopen slave node. The
biggest benefits of this CANopen implementation approach are portability and cus-
tomizability. In addition, the providers of the source code typically guarantee that
their source code passes the CANopen conformance test. Although the final responsi-
bility for conformance lies with the engineering team using the source code, it helps to
know that all essential CANopen functions as delivered have passed the conformance
test.

• Portability
The providers of CANopen libraries or source code ensure good portability
simply because they want to be able to sell their product, no matter which
microcontroller is used. As a result, most commercial solutions directly
support a wide variety of microcontrollers and can be easily adapted to
“exotic” or legacy systems, such as a Z80 with external CAN controller.

• Customizability
Many CANopen-based systems take advantage of its “openness” by cus-
tomizing and optimizing certain aspects of the CANopen communication.
This can include special message trigger methods, customized emergencies
or customized Object Dictionaries (such as password protected access).
Customizations like these are only possible if the engineers and program-
mers have access to the CANopen source code.

Objective

In this section we summarize the typical configuration options one has when
using purchased CANopen source code and how to best make usage of these
options. All examples given apply to the Vector CANopen slave source code.
However, other source codes typically have very similar configuration fea-
tures.

283

Chapter 6: Implementing CANopen

6.5.1 Code Configuration through Conditional Compilation

In order to further support the customization, source codes typically use #define
statements to control which CANopen functionality is included when compiling and
building the code. Changing any of these defines can have severe consequences since
completely different code gets compiled and generated, and some #define combina-
tions might not work with each other. Thus, one should carefully document all
changes that are done along with the reasons and the persons who did them. Even in
cases where a setting is switched back to a previous value, it should be documented
with an additional comment so that the complete history of the changes is traceable.

The following examples are taken from the CANopen slave source code from Vector
CANTech. Although the names of the #define statements are those used by Vector in
their “cos_main.h” file, similar statements can be found in almost all commercial
CANopen source codes.

6.5.1.1 Buffering or Queuing

Due to differences in CAN controllers, most CANopen implementations provide at
least two different operation modes on the driver level. One of them, termed “buff-
ered” mode, tries to make best usage of the CAN buffers provided by Full CAN con-
trollers. The other, termed “queued” mode, implements one or more software
message queues. Incoming messages are copied to the queue by the CAN receive
interrupt service routine for later processing. The queued mode is enabled by setting
QUEUED_MODE to 1 (else 0).

The idea of buffered mode is to use one message object of the Full CAN controllers for
each CAN message received or transmitted. Obviously this can only work if the total
number of unique message IDs transmitted or received does not exceed the number of
message objects provided in the CAN controller. The buffered mode is enabled by set-
ting FULLCAN_BUFFER_MODE to 1 (else 0). In addition, NUM_CAN_BUFFER
needs to be set to the number of CAN message objects supported by the CAN control-
ler.

In general, the queued mode requires more code and data memory than the buffered
mode, since additional code and storage is required for the handling of the queue.
Due to the extra overhead in handling the queue, this mode also requires more CPU
processing time.

Embedded Networking with CAN and CANopen

284

6.5.1.2 SDO Transfers

CANopen defines a total of three different SDO transfer modes: expedited, seg-
mented and block transfer. The expedited transfer is a basic requirement and must be
supported by all CANopen nodes. It allows read and write accesses to the slave’s
Object Dictionary entries (which cannot exceed 4 data bytes).

As soon as any Object Dictionary entry in a node is longer than 4 bytes that node must
support segmented SDO transfer (where up to 7 bytes are transferred in each seg-
ment). In comparison to the expedited SDO transfer, the segmented transfer requires
significantly more code and data memory. Both communication partners need to track
each segment of the entire transfer. The receiver typically needs an extra memory buf-
fer big enough to hold the entire data block transferred. A transfer is only considered
successful after the entire data block was received – so only at that point may it be
copied to its final destination. The segmented transfer for write accesses can be
enabled by setting SDO_WRITE_SEG_ALLOWED to 1 (else 0), the segmented trans-
fer for read accesses can be enabled by setting SDO_READ_SEG_ALLOWED to 1 (else
0).

The block transfer mode not only requires additional memory, it also requires that the
main MCU have a certain level of performance. Typically the block transfer mode is
not suitable for 8-bit microcontrollers. Using the block transfer mode, up to 127 seg-
ments (with up to 7 bytes each) are transferred back-to-back with only one acknowl-
edgment message for the entire block. This means the receiver needs to be powerful
enough to receive these back-to-back messages. The SDO Block Transfer mode can be
enabled by setting SDO_BLOCK_ALLOWED to 1 (else 0).

In addition, the block transfer mode uses an optional CRC checksum over the entire
data block transferred. If implemented, both communication partners must calculate
this CRC in software. Sometimes there are options as to which method to use to calcu-
late the CRC; either a lookup table or dynamically. Dynamically means that the micro-
controller performs the required checksum calculation with every data byte
transferred. This uses less code memory, however, it requires greater CPU perfor-
mance. When using a lookup table, the CPU has less to calculate but additional mem-
ory to store the lookup table is required. To enable CRC calculation,
SDO_BLOCK_USE_CRC must be set to 1 (else 0). CRC calculation is done using a
lookup table if CRC_LOOKUP_TABLE is set to 1. If set to 0 it is dynamically calcu-
lated.

285

Chapter 6: Implementing CANopen

6.5.1.3 SDO Clients and Servers

Per default, each CANopen slave node implements one SDO server that serves the
data of the local Object Dictionary to the network using the default SDO channels.

If an additional SDO server is required (to allow other nodes to send SDO requests to
this node at the same time), MULTI_SDO_SERVER must be set to 1 (else 0) and
NUM_SDO_SERVERS must to be set to 2. In this case SDO_SERVER2 must also be set:
to a second CANopen Node ID. The second server requires that the SDO channels
used are “stolen” from another Node ID. In other words, the physical network may
not have a CANopen node on it with the Node ID that is used for the second server.

Some applications might require that a CANopen slave node also become an SDO cli-
ent, allowing it to send SDO requests to other nodes. This feature can be enabled by
setting CLIENT_ENABLE to 1 (else 0).

6.5.1.4 PDOs

The communication and mapping parameters for each PDO are configurable as either
dynamic or static. The communication parameters determine which CAN message ID
is used by the PDO, and when and how transmission is triggered. The mapping
parameters determine which variables (in the form of Object Dictionary entries) go
into the PDO. Dynamic means that the parameters can be changed during run-time,
static means that they are fixed, frozen, hard-coded and cannot change during run-
time.

Many deeply embedded applications use static PDOs if the network configuration is
always the same. However, if the network configuration can change (typical for off-
the-shelf industrial I/O components), dynamic PDOs are required.

RPDO_PAR_READONLY must be set to 1 if the RPDO communication parameters
are static, or to 0 if they are dynamic.

TPDO_PAR_READONLY must be set to 1 if the TPDO communication parameters are
static, or to 0 if they are dynamic.

RPDO_MAP_READONLY must be set to 1 if the RPDO mapping parameters are
static, or to 0 if they are dynamic.

TPDO_MAP_READONLY must be set to 1 if the TPDO mapping parameters are
static, or to 0 if they are dynamic.

Embedded Networking with CAN and CANopen

286

6.5.1.5 NMT Startup, Heartbeat and Emergencies

Per default, CANopen slave nodes boot-up and stay in the “pre-operational” state
until a master sets them to “operational.” Sometimes it is desirable that nodes go into
operational by themselves without waiting for a master (for example, in applications
without a master). If STARTUP_AUTONOMOUSLY is set to 1 (else 0), the node goes
into operational by itself, without waiting for a master.

If the node should also start to produce a heartbeat message right after boot-up,
START_HEARTBEAT_PRODUCER must be set to 1 (else 0).
START_HEARTBEAT_TIME defines the heartbeat time to be used in milliseconds.
After boot-up, the node will transmit a heartbeat message every
START_HEARTBEAT_TIME milliseconds.

A node can be configured to generate or not generate emergency messages. If
ENABLE_EMCYMSG is set to 1 (else 0) the node produces emergency messages if
communication faults are detected. A typical emergency would be to receive a PDO
that is of a different length than expected.

6.5.1.6 Signals

There are several #define statements to configure SIGNAL_XXX. If enabled, these use
callback functions to signal certain events back to the application. If a certain signal is
enabled, the corresponding call-back function must be implemented by the applica-
tion.

One example of such a signal is SIGNAL_BOOTUPMSG. The corresponding call-back
function is called once the boot-up message is transmitted. This is an indication to the
application that the initialization of the CAN bus interface was successful and that at
least one other node is out there using the same bit rate.

6.5.2 The Object Dictionary

The Object Dictionary is implemented as an array of structures in the file “objdict.c”.
The structure for a single entry needs to hold information such as the type and/or sta-
tus for the entry, the Index and Subindex, the length of the data in this entry in bytes,

287

Chapter 6: Implementing CANopen

a pointer to the data and information about the access and mapping options (read-
only, write-only, etc.) The access options defined are listed in Table 6.5.

To simplify the way entries are made, macros for the different types of entries are
defined.

Example: SINGLE_OBJ (index, length, address, access)

This macro is used if the entry is a single object (only Subindex 0 is implemented and
the entry is stored at Subindex 0). The parameters are:

• Index: 16-bit Index of the Object Dictionary entry

• length: the length of the Object Dictionary entry in bytes

• address: a pointer to the data of this Object Dictionary entry (typically a
pointer to a variable or to a location in the process image)

• access: the access type for this entry (see Table 6.5)

This macro could be used as follows to specify that the 1-byte variable “gMyStatus” is
made available at Index [2100h,00h] for read and write accesses:

SINGLE_OBJ(0x2100, 1, &gMyStatus, RW)

Access Type How Object Dictionary Entry Accessed
RO Read-Only, cannot be mapped to a PDO

WO Write-Only, cannot be mapped to a PDO

RW Read-Write, cannot be mapped to a PDO

ROMAP Read-Only, can be mapped into a TPDO

WOMAP Write-Only, can be mapped into a RPDO

RWRMAP Read-Write, can be mapped into a TPDO, but not RPDO

RWWMAP Read-Write, can be mapped into a RPDO, but not TPDO

Table 6.5 Access Types for Object Dictionary Entries

Embedded Networking with CAN and CANopen

288

6.5.3 PDO Mapping

The PDO mapping parameters are implemented in two arrays of structures in the file
“mapping.c” – one for RPDOs and one for TPDOs. There is one structure for each
PDO and each structure contains the number of entries mapped for the PDO and a
total of 8 mapping entries (default). There are always 8 entries, even if fewer entries
are actually used. However, this parameter is configurable, so if all PDOs use less than
8 entries it may be modified to the maximum number of PDO map entries used. Sev-
eral macros are provided to make the entries more readable.

Sample mapping entry for one PDO:

NUM_OF_MAP_ENTRIES(2),

MAP_ENTRY(0x2110, 0x00, 16, &gMyVar1),

MAP_ENTRY(0x2120, 0x00, 8, &gMyVar2),

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

VOID_MAP_ENTRY,

The example above is for a PDO with a total of 2 mapping entries
(NUM_OF_MAP_ENTRIES is set to 2). What follows are two mapping entries, the
first one maps the Object Dictionary entry [2110h,00h]. There are 16 bits to map and
the address for the data is the address of the variable “gMyVar1”. The second entry
maps the Object Dictionary entry [2120h,00h]. There are 8 bits to map and the address
for the data is the address of the variable “gMyVar2”. A total of 6 entries of
VOID_MAP_ENTRY are used for the unused mapping entries (these can be avoided
if the maximum number of map entries allowed per PDO is reduced).

289

Chapter 6: Implementing CANopen

6.6 CANopen Conformance Test

“Error, no keyboard – press F1 to continue”
PC BIOS

The official CANopen conformance test was developed with significant involvement
from the engineers of the CiA and is available through National Instruments and the
CiA. When a device gets conformance tested by the CiA, they use exactly this soft-
ware and simply confirm that the device passed or failed.

6.6.1 What Does it Do?

The conformance test not only tests a physical device, it also tests the Electronic Data
Sheet (EDS) associated with it. It is important to confirm that an EDS is syntactically
correct and that a device perfectly matches the EDS – in other words, it has exactly
those communication parameters implemented as specified in the EDS file.

In part, the CANopen conformance test not only checks to see if all Object Dictionary
entries specified are available in the device, it also scans for hidden entries that a
device might have and that are not mentioned in the EDS. Due to this scanning pro-
cess, the entire run-time of the CANopen conformance test is several hours.

It should be noted that the CANopen conformance test only checks the CANopen
communication behavior. It cannot test PDO data contents or reactions to certain data.

Objective

In this section we will not try to explain all the technical details of the CANo-
pen conformance test nor try to find an answer as to why some specific access
sequences that are not documented in the CANopen specification are tested.
Sometimes mysteries are better accepted as such.

Instead we will give some guidelines on when the conformance test should be
used and when it can be replaced by other test procedures.

Embedded Networking with CAN and CANopen

290

6.6.2 Who Should Use It?

If a CANopen device is designed and developed for the open market with the inten-
tion to sell it as stand-alone “CANopen Gizmo,” then this node should pass the CAN-
open conformance test and get a certificate to that effect. There are several instances
where end-users had bad experiences with uncertified products, and as a result more
and more end-users are demanding that only certified products are used in their sys-
tems.

If a CANopen design is based on a self-developed CANopen implementation, passing
the conformance test is more likely to become a significant hurdle. This can be
avoided if a design is based on commercial CANopen source code or a CANopen chip
or module; passing the conformance test should not be a problem since the manufac-
turers of these products ensure that their products can pass.

If a CANopen device is intended for “internal use only” there is no real need or
requirement to pass the CANopen conformance test. This includes all developments
where the CANopen network is truly “embedded” – hidden within a machine, virtu-
ally invisible to the end-user of that machine.

As experienced consultants and tutors who also teach classes on software qual-
ity, our first thought concerning the CANopen conformance test was to recom-
mend to all our students that every CANopen node they develop should pass
the CANopen test. The idea is that even if a network is completely embedded
into a machine, it would still give everybody participating in the design of
CANopen nodes a measurement of how well a specific node is implemented.
If, for example, something does not work in the communication between two
nodes, the CANopen conformance test could be used to test if a specific node is
really behaving as it should.

Well, so much for the theory. As usual the real-world works slightly differently.
In recent years, the CANopen specification has been enhanced and updated,
but not all of these updates found their way into the conformance test. So some
test failures are actually acceptable. Acceptable failures, for example, include a
lack of support for node guarding if heartbeat is supported, or exceeding
unspecified time-outs for SDO transfers.

Another issue is that the entire set of conformance requirements, tests and pro-
cedures is not well documented. So if a certain test fails there is a lot of guess-
work left to the engineers with regards to fixing the problem.

291

Chapter 6: Implementing CANopen

This can even be extended to scenarios where third party CANopen devices get inte-
grated into such a machine. As seen in Section 6.9 on page 299, there are applications
where CANopen nodes were intentionally designed in such a way that 100% CANo-
pen conformance is not a requirement. Instead the requirement is that they just need
to have as much conformity as required in order to work with “regular” conforming
CANopen devices.

6.6.3 Other Test Options

There are a variety of tools besides the CANopen conformance test that can be used to
test CANopen devices. Most of them even offer the opportunity to do data dependent
testing, which is something the CANopen conformance test does not do. Data depen-
dent testing includes sending specific process data to a device as well as verifying the
process data received from a device.

In general, any CAN monitor or analyzer with a scripting, DLL or batch interface can
be used to send test messages to a device and analyze the responses. This path
requires a deep knowledge about the CANopen messaging system, since all messages
would need to be generated manually.

Things become a little simpler if the monitor or analyzer is CANopen aware and if
that awareness also finds its way through to the scripting interface, allowing for direct
execution of SDO and PDO accesses. This path simplifies the generation of CANopen
specific test sequences, such as a segmented SDO transfer.

If a CAN interface with CANopen DLL is used, standard test software like LabView®
can be used to execute and log test sequences. This path is very attractive for test engi-
neers that already have test software in place and would like to continue to use the
same software for their CANopen devices.

Note, however, that we definitely recommend that any CANopen device
designed be tested. However, using the official CANopen conformance test to
do so might not always be required or even the best choice.

Embedded Networking with CAN and CANopen

292

6.7 Choosing an Implementation Path

“Experience is the name everyone gives to their mistakes.”
Oscar Wilde

CAN is right for this application, but is CANopen?
If CAN is definitely going to be used, but it is not yet certain if CANopen or a custom,
proprietary higher-layer CAN protocol should be used, then MicroCANopen might
be the perfect match. MicroCANopen can provide a basic communication structure
that is upward compatible to CANopen. So the final decision to be fully CANopen
compatible does not need to be made at this point.

Are the CANopen nodes used internally only, or will they be sold individually on
the open market as CANopen devices?
If a developed CANopen node is to be sold on the open market as a CANopen device,
the implementation should either be based on commercial CANopen source code or a
CANopen hardware module or chip. If the CANopen protocol is developed from
scratch internally, passing the CANopen conformance test becomes a challenge.

What is the expected volume of the device planned?
The general rule is that the higher the expected volume of the device, the higher the
demand for an optimized solution that takes best advantage of the microcontroller
resources provided. Typically that means a commercial CANopen software solution
with many target-specific optimizations or a customized implementation, for example
based on MicroCANopen.

Objective

In this section we give some general guidelines on when to choose which of the
implementation paths listed in the previous sections.

Note that applications differ and a more detailed evaluation of a particular sce-
nario might be required. This is especially true when it comes to “reaching the
limits,” such as getting above an 80% bus load, or single nodes requiring a spe-
cific response time (or other real-time behavior).

Simply ask yourself the questions listed in this section and read the recommen-
dations to get some clues about which implementation path is best for you and
your application.

293

Chapter 6: Implementing CANopen

How much software development expertise does the engineering team have?
If the software development expertise of the engineering team is limited, using CAN-
open hardware modules or chips minimizes the software development required. If
that is not an option, a commercial source code or library should be used to minimize
the software development for the CANopen protocol stack.

How much hardware development expertise does the engineering team have?
If the hardware development expertise of the engineering team is limited, using CAN-
open hardware modules can minimize the hardware development required.

What are the time-to-market requirements?
If the team is under pressure because the CANopen device must be available in a very
short time, both hardware and software development should be minimized. This can
be achieved by using CANopen hardware modules or chips. If a solution using source
code or libraries is required, hiring an experienced consultant/tutor should be consid-
ered to kick-start the project.

How will CANopen be used – strictly as CANopen or is it likely that the system
will need to be tweaked or optimized?
If a CANopen node needs to support some specific communication features not stan-
dardized in CANopen, software solutions such as a commercial CANopen source
code or MicroCANopen are preferred over CANopen hardware modules and chips.

Are there real-time requirements?
If the CANopen node must fulfill certain real-time requirements, CANopen hardware
modules and chips have the advantage that their timing behavior is already known
and typically published in their data sheets. If the application requires a software
solution, the performance of the implementations for the target microcontroller needs
to be carefully evaluated. If a lower-end microcontroller is used, a customized imple-
mentation, for example based on MicroCANopen, might be required.

Embedded Networking with CAN and CANopen

294

6.8 Implementing CANopen Compliant Bootloaders

Embedded systems often use flash memory in order to simplify the process of updat-
ing the software/firmware running in embedded devices. Typically microcontrollers
used with flash memory also provide ISP (In-System Programming) functionality -
the microcontroller can communicate via one of its communication channels (typi-
cally a serial interface) and accept new code that is programmed into the flash mem-
ory.

In order to provide this functionality, a “bootloader” is required, a minimal piece of
software that implements the communication and flash programming functions. The
bootloader is often located in a protected memory area to prevent its accidental era-
sure. It can be activated during the boot-up of the processor (hence “bootloader”) by
setting a switch, button or jumper during reset.

If such a device is connected to a CANopen network, it would make sense to make the
bootloader CANopen compliant. This frees the “other” communication channels from
the bootloader task, as well as allowing the use of standard CANopen configuration
tools as the communication partner providing the new code (hex file) to be loaded
into the flash memory.

6.8.1 Minimal Functionality Required

A CANopen node whose only purpose is to accept a hex-file for loading into flash
memory does not really have to be 100% CANopen compliant. It just needs to provide
enough CANopen compatibility so that it does not interfere with any other communi-
cation on the network and provides a fully functional SDO server. This ensures that

Objective

This section discusses the implementation of a CANopen compliant boot-
loader. Such a bootloader allows for the use of a standard CANopen configura-
tion tool to load a hex file with new code via the CANopen network into the
embedded device.

Note: There is no specification in the CANopen drafts and standards for the
implementation of a CANopen compliant bootloader. The following is a rec-
ommendation by Embedded Systems Academy. The bootloader functionality
described here is already used in multiple applications.

295

Chapter 6: Implementing CANopen

SDO clients (like Masters, Managers or Configuration Tools) can make read and write
accesses to the Object Dictionary in the node.

Thus the only CANopen features and communication channels that truly need to be
implemented are the SDO server and the SDO request and response channels.

Sometimes it is desirable for the bootloader to be activated without having to physi-
cally touch the device (like setting a jumper, switch or button). Assuming the device
in question is a CANopen node that also has a CANopen bootloader, a mechanism is
needed that switches the device from its regular operation mode into its bootloader
mode. In CANopen the straight-forward method would be to use a selected write
sequence to an Object Dictionary entry as a command to switch the node into the
bootloader mode.

An additional safety level can be added by adding checksum verification to all down-
loadable program segments. A bootloader should only jump to a code piece if it has
been verified that the code piece in question is “real code.” One method to implement
this is by ensuring that any code piece downloaded must always have a pre-defined
checksum – if a code piece in flash memory does not have that checksum, it is consid-
ered “trash” and should not be executed.

Segmented Transfer vs. Block Mode Transfer

Recall from Section 6.5.1 that when it comes to transferring larger blocks of
data or code, there are two SDO transfer types that could be used: the seg-
mented transfer (up to 7 bytes of data for each segment with one response mes-
sage for each segment) or block transfer (up to 127 messages of 7 bytes each
with one response message for the entire block).

Although the block transfer mode is more efficient for large transfers, it is not
suitable for implementation on 8-bit devices. In addition, flash programming
typically requires some timeouts after every byte (or group of bytes) so a com-
munication model with only 7 new bytes at a time is quite welcome for the pur-
pose of programming flash memory.

For the purpose of this section, we will simply assume that segmented transfer
is used. However, in the spirit of the “openness” of CANopen, we leave it up to
the individual engineers building the nodes to make the final decision.

Embedded Networking with CAN and CANopen

296

6.8.2 Object Dictionary Entries Suggested for a Bootloader

The Object Dictionary entries that should be supported are:

• OD entry [1000h,00h]: Device type information, read-only
Because there is no device type number standardized for a bootloader, a
manufacturer specific value can be used. The Embedded Systems Academy
uses 746F6F62h (ASCII representation is “boot”) in their bootloader imple-
mentations.

• OD entry [1001h,00h]: Error register, read-only
The bootloader can use this register to signal flash erase or programming
failures. As an example, setting the voltage error could indicate that the
flash erase or programming failed (often a specific voltage needs to be set to
a pin of the flash memory to enable the erasing or programming functional-
ity). Setting the manufacturer specific error bit could indicate an out-of-
range error, seen if an attempt is made to program a memory location that is
either protected or at which there is no flash memory.

• OD entry [1018h,00h-04h]: Identity Object
The standard Identity Object as specified in CANopen [CiADS301]. At a
minimum the Vendor ID, Product code and Revision number should be
provided.

• OD entry [1F50h,xxh]: Download program data
This Object Dictionary entry is described in [CiADSP302] and is used to
directly accept the code programmed into the target memory. Subindex 0 is
used to quantify how many different program or flash memory areas are
available. The following Subindexes can each handle the download to one
program or memory area. For many applications it is sufficient to imple-
ment one area (Subindex 1).

The data type for the OD entry is “Domain” which indicates variable data
size. The SDO download process itself uses segmented SDO transfer which
supports such variable data sizes. A download is considered successful if
no SDO Abort message occurs at any time during the download.

Although not specified by the standard, the Embedded Systems Academy
recommends using standard ASCII hex files as the files containing the pro-
gram or data. Using a hex file has two benefits: the file contains the target
address for the programmed data and the file also contains checksums
making the downloading process more secure.

297

Chapter 6: Implementing CANopen

Because flash memory often needs to be erased before it can be re-pro-
grammed, Embedded Systems Academy further recommends implement-
ing a specific erase command. For example, an erase could be initiated by
sending the value 66726C63h (ASCII representation is “clrf”) to the Object
Dictionary entry [1F50h,01h], or other Subindexes to differentiate between
different blocks or segments of flash memory.

• OD entry [1F51h,xxh]: Program Control Object
This Object Dictionary entry is described in [CiADSP302] and is used to
control the program(s) downloaded to [1F50h,xxh]. The essential command
to implement is “Start program” which requires writing a 1 to the Object
Dictionary entry. For example, if a program is downloaded to [1F50h,01h] it
can be started by writing a 1 to [1F51h,01h].

This Object Dictionary entry could also be used to activate the bootloader
itself. If the regular CANopen application running on this node supports
this entry, it should activate the bootloader upon receiving a 0 (zero = Stop
Program).

6.8.3 Bootloader Flow Chart

Flow Chart 6.6 shows the basic operation steps that a CANopen bootloader should
follow. It should be the first piece of code that is executed after the reset. It then needs
to make a decision if it should stay in the bootloader mode or try to execute the appli-
cation program. Typically the decision is made by reading some hardware and/or
software settings that may or may not enable the bootloader. This could include a
hardware switch or jumper, as well as a software flag that may have been set by the
application before the reset.

Before calling the application code, the bootloader must ensure that valid code is in
the code memory. This is typically accomplished by doing a checksum test. The boot-
loader should only jump to the application code if it is sure that valid application code
is present at that location.

Once the bootloader is activated, it sends the CANopen boot-up message to inform
other nodes on the network that it is initialized, and then waits for configuration and/
or start-up. It will then activate the SDO server and handle all incoming SDO requests
appropriately. This includes starting the application program if a write of 1 is detected
to [1F51h,01h].

Embedded Networking with CAN and CANopen

298

.

Flow Chart 6.6 Flow Diagram of a CANopen Bootloader

6.8.4 Handling the Bootloader

If a network is equipped with one or more nodes that have a bootloader as described
in the previous sections, a standard CANopen configuration tool such as CANeds,
proCANopen or PCANopenMagic can be used to handle the nodes. The following
example assumes that only one program area is used and thus [1F50h,00h] and
[1F51h,00h] are both 1. The following steps should be executed for an entire firmware/
software upgrade cycle.

1. The bootloader of any node becomes active by writing a 0 to [1F51h,01h].

Reset:
Start Bootloader

Bootloader
activated in
HW or SW?

Send CANopen
boot-up message

Wait for SDO request

Request to
start program?

Valid program
in flash memory?

Handle SDO request

Start application program

By setting a switch, jumper
or by a software “boot flag”

true

false

true

false

true

false

By verifying
the checksum

299

Chapter 6: Implementing CANopen

2. To verify that a node is indeed in bootloader mode, the entry [1000h,00h] should be read
(contents should be “boot”).

3. If additional identification is required, the entries at [1018h,xxh] can be read.

4. If the flash memory needs to be erased first, a “clrf” can be written to to [1F50h,01h].

5. Now the hex file with the new code can be downloaded to [1F50h,01h]. The download is
not considered successful if an SDO Abort or Emergency occurs during the download.

6. After completion, the error register should be read to verify that no error occurred.

7. Writing 1 to [1F51h,01h] starts the new code.

6.9 CANopen Implementation Example

Due to its openness, there are many very different CANopen applications. Some engi-
neers take specific advantage of the openness by customizing it towards a specific
application, others need the standardization and remain well within specific device
profiles to ensure inter-operation with third party products.

The following application example is that of a laboratory instrument. Because com-
munication with third party products was not required, it would have been possible
to customize the CANopen implementation to a point where it would not be CANo-
pen compliant anymore. However, the engineers wanted to keep their application
open for possible future enhancements involving other CANopen devices. As a result,
the engineers came up with many customized features that still stayed within the
CANopen specification.

This application uses optimization of the CAN physical layer as well as the CANopen
application layer for use as an internal bus in a line of modularized laboratory instru-
ments. Modifications and extensions are described for the pin assignments, Default

Objective

This section includes text from the paper “Customizing CANopen for Use in
an Automated Laboratory Instrument” by Michael B. Simmonds of Quantum
Design, Alan Wilson of Quantum Design and Olaf Pfeiffer of Embedded Sys-
tems Academy. The paper was presented at the International CAN Conference
2002 in Las Vegas.

Embedded Networking with CAN and CANopen

300

Connection Set, Emergency Object, and the Device Profile to better support the
requirements of the hardware. In addition, a customized method for firmware
updates via CANopen is implemented.

6.9.1 Background

The products of Quantum Design are relatively complex cryogenic instruments used
by physicists and chemists to perform research in material science. These instruments
contain several GPIB (IEEE-488) modules that are controlled by the operator from an
application running on a PC. The GPIB was chosen primarily because it was widely
used by the scientific/engineering community at that time, and enjoyed substantial
hardware and software support. It also enabled users to integrate their own third
party instruments into the measurement system.

As the engineers began looking toward more modular and modern architectures for
their products, the shortcomings of the GPIB became more evident. The cost, com-
plexity, and cable size for this 8-bit parallel bus becomes very unattractive when used
with a larger number of modules. Even the size of the stacked 26-pin ribbon connec-
tors became a major problem.

Furthermore, the protocols required for exchanging short packets with an array of
modules is very time-consuming and negates all the advantages one would expect
from a parallel bus; indeed, the effective bit-rate for actual data was only about
200kbps.

For these reasons, Quantum Design’s engineers began searching for an alternative
among the various serial buses that have become popular in the nearly two decades
since the original design decision was made. They looked carefully at physical layers
based on RS485, FireWire, Ethernet, USB, and CAN. CAN was chosen because of sev-
eral perceived benefits including non-critical cables and connector impedance
requirements, good hardware support at the chip level, excellent bus arbitration and
error checking, and adequate bandwidth. While the engineers were initially
impressed by the promise of very high bit-rates available with other buses, a closer
evaluation showed that for this system they would be better off with the shorter
frames and inherent collision-avoidance provided by CAN. Also, the high bit-rates of
these other buses would limit cable lengths or turn impedance matching into a serious
design concern.

Having chosen CAN for the lower-level protocols, the engineers needed to select (or
invent) an “application layer” for the system. Several options were available, all based
upon CAN: DeviceNet, CAN Kingdom, SDS, and CANopen. Here the decision

301

Chapter 6: Implementing CANopen

became more a matter of taste since all of these approaches appeared to offer a reason-
able set of features. The most important service requirement was a confirmed
exchange of messages longer than 8 bytes; a Service Data Object in the terminology of
CANopen. DeviceNet and CANopen appeared to be the most widely used and best
supported of these options, with DeviceNet enjoying a much greater presence in the
United States. But since it was not the intention to market fieldbus devices except as
internal components in the laboratory instruments, this bias toward DeviceNet was
not a particular concern. The higher bit rate and more efficient block transfers offered
by CANopen were of greater importance.

6.9.2 Lab Instrumentation Requirements vs. CAN Physical Layer
Specification

The modules comprising the instrument required several electrical services in addi-
tion to CAN communication, including 24VDC power, 50/60Hz line synchronization,
hardware reset, and a low-jitter hardware sync signal. In addition, separate paths for
returning unbalanced supply currents were needed for establishing system ground
reference, and for dumping shield currents. Table 6.6 shows how CAN’s 9-pin D-sub
connector was adapted to fill all of these requirements. It should be noted that it is
possible to connect a standard third party CANopen module into the network by
using a cable with wires on only pins 2, 3, 7, and 9. In this case, the 24V supply would
only provide power for the galvanically isolated CAN interface of the module.

The 50/60Hz sync line allows for very stable measurements in the presence of sub-
stantial line interference. Non-synchronous measurements are prone to exhibit low-
frequency beats as their phase slowly slips with respect to the power lines.

Pin # CAN Standard Pinout QD-CAN Pinout
1 Reserved -24VDC Supply

6 Optional Ground System Ground

2 CAN-L Line CAN-L Line

7 CAN-H Line CAN-H Line

3 CAN Ground 24VDC Return

8 Reserved SYNC-H/RS Line

4 Reserved SYNC-L Line

Table 6.6 Comparison of Pin Assignments

Embedded Networking with CAN and CANopen

302

The SYNC-H/RS and SYNC-L lines allow a very accurate and stable timing signal to
be distributed throughout the system. This differential signal can serve as a clock,
sync, or trigger for various modules depending on their requirements. The sub-micro-
second latency and jitter available through this SYNC mechanism is far better than
could have been obtained through the CAN bus itself. Commands sent over the CAN
interface can be used to configure or arm modules so they make use of this timing sig-
nal as desired.

CAN transceiver chips are used to control these SYNC lines, so in normal operation
they will have the same electrical characteristics as the CAN bus. However, pulling
Sync-H/RS to system ground level for a few microseconds will initiate a hardware
reset of all modules connected to the bus.

6.9.3 Lab Instrumentation Requirements vs. CANopen Specification

As previously mentioned, the serial bus was selected for internal use in the instru-
ment lines, therefore slavish adherence to an official specification was not required.
Nevertheless, the engineers wished to avoid “reinventing the wheel” as much as pos-
sible. Earlier designs had suffered from incompletely engineered and under-docu-
mented interfaces between the components of the instruments. It was felt that such
problems could be reduced by following an official standard that many people had
already spent considerable time designing.

9 CAN_V+ Optional Supply +24VDC Supply

5 CAN_SHLD Optional Line-Sync (50/60 Hz)

Typical CANopen Usage Laboratory Instrumentation Bus
Every implementation quite different Most instruments basically identical

Large number of simple modules A few complex modules

Several interchangeable vendors Vendor makes, uses own modules

Only a few generic module types Unique, application-specific modules

Substantial module configuration req’d Modules wake up knowing their role

Table 6.7 Different Networking Requirements

Pin # CAN Standard Pinout QD-CAN Pinout

Table 6.6 (Continued) Comparison of Pin Assignments

303

Chapter 6: Implementing CANopen

It was also desirable to maintain the ability to run third party CANopen modules on
the instrument’s bus in the future. Therefore, any liberties taken with the DS-301
CANopen specification must be compatible with this requirement. The converse is
not true, however; the engineers did not care that their own instruments would not
function correctly in someone else’s network or if the instruments failed to pass CiA
conformance testing.

There is a substantial difference between the “flavor” of a typical CANopen fieldbus
system and the bus required for the instruments. These differences are summarized in
Table 6.8. As one can see, the developers of CANopen were attempting to solve a very
different set of problems than the engineers at Quantum Design. Nevertheless, the
CANopen application layer comes fairly close to providing Quantum Design with the
necessary and sufficient services required.

Modules exchange process data User’s computer collects process data

Minimal SDO traffic when operational Commands continually sent via SDO

Computer used for config & diagnos-
tics User runs instrument through computer

Std. CANopen QD-CANopen
Maximum nodes in system 127 31

Default TPDOs / node 4 34

Default RPDOs / node 4 4

Default SDOs / node 1 1

Bit rates 10kbps - 1Mbps 500kbps - 1Mbps

Dynamic PDO Mapping Optional No

Variable COB IDs Optional No

Remote Response Optional No

29-Bit Identifiers Optional No

LMT Services Optional No

Table 6.8 Comparing Standard CANopen and QD-CANopen

Typical CANopen Usage Laboratory Instrumentation Bus

Table 6.7 (Continued) Different Networking Requirements

Embedded Networking with CAN and CANopen

304

The modules are quite application-specific and can be pre-configured to perform their
assigned functions in the instruments. There is no need to have dynamic assignment
of PDO data, nor is there even a need to have configurable COB IDs for the PDOs. In
fact, it is desirable to have all these parameters “hard-wired” into the firmware so that
the modules know everything about each other at power-on.

6.9.4 Optimizing the Default Connection Set

Using a fully static configuration of PDOs (the “default connection set” for the net-
work), it needed to be ensured that it would provide maximum capability towards the
specific application as far as the number of available communication channels was
concerned. Modules for this application needed to be able to send as much process
data as required. The CANopen specification only allows for four TPDOs and 4
RPDOs per node, a number that was felt to be insufficient for the system require-
ments. On the other hand, the number of nodes permitted by the CANopen specifica-
tion was far in excess of what would be needed for the instruments.

SDO Block Transfers Optional Mandatory

Error Control Protocol Guarding or Heartbeat Heartbeat

±24V System Power on Bus No Yes

Sync/Reset Signals on Bus No Yes

Line-sync Signal on Bus No Yes

Compatible with DS-301 Net Yes No

Compatible with QD-CANopen Yes Yes

QD TPDO Default Connections Assigned COB ID
1 TPDO 1 on N 180h + N

2 TPDO 1 on N + 32 1A0h + N

3 TPDO 1 on N + 64 1C0h + N

4 TPDO 1 on N + 96 1E0h + N

Table 6.9 QD-CANopen Connection Set on Node N (0 < N < 32)

Std. CANopen QD-CANopen

Table 6.8 (Continued) Comparing Standard CANopen and QD-CANopen

305

Chapter 6: Implementing CANopen

It was therefore decided to make a tradeoff: limit the nodes to 31 in order to expand
the number of default TPDOs available on each node. Since the modules would serve
primarily to control the instrument and report back process data, it was the TPDOs (as
opposed to the RPDOs) that were in short supply. Therefore a strategy was devised
for “stealing” COB IDs of the default PDOs excluded from the instrument network
(32-127).

The technique allowed each node in the range 1-31 to have three additional images in
the range of 32-127. Thus, node 1 also inherited the default PDOs for nodes 33, 65, and
97. The COB IDs for both RPDOs and TPDOs in this range were taken for use as
TPDOs for the modules. In addition, there were the COB IDs of the default SDOs for
these unused nodes. Thus a total of 34 separate Process Data Objects were made avail-
able on each module for reporting data back to the user’s computer. Note that the four
(4) RPDOs provided by the CANopen standard were retained as part of the modified

5 RPDO 1 on N + 32 220h + N

6 RPDO 1 on N + 64 240h + N

7 RPDO 1 on N + 96 260h + N

8 TPDO 2 on N 280h + N

9 TPDO 2 on N + 32 2A0h + N

10 TPDO 2 on N + 64 2C0h + N

11 TPDO 2 on N + 96 2E0h + N

12 RPDO 2 on N + 32 320h + N

13 RPDO 2 on N + 64 340h + N

--- --- ---

29 TSDO on N + 32 5A0h + N

30 TSDO on N + 64 5C0h + N

31 TSDO on N + 96 5E0h + N

32 RSDO on N + 32 620h + N

33 RSDO on N + 64 640h + N

34 RSDO on N + 96 660h + N

QD TPDO Default Connections Assigned COB ID

Table 6.9 (Continued) QD-CANopen Connection Set on Node N (0 < N < 32)

Embedded Networking with CAN and CANopen

306

default connection set. The order for assigning COB IDs to these 34 PDOs is shown in
Table 6.9, and was chosen so that they would be used in order of decreasing priority.

Since the COB IDs were not allowed to be changed, the values listed in Table 6.9 could
be relied upon at all times - the control computer and the other nodes automatically
know a PDO’s source node and number from its COB ID. And since dynamic data
mapping is not allowed in the network, the type and meaning of the data payload is
also immediately known throughout the network.

Although the COB IDs are not allowed to be changed, bit 31 in the dictionary entry for
PDO communication parameter/COB ID can be set or cleared. According to DS-301,
setting this bit disables the PDO and may prove useful in managing bus bandwidth
with so many default TPDOs potentially defined.

Table 6.8 summarizes the differences described so far between the CANopen standard
and Quantum Design’s adaptation of it.

6.9.5 Enhancing the Role of the CANopen Emergency Object

Specification DS301 appears to leave quite a bit of flexibility in the use of the Emer-
gency Object for device-specific purposes. There are several blocks of Error Codes
that have been provided to facilitate this - F0xxh is for “Additional Functions,” FFxxh
covers “Device Specific” errors, 50xxh covers “Device Hardware” errors, and the
entire “6xxxh” block is available for “Device Software” errors.

Quantum Design’s engineers extended the definition of “emergency” to include any
significant events or state changes that might occur in a module, but whose actual
occurrence would not otherwise be known without performing continuous polling of
the module. Having to do such polling is a substantial programming burden and
adds unnecessarily to the loading on the CAN bus. Also, such polling cannot be done
by another node on the network unless it has Client SDO capability, a service not sup-
ported by some commercial CANopen slave stacks.

The engineers proposed to use the block of codes from F000h to FFFFh to indicate
when there had been a change-of-state in one of the modules subsystems. One bit (of
the available 12) was assigned to each subsystem that could have externally signifi-
cant state information. Whenever there was an event or state change in one of the
module’s subsystems, the corresponding bit-flag in the Error Code was set. An entry
in the Object Dictionary was provided for the purpose of clearing the flag-bits of this
Error Code, called the “Event Reset Register.” Setting a bit of this object cleared the
corresponding flag of the Error Code. According to the Emergency Object specifica-

307

Chapter 6: Implementing CANopen

tion described in DS301, the EMCY (emergency) telegram is sent when (and only
when) the Error Code changes. Thus clearing any bits in the Error Code will cause the
EMCY telegram to be sent again. But rather than sending an Error Code of 0000h
upon resetting one of these bits (as mentioned in the standard), the engineers pro-
posed to send the new Fxxxh pattern. Clearing a bit in the Fxxxh group indicated that
the module had been re-armed to send an EMCY telegram when another state change
occurred on that subsystem. Otherwise no further state changes would be announced.
A suitable EMCY ‘inhibit time” was used in order to avoid consuming excessive
bandwidth through this module-state reporting scheme.

The five bytes of the “Manufacturer Specific Error Field” provided a set of status flags
and mode bit-fields. Up to 40 bits of state/mode information could be communicated
with this scheme.

There has been considerable discussion about “borrowing” the official CANopen
emergency protocol for the posting of state-change information. The alternative
would have been to implement the above scheme using PDOs. Quantum Design
elected to use the emergency protocol for several reasons - it gave these messages a
higher priority than all normal PDOs, it allowed state information to be presented by
a module even when that module was in the Pre-operational or Stopped mode, and it
conserved COB IDs. In the case of the particular CANopen master API used, emer-
gency messages had their own dedicated queue and callback function. This made
them somewhat less likely to become lost.

6.9.6 Providing for Application Firmware Update via CANopen

Quantum Design needed the capability to update a device’s firmware by loading new
executable code directly through the device’s own CAN interface. This requirement
created an interesting challenge for the firmware architect since the CANopen stack is
an integral part of the application firmware and must be compiled together with it. It
was decided that the most reliable and robust method for implementing this capabil-
ity was to have a “CANopen Loader” permanently available on the module. This
minimal operating system only needed to provide a few services. It had to be able to
implement an SDO-Server download, it needed to verify the checksum of the pro-
gram it had downloaded, and it needed to transfer command to the downloaded pro-
gram. Once the new downloaded program initialized and began execution, it
completely replaced the loader and provided the code necessary to implement a
CANopen interface for any further communications.

Two separate banks of flash memory were available on each module. One bank con-
tained the CAN loader firmware in a write-protected area segment. The other bank

Embedded Networking with CAN and CANopen

308

was available for storing downloaded application code. When the device was first
powered-up or after a hardware reset, program execution transferred to the loader
program. The loader would then verify that the stored application had the correct
checksum as part of its initialization process.

When the loader started, the node was in a special state not described within the
CANopen specification. Entry into this mode was signaled by a Boot-up Message
with a node number that was offset from the actual node by a value of 20
(720h+NodeID). This would not normally be a valid Boot-up Message within the
restricted pre-defined connection set where only a range of Node IDs (1-31) is
allowed, so it can be interpreted as an entry into the “System State.” In this state, a
node could receive data and report status via SDO, but it had no access to the applica-
tion’s Object Dictionary and could not process any PDOs. If the checksum of the cur-
rent application firmware was determined to be correct by the system code, the node
could be sent into its normal “Pre-operational” mode by sending the usual network
command. Alternatively, new firmware could be downloaded by use of SDO writes.
After the new firmware had been loaded, execution could be transferred over to it by
bank-switching between the two memory blocks. After initialization, the “real” appli-
cation sent a standard Boot-up telegram and entered into its Pre-operational mode. By
using bank switching, having to re-map the interrupt vector table was avoided
because a new table was automatically loaded in the operation.

6.9.7 Creating a Manufacturer’s Device Profile

Quantum Design’s modules were not intended for use on CANopen networks apart
from their own internal instrument bus. Therefore the engineers were free to create
their own device profile with a common set of dictionary entries in the range of 6000h
– 9FFFh. According to the specification, non-standard device profiles should be indi-
cated by a Device Profile Number of zero in the Device Type entry (1000h) of the
devices Communication Profile. The 16 high bits of this entry are available to specify
“Additional Information.” A characteristic version number in this location is still used
so that the system software can distinguish between different revisions of the device
profile.

The device profile provides a device-independent structure for accessing common
information such as module temperatures, module voltages, firmware checksums,
error registers, and diagnostic test results. SDO writes to a standardized dictionary
entry are used to command various levels of diagnostic tests.

309

Chapter 6: Implementing CANopen

6.9.8 Conclusions

Completely standardized CANopen would come remarkably close to filling the needs
for the modularized instrumentation of Quantum Design. They used PDOs to report
measurement results back to the master node in the PC. SDOs are used to set or read
parameters as well as to issue confirmed commands to the nodes. The modification of
the Default Connection Set, the expanded scope of the Emergency Object, the provi-
sion for CAN-based firmware updates, and the customization of the Device Profile go
a long way toward making this high-level protocol a perfect fit for Quantum Design’s
requirements.

6.10 Example of an Entire Design Cycle

6.10.1 Defining Nodes and Process Variables

As discussed in Section 6.1, one should begin with the overall communication layout
for any new CANopen development. In cases where the entire network is “embed-
ded” and fairly fixed (not re-configured during operation) it has been proven useful
to use the same Object Dictionary structure for all nodes. This means that one would
define all process variables in the entire system as having unique Object Dictionary
entries. The benefit of such an assignment is that the same Object Dictionary structure
is used on every node. As an example, the “current speed” variable of a construction

Objective

In this section we show you all steps involved in an entire design cycle of an
embedded, completely pre-configured master-less system where individual
nodes are part of the design and development.

For an example of a CANopen network configuration based on off-the-shelf
CANopen components, see Chapter 4.

Embedded Networking with CAN and CANopen

310

machine would have the same Object Dictionary entry number on both the producer
and consumer of that variable.

6.10.2 Define Process Data Objects

Once the nodes and the process variables are defined, the next step is to define the
PDOs used by each node. The usual approach is to start with all Transmit PDOs first,
defining which nodes combine which process variables into which TPDO (TPDO
mapping). The next step is defining the communication parameters, determining
which CAN message IDs are used, as well as the transmission type (which determines
when the TPDO is triggered). The list of TPDOs along with the selection of the trans-
mission type also directly sets the bandwidth required to handle the PDO related
communication.

Once the TPDOs are defined, the Receive PDOs are next. It needs to be decided which
of the many PDOs used on the entire network need to be received and handled by
each node.

It should be noted that such a shared Object Dictionary limits the usage of
generic I/O CANopen devices (DS401 compliant) in the same network. Generic
I/O devices have their process variables at fixed locations that cannot be
changed, so using two digital input devices would both produce inputs that
are stored in their local Object Dictionaries at location 6000h.

Defining the PDOs, both transmit and receive is a process that typically
requires a few iterations of refinement. One of the challenges is to decide which
process variables can be best combined into one PDO.

A typical example would be command bytes sent by one device to several oth-
ers. Should these bytes be sent one-by-one; one separate PDO to each receiving
device? Or should they all be combined into one PDO and all sent at once?

The latter approach has the benefit of optimizing the usage of the available net-
work bandwidth. It means, however, that each receiver also receives data that
it does not need (in this case the command bytes directed at the other devices).
In general, the benefit of bandwidth optimization outweighs the disadvantage
of handling some additional receive data. CANopen supports receiving such
“unwanted” data by using dummy-mapping. A receiver may map unwanted
data of a RPDO directly to so-called dummy entries – which basically means
that the unwanted data is ignored.

311

Chapter 6: Implementing CANopen

6.10.3 Electronic Data Sheets, Device Configuration Files and
Development Tools

Although tables and worksheets (discussed in Section 6.1) can be used for listing and
defining nodes, Object Dictionary entries and PDOs, the final specification should
always be made in the form of an Electronic Data Sheet (EDS) or Device Configuration
File (DCF). They can be generated using an Electronic Data Sheet Editor such as Vec-
tor’s CANeds. Because EDS and DCF are electronically readable, they can be used by
standard CANopen tools during development and test of the network. They should
simply be regarded as an electronically readable version of the Object Dictionary
specification.

6.10.3.1 Configuration

Once the EDS and DCF files are in place, standard CANopen tools can use them. Con-
figuration tools such as Vector’s CANsetter or proCANopen use these files to provide
the user with device access lists. For each node on the network, these configuration
tools provide read and write access to each node’s Object Dictionary as shown in
Chapter 2, Figure 2.1.

6.10.3.2 Monitoring and Analyzing

In addition, the symbol information stored in the EDS and DCF files can be carried
over to monitoring and analyzing tools such as Vector’s CANalyzer. Instead of just
displaying the “raw” CAN messages, the CANalyzer with the CANopen option can
take the symbol information provided by the EDS and DCF and display it along with
the data transmitted. This way a process data variable can be visualized directly in
several windows along with its symbolic name. Windows using the symbol informa-
tion include the data window, the trace window and the graphic window where vari-
ables can be tracked over time. Figure 5.20 in Chapter 5 shows a screen shot of the
CANalyzer displaying the traffic on a CANopen network.

6.10.3.3 Simulation

In cases where simulation of a CANopen network is desirable, the CANoe simulation
tool from Vector with its CANopen option can automatically simulate the network
traffic simply by extracting the required communication information from the EDS
and DCF files.

Even the simulation process of fairly complex networks can be setup within a few
minutes. The first step is to define the network in proCANopen. Each node must be
named, assigned a Node ID and an EDS and DCF file. Once all nodes are defined, a

Embedded Networking with CAN and CANopen

312

“make” process has to be started that produces all the files required for the simula-
tion.

In CANoe, these files can be imported and used to simulate the entire network. The
simulation includes all CANopen specific network traffic, including heartbeats, PDOs
and even the entire SDO server of each simulated node. The configuration tools
CANsetter and proCANopen can access the simulated nodes just as they would
access the physical devices.

Naturally, the data within the PDOs is not simulated at this point, it is left at zero. The
tools have no information about the specific data a node produces – however, they can
simulate the communication behavior by producing the TPDOs according to the
transmission type setting in the TPDO communication parameters.

It should be noted that the network traffic is not only simulated, it actually gets gener-
ated onto a CAN network if a CAN interface is connected to the system running the
CANoe simulation model. Because single nodes within the simulation can be disabled
one-by-one, it is possible to replace simulated nodes with the physical nodes in the
network once they become available. This allows for a step-by-step migration from a
simulated network to a physical network.

A more detailed simulation example with screen shots is shown in Chapter 4, Section
4.5.

Part Three: CANopen Reference

315

 A Frequently Asked Questions

“The only way to discover the limits of the possible
is to go beyond them into the impossible.”

Arthur C. Clarke

This FAQ selection was adapted from the FAQ section of www.canbus.us and
www.canopen.us, web pages dedicated to US users of CAN and CANopen. These
web pages are maintained by the authors of this book.

A.1 General

A.1.1 What is the identifier of a node, message and/or variable?

In CAN and CANopen there are several identifiers used for different purposes. Begin-
ners tend to mix these up, so pay close attention to the different meanings of the word
"identifier":

1. On the CAN level (looking at CAN messages on the bus, generated by a CAN con-
troller, no higher-layer protocol involved), the "identifier" is the CAN message
identifier. Version CAN 2.0A allows for an 11-bit ID (theoretically up to 2048 dif-

Embedded Networking with CAN and CANopen

316

ferent identifiers, some older CAN controllers might support less), version CAN
2.0B allows for a 29-bit ID.

2. Higher-layer protocols such as CANopen use node identifiers to address a specific
node in the network. The Node ID is in the range of 1 to 127 in CANopen and 0 to
63 in DeviceNet. Sometimes, the Node ID is embedded into the CAN ID. The pre-
defined connection set of CANopen places the Node ID into the lower 7 bits of the
11-bit CAN ID.

3. In CANopen, process variables have their own identifier. All process variables are
located in the Object Dictionary, which is a look-up table using a 16-bit Index and a
8-bit Subindex. The Index and Subindex are used to identify one specific process
variable in one specific node. A typical access (SDO access) to such a variable uses
a CAN message that contains a Node ID within the CAN ID and the Index and
Subindex (indexing a variable in the Object Dictionary) within the data field.

A.1.2 When and why would I need a higher-layer protocol such as
CANopen instead of plain CAN?

CAN by itself only provides a method of exchanging up to 8 data bytes using message
frames that have an identifier. Once you sit down and specify which identifier is used
for which purpose - and what the contents of each message means (data types, byte
order, variables) - you are already starting to specify your own higher-layer protocol.

As soon as a certain number of nodes, messages and process variables are involved,
an in-house specification of that higher-layer protocol needs to be written and main-
tained.

With CANopen, all of that work has already been done. Instead of re-inventing exist-
ing technology, engineers can take advantage of CANopen and adopt existing tech-
nology.

Due to the "openness" of CANopen it is even possible to pick and choose the features
required by an application and skip unwanted ones. CANopen literally reduces an in-
house specification to a document that states which features of CANopen are used.

Most commercial CANopen source codes support the selection of features via
"#define" statements in the source code.

If you are not yet certain if you want to use CANopen or implement an in-house
higher-layer protocol, consider using www.MicroCANopen.com instead (see Section
6.3).

317

Appendix A: Frequently Asked Questions

A.1.3 Do I need to have my node CANopen conformance tested?

If you are selling your node to 3rd parties as CANopen compliant, or if you purchase
a CANopen node from a 3rd party, a CANopen conformance certificate gives both
parties the extra insurance that the part actually behaves as specified. So if 3rd parties
are involved (either selling or buying), CANopen nodes should be certified.

For in-house applications where all CANopen nodes come from the same manufac-
turer a conformance test would not really be required. However, if several engineers,
teams or departments are involved, a conformance test can help, especially in the
debug and test phase to confirm that a particular node behaves as expected.

In addition, the conformance test provides an aditional quailty check for all applica-
tions that require in-depth testing. These are often applications like medical devices
and transport systems, but also include all applications or devices produced by an
ISO9000-certified manufacturer.

An independent 3rd party such as the CiA (CAN in Automation) should do the con-
formance testing if 3rd parties are involved. This way an independent organization
can be used as a mediator, in case the parties do not agree about the degree of confor-
mance achieved. For details on CiA conformance testing see www.canopen.org/cano-
pen/conformance.

For in-house applications, the conformance test can also be purchased and performed
internally. The CANopen conformance test is sold by National Instruments.

A.1.4 Is 127 "really" the maximum number of nodes in a CANopen
network?

Answer: Not really.

The original CANopen specification is limited to a maximum of 127 nodes, however it
was kept "open" enough to provide room for extensions. In fact, there is so much
room available that several very different solutions exist for this problem. There are
application-specific, customized versions of CANopen networks installed that have
more than 127 nodes. Contact your favourite CANopen consultant to learn how the
support of more than 127 nodes can best be implemented in your application.

Embedded Networking with CAN and CANopen

318

A.1.5 Can the Node IDs in a CANopen network be auto-assigned?

Although it is not part of the original standard, there are several, application-specific
ID claiming implementations. Depending on the application requirements, several
options are available. One software solution was introduced with device profile
[CiADSP416].

Pure software solutions usually require that each node have a "unique number of
bytes" either in the form of a serial number or a random number generator. Depend-
ing on bus speed and number of nodes, the claim-cycle may take several seconds to
execute.

Other applications might require that the Node ID is related to the physical location in
the network. So if the Node IDs should really be 1, 2, 3, etc, sorted by their physical
location, then additional hardware is required.

There are many implementations that use an additional wire in the cabling for this
purpose. And there are several options on how to use this wire - one is creating a
daisy-chain (going in and out of each node, with each node having the ability to
switch the signal for the next node in the chain). In this case the node "closest" to the
master will be configured first. Once it is configured, it enables the next node in the
chain.

Consultants can assist with any of the methods above.

319

Appendix A: Frequently Asked Questions

A.2 Implementation Issues

A.2.1 How do I implement CANopen?

Depending on your expertise you might be tempted to simply buy the specification
and start implementing it. Unless you already have a great deal of expertise with
CAN and at least one other higher-layer protocol you should really evaluate this
option carefully. If the project demands a limited CANopen implementation not
requiring 100% CANopen compliance, then this might be a possible route.

However, as soon as more complex CANopen features or 100% CANopen confor-
mance is required, the recommendation is to not start from scratch. The specification
unfortunately does not contain all the details necessary, and many issues will only
show up once the CANopen conformance test is started. Buying somebody else's
implementation that has already passed the conformance test is a great shortcut, shav-
ing several months off your development time.

A comparison of different implementation methods can be found in Chapter 6.

A.2.2 What are the memory requirements for a CANopen communication
protocol stack?

The memory requirements differ a lot depending on the microcontroller architecture
used and the CANopen features required by a particular node/application.

The nice thing about CANopen is that the set of mandatory functionality is very small
and all the other functionality is optional. So a CANopen node can be built with
exactly the required set of communication functions.

Although a minimal bootloader fits into 2kbytes of code, this does not really imple-
ment a true CANopen node, as there is no process data.

On an 8-bit microcontroller, take the following generalized rule-of-thumb:

Generic implementations require some 12-20kbytes of code space and about 500 to
1000 bytes of data memory. An implementation highly optimized towards a specific
microcontroller can use 25% less code and data memory.

With MicroCANopen (as introduced in Section 6.3) code sizes stay in the 4-5kbytes
area with about 200 bytes of RAM required.

Embedded Networking with CAN and CANopen

320

A.2.3 Why do most CANopen applications use CAN 2.0A (base frames
with 11-bit identifiers) and not CAN 2.0B (extended frames with 29-
bit identifiers)?

CANopen was specified to support both protocol variants, but switching to the 29-bit
identifiers has several consequences:

• Because only the address field is extended, but not the data field, the overall
available data bandwidth decreases. More bits of overhead are added to
each message.

• The overall reliability decreases, as the CRC checksum in each message now
needs to cover 18 bits more.

• The worst-case delay for high priority messages becomes longer. Even a low
priority message cannot be interrupted or aborted once it won arbitration to
the bus. And the maximum length of messages on the bus is increased by 18
bits.

321

Appendix A: Frequently Asked Questions

A.3 Performance

A.3.1 How do I calculate worst-case message delay times and data
bandwidth?

The Embedded Systems Academy offers a free online worst-case calculator:

www.esacademy.com/faq/calc/can.htm

After entering the desired bit rate, the length of the shortest CAN message (enter
number of data bytes in your shortest PDO) and the length of the longest CAN mes-
sage (enter 8 - SDO message is always 8 bytes long) hit the "Calculate" button.

The form gets updated and shows you an approximation of the expected timing
behavior. It is an approximation only - because CAN uses stuff bits the exact message
length varies slightly with data contents.

A.3.2 How fast is a CAN/CANopen I/O cycle? (read INPUT, trasmit via
CANopen, write OUTPUT)

Unfortunately there are MANY factors going into this formula. If you are looking at
an entire I/O cycle, you have the following potential delays:

Input scan/recognizing loop until setting CAN transmit bit.
Depending on microcontroller performance and priorities this will be some 200us or
more. With input filters, polarity changes or configurable "mapping" (which input
goes to which CAN message) as provided by CANopen, this might more than double.

CAN message on bus delay.
All delays here are multiple bit times. At 1Mbps, a single bit time is 1us. At 250kbps,
bit time is 4us. If there is currently a message on the bus, it cannot be aborted/inter-
rupted. The maximum delay until any node gets a chance to try to arbitrate the bus
depends on the longest possible message on the CANbus. With CANopen that is typ-
ically about 135 bit times.

CAN arbitration delay.
Assuming the message of our node has the highest priority, this delay will be zero.
However, each message currently waiting to be transmitted anywhere on the bus hav-
ing a higher priority will get the bus before our node. Each message delay is another
47 to 135 bit times.

Embedded Networking with CAN and CANopen

322

Actual CAN transmit time.
See www.esacademy.com/faq/calc/can.htm: Some 47 to 135 bit times.

CAN receive interrupt delay in Output module.
Depending on microcontroller performance and interrupt priorities this will be some
100us or more. With output filters, polarity changes or configurable "mapping"
(which CAN message contents goes to which output is configurable) as provided by
CANopen, this might more than quadruple.

Many commercial CANopen stacks leave the CAN receive interrupt before applying
the output "sometime" later in the background task, making the worst-case MUCH
longer.

MINIMUM TOTAL (1Mbps example, highest priority):
200us + 135us + 0 + 60us + 100us = 495us

REALISTIC TOTAL (1Mbps example, medium priority):
300us + 135us + 135us + 60us + 300us = 930us

Conclusion: A complete I/O cycle can be completed within 1ms on a CANbus running
at 1Mbps, if the priorities (interrupts on controllers and CAN message) are fairly high.

As soon as the bus' bitrate is slowed down or a lot of CANopen protocol functionality
is added, the total I/O cycle time will be closer to 2-3ms.

A.3.3 How can the data bandwidth of a CAN/CANopen network be
increased?

There are several options that can help to increase the bandwidth.

As the maximum possible bit rate depends on the maximum bus length, see if you can
make your network shorter - and thus faster. Still, the maximum is about 1Mbps.

If you need the longer distance, see if a bridge/gateway can solve the problem. An
existing 125kbps bus layout stretching to the maximum possible length can usually be
doubled in speed if a bridge/gateway is introduced - separating the bus into two seg-
ments of 250kbps each.

Finally, there are several microcontrollers with multiple CAN interfaces. Consider
using multiple CAN/CANopen networks to multiply the overall bandwidth.

323

Appendix A: Frequently Asked Questions

A.4 Physical Layer

A.4.1 What is the difference between base frame format (CAN 2.0A) and
extended frame format (CAN2.0B)?

Base frame format/CAN 2.0A uses an 11-bit ID in the CAN message identifier field
allowing for 2048 different message IDs.

Extended frame format /CAN 2.0B uses a 29-bit ID in the CAN message identifier
field allowing for more than 500 million different CAN IDs.

Extended frame format compatible devices can typically handle both the 11-bit and
the 29-bit identifiers, even at the same time.

Both types of identifiers can be mixed on the same network. For the arbitration pro-
cess the 11 most significant bits of the CAN 2.0B ID are arbitrated against the 11-bits
of the CAN 2.0A.

Also see Section A.2.3.

A.4.2 What is the difference between “Basic CAN” and “Full CAN”?

Today these terms can be regarded as historic, as CAN interface implementations are
continuously modified and updated by chip manufacturers adding more and more
functionality that can no longer be accurately be described using the terms “Basic” or
“Full”.

Basic CAN:
The first "Basic CAN" implementation was made with Philips 82C200 CAN controller.
Basic CAN controllers have primarily one message buffer each to transmit and receive
messages. Unfortunately the microprocessor or microcontroller operating a Basic
CAN interface needs to deal with many high-priority interrupts, since it gets an inter-
rupt for every message received in the receive buffer. It then needs to decide in soft-
ware if this message is of interest or not and, if it is, start the processing of the
message.

The worst-case scenario for a Basic CAN controller is a CAN network running at
1Mbps with back-to back messages. In this scenario the shortest message on the bus is
about 50 microseconds. That means that once a receive interrupt occurs, the receive
buffer needs to be processed within 50 microseconds, otherwise the next message

Embedded Networking with CAN and CANopen

324

could potentially be received, overwriting the one previously received. For more
details about Basic CAN, see Section 5.3.3.

“Full” CAN:
The “Full” CAN controller as first implemented by the Intel 82526 CAN controller
eases the burden on the host microprocessor or microcontroller by offering extended
hardware filtering capabilities. The “traditional” Full CAN controller has a total of 15
message buffers (called message objects) each of which can be configured to either
transmit or receive. Thus each buffer can be configured to listen for exactly one spe-
cific CAN message identifier.

If the total number of CAN message IDs that a node needs to listen to can be kept
below the number of message buffers available, the CAN controller will only issue a
receive interrupt if a message is received that matches one of the specified CAN mes-
sage IDs.

While this improves overall interrupt behavior (interrupts are not issued on messages
that do not match any of the configured receive filters), the worst-case scenario for
back-to-back messages does not change (compared to the Basic CAN controller). If
back-to-back messages occur, an overrun can still occur within about 50 microsec-
onds. For more details about Full CAN, see Section 5.3.3.

A.4.3 What is PeliCAN?

Philips came up with a solution to the back-to-back message problem as described in
the previous paragraphs. The PeliCAN interface as implemented in the SJA1000
stand-alone CAN controller and the 8xC591 and LPC99x microcontrollers use a true
FIFO buffer to receive messages.

This solves the back-to-back problem, as the worst-case timing for a potential buffer
overrun is now about 500 microseconds instead of 50. This relieves the host processor,
because the CAN receive interrupt does not need to be of the highest priority any-
more. For more details about Philips’ PeliCAN, see section Section 5.3.3.3.

A.4.4 How do I connect a CAN controller to the bus?

The most common form is to use a differential transceiver. One of the most popular
transceivers is the Philips PCA82C251 high-speed, differential signal transceiver. See a
datasheet at:

www.semiconductors.philips.com/pip/PCA82C251T

325

Appendix A: Frequently Asked Questions

Notes:

The "Tx" pin of the CAN controller goes to the "Tx" pin of the transceiver.

The "Rx" pin of the CAN controller goes to the "Rx" pin of the transceiver.

The "Rs" (slope) control of the transceiver is set to GND (high speed mode) in most
applications. If EMI is a problem in your application, consider other operating modes.

The "Vref" is an output of the transceiver that in many applications can be left uncon-
nected.

A.4.5 How do I calculate the CAN bit timing of my CAN controller?

Either carefully read the data sheet of your CAN controller and go from there...

...or take a shortcut and use the program CANtime from Mike Schofield:

www.mjschofield.com/cantime.htm

CANtime is a shareware program that supports the following CAN controllers:

Intel 82527
Intel 87C196CA and 87C196CB (both variants)
Motorola 68HC08 (and all devices that use the msCAN08 module)
Motorola 68HC12 (and all devices that use the msCAN12 module)
Philips 82C200, 80C592, 80C598 and SJA1000 (all four devices)
Infineon C164CI and C167CR (both devices)
Infineon C505C and C515C (both devices)
ST Microelectronics ST10F168

327

 B Physical Layer

B.1 Recommended Bit Timings

Objective

This section gives you a quick reference to the CAN Physical Layer require-
ments for CANopen. For complete details please refer to the relelated CAN
and CANopen specifications [CiADRP3031].

Bit
Rate

Maximum
Bus
Length

Bit
Time

Time
Quanta
per bit

Length
of 1 Time
Quanta

Sample
Point

1Mbps 25m 1µs 8 125ns 6 TQ (75%)

800kbps 50m 1.25µs 10 125ns 8 TQ (80%)

500kbps 100m 2µs 16 125ns 14 TQ (87.5%)

250kbps 250m 4µs 16 250ns 14 TQ (87.5%)

Table B.1 CANopen Recommended Bit Timings

Embedded Networking with CAN and CANopen

328

125kbps 500m 8µs 16 500ns 14 TQ (87.5%)

50kbps 1km 20µs 16 1.25µs 14 TQ (87.5%)

20kbps 2.5km 50µs 16 3.125µs 14 TQ (87.5%)

10kbps 5km 100µs 16 6.25µs 14 TQ (87.5%)

Bit
Rate

Maximum
Bus
Length

Bit
Time

Time
Quanta
per bit

Length
of 1 Time
Quanta

Sample
Point

Table B.1 (Continued) CANopen Recommended Bit Timings

329

 C Data Types

C.1 Basic Data Types

Basic Data Types are the simplest types defined in CANopen. They can be used to
construct Extended and Complex Data Types, and they may be stored in a single sub-
entry of the Object Dictionary.

C.1.1 Boolean

Definition: A single bit value. The value zero indicates a false condition and
the value one indicates a true condition.

Name Notation: BOOLEAN

Objective

The data types form the basis of the data storage in the Object Dictionary. This
appendix provides a quick reference to the data types used in CANopen and
examples of their usage. It can also be used to determine which types are right
for manufacturer-specific entries.

Embedded Networking with CAN and CANopen

330

Range: 0 to 1

Examples: 0
1

OD Location: 0001h

C.1.2 Void

Definition: A bit sequence of varying length. The value that a void type may
have is undefined, and this type is commonly used as a place
holder for reserved fields in complex data types or in the Object
Dictionary.

Name Notation: VOIDn represents a Void type with a bit sequence of n bits.

Range: Undefined

OD Location: Not defined in the Object Dictionary

C.1.3 Unsigned Integer

Definition: An non-negative integer value.

Name Notation: UNSIGNEDn represents an unsigned integer value stored in n
bits.

Range: 0 to 2n – 1 where n is the number of bits used to store the value.

Examples: 0
45
5611

OD Location: 0005h UNSIGNED8
0006h UNSIGNED16
0016h UNSIGNED24
0007h UNSIGNED32
0018h UNSIGNED40
0019h UNSIGNED48
001Ah UNSIGNED56
001Bh UNSIGNED64

331

Appendix C: Data Types

C.1.4 Signed Integer

Definition: An integer value.

Name Notation: INTEGERn represents an integer value stored in n bits.

Range: -2n-1 to 2n-1 – 1

Examples: -45
6234
-182

OD Location: 0002h INTEGER8
0003h INTEGER16
0010h INTEGER24
0004h INTEGER32
0012h INTEGER40
0013h INTEGER48
0014h INTEGER56
0015h INTEGER64

C.1.5 Floating Point (Real)

Definition: A floating point/real value conforming to the IEEE 754-1985 stan-
dard.

Name Notation: REAL32 represents a 32-bit value, usually called “single preci-
sion.”

REAL64 represents a 64-bit value, usually called “double preci-
sion.”

Range: - (2 – 2-23)127 to (2 – 2-23)127 single precision

- (2 – 2-52)1023 to (2 – 2-52)1023 double precision

Examples: -23.643732
0.117774
34562.545324

Embedded Networking with CAN and CANopen

332

OD Location: 0008h REAL32
0011h REAL64

C.1.6 Visible Character

Definition: A non-negative integer value in the range 20h to 7Eh inclusive,
corresponding to the non-control (printable) characters in the
ASCII character set. Stored in eight bits (i.e. it is a limited value
range UNSIGNED8).

Name Notation: VISIBLE_CHAR

Range: 20h to 7Eh

Examples: 45h (ASCII ‘E’)
7Ah (ASCII ‘z’)
21h (ASCII ‘!’)

OD Location: Not defined in the Object Dictionary

C.2 Extended Data Types

Extended Data Types are types constructed from a collection of more than one Basic
Data Type. They may be stored in a single subentry of the Object Dictionary.

C.2.1 Octet String

Description: A sequential collection (array) of UNSIGNED8 values of varying
length. This allows sequences of 8-bit values to be used, for exam-
ple storing binary data.

Note that although the word “string” appears in the name, the
stored value may not be printable in the ASCII character set,
which is limited to seven bits.

Name Notation: OCTET_STRINGn where n is the number of UNSIGNED8 values
in the array.

333

Appendix C: Data Types

Examples: 9Ah,3Bh,11h
4, 251,45

OD Location: 000Ah

Note that although the Octet String type may have varying length, only one version of
the type is stored in the Object Dictionary, omitting length indication. This is because
an Octet String can be any length and it is simply not possible to store every possible
length in the Object Dictionary.

C.2.2 Visible String

Description: A sequential collection (array) of VISIBLE_CHAR values of vary-
ing length. This allows sequences of printable characters from the
ASCII character set to be used, for example storing names,
descriptions, versions, etc.

Note that unlike C, a null terminator is not required on the end of
the array.

Name Notation: VISIBLE_STRINGn where n is the number of VISIBLE_CHAR val-
ues in the array.

Examples: Version 1.00
Embedded Systems Academy, Inc.
CANopen

OD Location: 0009h

Note that although the Visible String type may have varying length, only one version
of the type is stored in the Object Dictionary, omitting length indication. This is
because a Visible String can be any length and it is simply not possible to store every
possible length in the Object Dictionary.

C.2.3 Unicode String

Description: A sequential collection (array) of UNSIGNED16 values of varying
length. This allows sequences of 16-bit values to be used, for
example storing text in languages that do not use the Roman
alphabet such as Hebrew, Russian, Greek, etc.

Embedded Networking with CAN and CANopen

334

Name Notation: UNICODE_STRINGn where n is the number of UNSIGNED16
values in the array.

OD Location: 000Bh

Note that although the Unicode String type may have varying length, only one ver-
sion of the type is stored in the Object Dictionary, omitting length indication. This is
because a Unicode String can be any length and it is simply not possible to store every
possible length in the Object Dictionary.

C.2.4 Time of Day

Description: The Time of Day type is a collection of basic types grouped
together to store the date and time to the nearest millisecond since
the epoch, which is midnight January 1, 1984.

The type is stored in 48 bits arranged as follows:

UNSIGNED28 ms
VOID4 reserved
UNSIGNED16 days

ms stores the current time in milliseconds since midnight of the
day specified with the days value

days stores the number of whole days since the epoch

Note the void type forces the days value to be aligned on a 16-bit boundary and there-
fore for the Time of Day type to fit exactly into six bytes. Also note that the Time of
Day type does not make any provision for time zones, therefore the epoch used is the
local epoch.

Name Notation: TIME_OF_DAY

OD Location: 000Ch

Examples: ms = 20040000, days = 3 January 4th 1984, 5:34am
ms = 43320000, days = 8 Janurary 9th 1984, 12:02pm

335

Appendix C: Data Types

C.2.5 Time Difference

Description: The Time Difference type is a collection of basic types grouped
together to store a length of time to the nearest millisecond.

The type is stored in 48 bits arranged as follows:

UNSIGNED28 ms
VOID4 Reserved
UNSIGNED16 days

ms stores the current time in milliseconds since midnight of the
day specified with the days value.

Days stores the number of whole days.

Note the void type forces the days value to be aligned on a 16-bit boundary and there-
fore for the Time Difference type to fit exactly into six bytes.

Name Notation: TIME_DIFFERENCE

OD Location: 000Dh

Examples: ms = 20040000, days = 3, 3 days, 5 hours, 34 minutes
ms = 43320000, days = 8, 8 days, 12 hours, 2 minutes

C.2.6 Domain

Description: A block of data of arbitrary length. The contents, size and format
of the block of data are not defined in the CANopen specification.
This type is especially useful for application specific data where
the length of data may vary each time it is used, for example to
store firmware.

Name Notation: DOMAIN

OD Location: 000Fh

Note that although the Domain type may have arbitary length, only one version of the
type is stored in the Object Dictionary, omitting length indication. This is because a

Embedded Networking with CAN and CANopen

336

Domain can be any length and it is simply not possible to store every possible length
in the Object Dictionary.

C.3 Complex Data Types

Complex Data Types are types constructed from a collection of more than one Basic or
Extended Data Type. They are stored in multiple entries of the Object Dictionary, with
each Basic or Extended Data Type used occupying one Subentry in the Object Diction-
ary.

The first value in a Complex Data Type always indicates the number of types that fol-
low for a specific value, i.e. the highest Subindex used to store the value of the type in
the Object Dictionary.

C.3.1 PDO Communication Parameter Record

Description: This type contains a description of the communication characteris-
tics for a PDO. It is constructed as follows:

UNSIGNED8 Number of Entries
UNSIGNED32 COB ID
UNSIGNED8 Transmission Type
UNSIGNED16 Inhibit Time
UNSIGNED8 Reserved
UNSIGNED16 Event Timer

COB ID stores the COB ID used for the PDO.

Transmission Type indicates how and when the PDO is transmit-
ted.

Inhibit Time indicates if there is a limit on the maximum transmis-
sion frequency of the PDO.

Event Timer is used to determine a specific frequency of transmis-
sion of the PDO.

OD Location: 0020h

337

Appendix C: Data Types

Name Notation: PDO_COMMUNICATION_PARAMETER

C.3.2 PDO Mapping Parameter Record

Description: The PDO Mapping Parameter type stores the mapping of process
data into a specific PDO. It is constructed as follows:

UNSIGNED8 Number of Entries
UNSIGNED32 1st Object Mapped
UNSIGNED32 2nd Object Mapped
UNSIGNED32 3rd Object Mapped
UNSIGNED32 63rd Object Mapped
UNSIGNED32 64th Object Mapped

Up to 64 objects may be mapped into a PDO. There is one entry in
the type for each mapped object, therefore the number of entries
used for a value for this type depends on the number of objects
mapped into a specific PDO.

OD Location: 0021h

Name Notation: PDO_MAPPING

C.3.3 SDO Parameter Record

Description: This type stores details of a specific SDO server implemented in a
CANopen node. It is constructed as follows:

UNSIGNED8 Number of Entries
UNSIGNED32 COB ID Client to Server
UNSIGNED32 COB ID Server to Client
UNSIGNED8 Node ID of SDO Client/Server

The COB ID fields describe the COB IDs used for SDO communi-
cation in both directions to and from the node. The Node ID is the
ID of the other node involved in the SDO communications.

OD Location: 0022h

Name Notation: SDO_PARAMETER

Embedded Networking with CAN and CANopen

338

C.3.4 Identity Record

Description: The Identity Record type stores basic information about who
manufactured the node, the product, revision and serial number.
It is constructed as follows:

UNSIGNED8 Number of Entries
UNSIGNED32 Vendor ID
UNSIGNED32 Product Code
UNSIGNED32 Revision Number
UNSIGNED32 Serial Number

OD Location: 0023h

Name Notation: IDENTITY

C.3.5 Debugger Parameter Record

Description: This type defines a method of providing a command interface to a
node, and allows the node to return responses to commands.

UNSIGNED8 Number of Entries
OCTET_STRING Command
UNSIGNED8 Status
OCTET_STRING Reply

OD Location: 0024h

Name Notation: DEBUGGER_PAR

C.3.6 Command Parameter Record

Description: This type defines a method of providing a command interface to a
node, and allows the node to return responses to commands.

UNSIGNED8 Number of Entries
OCTET_STRING Command
UNSIGNED8 Status
OCTET_STRING Reply

OD Location: 0025h

339

Appendix C: Data Types

Name Notation: COMMAND_PAR

C.4 Transfer Format

C.4.1 Basic Data Types

Data is transmitted in bytes. If the data is not a whole number of bytes, then it must be
grouped with enough bits to construct a whole number of bytes. The other bits may
be unused but must be present in the transmission.

Bits in a byte are transmitted with the most significant bit first.

Bytes are transmitted using the little-endian format with the least significant byte
being transmitted first.

For a set of bits grouped into bytes the transmission format is as follows:

For example, the UNSIGNED32 value 1A2B3C4Dh is transmitted as:

4Dh, 3Ch, 2Bh, 1Ah

The INTEGER16 value –266 (= FEF6h) is transmitted as:

Byte Contents Order of Transmission
0 Bits 7 to 0 First

1 Bits 15 to 8 Second

2 Bits 23 to 16 Third

3 Bits 31 to 24 Fourth

4 Bits 39 to 32 Fifth

5 Bits 47 to 40 Sixth

6 Bits 55 to 48 Seventh

7 Bits 63 to 56 Eighth

Table C.1 Basic Data Type Transmission Order

Embedded Networking with CAN and CANopen

340

F6h, FEh

The BOOLEAN value TRUE is transmitted as:

01h

C.4.2 Extended Data Types

The bit sequence for transmitting an Extended Data Type is formed by concatenating
the bit sequences of each Basic Type used. The order of concatenation is from the first
listed type to the last listed type in the definition.

For example, the Time of Day type is defined as:

UNSIGNED28 ms
VOID4 reserved
UNSIGNED16days

The bits used are shown in Table C.2.

The transmission order is shown in Table C.3.

Value Bits Used
ms Bits 27 to 0

reserved Bits 31 to 28

days Bits 47 to 32

Table C.2 Bit Allocation for Time of Day Type

Byte Contents Order of Transmission
0 Bits 7 to 0 First

1 Bits 15 to 8 Second

2 Bits 23 to 16 Third

3 Bits 31 to 24 Fourth

Table C.3 Transmission Order for Time of Day Type

341

Appendix C: Data Types

Thus, if a Time of Day entry had the value:

ms = 1122334h
reserved = 0
days = 8899h

Then the value would be transmitted as:

34h, 23h, 12h, 01h, 99h, 88h

4 Bits 39 to 32 Fifth

5 Bits 47 to 40 Sixth

Byte Contents Order of Transmission

Table C.3 (Continued) Transmission Order for Time of Day Type

343

 D The Object Dictionary

D.1 Object Dictionary Organization

The Object Dictionary is divided into the sections shown in Table D.1.

Objective

CANopen is based primarily around the Object Dictionary. Because of this the
entries are numerous and varied. This appendix aims to provide a quick refer-
ence to many basic Object Dictionary entries and indicate how they are used.

Indexes Used Description
0000h Reserved

0001h – 025Fh Data Type Definitions

0260h – 0FFFh Reserved

1000h – 1FFFh Communication Profile

Table D.1 Object Dictionary Sections

Embedded Networking with CAN and CANopen

344

2000h – 5FFFh Manufacturer Specific

6000h – 9FFFh Standardized Device Profile

A000h – BFFFh Standardized Interface Profile

C000h – FFFFh Reserved

Indexes Used Description

Table D.1 (Continued) Object Dictionary Sections

345

Appendix D: The Object Dictionary

D.2 Data Type Definitions

D.2.1 Object Dictionary Sections

The Data Type Definitions area of the Object Dictionary is subdivided into the sec-
tions shown in Table D.2:

Indexes Used Description
0001h – 001Fh Basic and Extended Data Types

0020h – 003Fh Complex Data Types

0040h – 005Fh Manufacturer Specific Complex Data Types

0060h – 007Fh Device Profile 0 Basic and Extended Data Types

0080h – 009Fh Device Profile 0 Complex Data Types

00A0h – 00BFh Device Profile 1 Basic and Extended Data Types

00C0h – 00DFh Device Profile 1 Complex Data Types

00E0h – 00FFh Device Profile 2 Basic and Extended Data Types

0100h – 011Fh Device Profile 2 Complex Data Types

0120h – 013Fh Device Profile 3 Basic and Extended Data Types

0140h – 015Fh Device Profile 3 Complex Data Types

0160h – 017Fh Device Profile 4 Basic and Extended Data Types

0180h – 019Fh Device Profile 4 Complex Data Types

01A0h – 01BFh Device Profile 5 Basic and Extended Data Types

01C0h – 01DFh Device Profile 5 Complex Data Types

01E0h – 01FFh Device Profile 6 Basic and Extended Data Types

0200h – 021Fh Device Profile 6 Complex Data Types

0220h – 023Fh Device Profile 7 Basic and Extended Data Types

0240h – 025Fh Device Profile 7 Complex Data Types

Table D.2 Data Type Object Dictionary Sections

Embedded Networking with CAN and CANopen

346

D.2.2 Object Dictionary Implementation

Any data type may optionally be implemented in the Object Dictionary of a node.

Basic or Extended Data Types are implemented as follows:

The following example shows how the Time Of Day type would be implemented in
the Object Dictionary.

Complex Data Types are implemented as follows:

Index Subindex Type Value Access

See Table D.2 00h UNSIGNED32
Bit size of
type or zero
for variable

Read
Only

Table D.3 Basic and Extended Data Type Implementation

Index Subindex Type Value Access
000Ch 00h UNSIGNED32 30h (48) Read Only

Table D.4 Example Implementation of an Extended Data Type

Index Subindex Type Value Access

See
Table D.2

00h UNSIGNED8 Highest Subindex
used by type (= n) Read Only

01h UNSIGNED16 OD Index of Suben-
try type Read Only

n UNSIGNED16 OD Index of Suben-
try type Read Only

Table D.5 Complex Data Type Implementation

347

Appendix D: The Object Dictionary

The following example shows how the PDO Communication Parameter Record
would be implemented in the Object Dictionary.

Index Subindex Type Value Access

0020h

00h UNSIGNED8 05h Read Only

01h UNSIGNED16 0007h Read Only

02h UNSIGNED16 0005h Read Only

03h UNSIGNED16 0006h Read Only

04h UNSIGNED16 0005h Read Only

05h UNSIGNED16 0006h Read Only

Table D.6 Example Implementation of a Complex Data Type

Embedded Networking with CAN and CANopen

348

D.3 Communication Profile

D.3.1 Object Dictionary Entries

The following table gives an overview of all Object Dictionary entries in the Commu-
nication Profile section of the Object Dictionary.

Index Name Type Access

1000h Device Type UNSIGNED32 Read
Only

1001h Error Register UNSIGNED8 Read
Only

1002h Manufacturer Status Register UNSIGNED32 Read
Only

1003h Pre-defined Error Field UNSIGNED32 Read
Only

1004h Reserved - -

1005h SYNC COB ID UNSIGNED32 Read/
Write

1006h Communication Cycle Period UNSIGNED32 Read/
Write

1007h Synchronous Window Length UNSIGNED32 Read/
Write

1008h Manufacturer Device Name VISIBLE_STRING Read
Only

1009h Manufacturer Hardware Ver-
sion VISIBLE_STRING Read

Only

100Ah Manufacturer Software Ver-
sion VISIBLE_STRING Read

Only

100Bh Reserved - -

100Ch Guard Time UNSIGNED16 Read/
Write

Table D.7 Communication Profile Object Dictionary Entries

349

Appendix D: The Object Dictionary

100Dh Life Time Factor UNSIGNED8 Read/
Write

100Eh Reserved - -

100Fh Reserved - -

1010h Store Parameters UNSIGNED32 Read/
Write

1011h Restore Default Parameters UNSIGNED32 Read/
Write

1012h TIME COB ID UNSIGNED32 Read/
Write

1013h High Resolution Time Stamp UNSIGNED32 Read/
Write

1014h Emergency COB ID UNSIGNED32 Read/
Write

1015h Emergency Inhibit Time UNSIGNED16 Read/
Write

1016h Consumer Heartbeat Time UNSIGNED32 Read/
Write

1017h Producer Heartbeat Time UNSIGNED16 Read/
Write

1018h Identity IDENTITY (0023h) Read
Only

1019h Reserved - -

1020h Verify Configuration UNSIGNED32 Read/
Write

1021h Store EDS DOMAIN Read/
Write

1022h Storage Format UNSIGNED8 Read/
Write

1023h OS Command COMMAND_PAR (0025h) Read/
Write

Index Name Type Access

Table D.7 (Continued) Communication Profile Object Dictionary Entries

Embedded Networking with CAN and CANopen

350

1024h OS Command Mode UNSIGNED8 Write
Only

1025h OS Debugger Interface DEBUGGER_PAR (0024h) Read/
Write

1026h OS Prompt UNSIGNED8 Read/
Write

1027h Module List UNSIGNED16 Read
Only

1028h Emergency Consumer UNSIGNED32 Read/
Write

1029h Error Behavior UNSIGNED8 Read/
Write

102Ah
to
11FFh

Reserved - -

1200h 1st SDO Server Parameters SDO_PARAMETER
(0022h)

Read
Only

1201h
to
127Fh

Additional SDO Server
Parameters

SDO_PARAMETER
(0022h)

Read/
Write

1280h 1st SDO Client Parameters SDO_PARAMETER
(0022h)

Read/
Write

1281h
to
12FFh

Additional SDO Client
Parameters

SDO_PARAMETER
(0022h)

Read/
Write

1300h
to
13FFh

Reserved - -

1400h 1st Receive PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1401h 2nd Receive PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

Index Name Type Access

Table D.7 (Continued) Communication Profile Object Dictionary Entries

351

Appendix D: The Object Dictionary

1402h 3rd Receive PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1403h 4th Receive PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1404h
to
15FFh

Additional Receive PDO
Parameters

PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1600h 1st Receive PDO Mapping PDO_MAPPING (0021h) Read/
Write

1601h 2nd Receive PDO Mapping PDO_MAPPING (0021h) Read/
Write

1602h 3rd Receive PDO Mapping PDO_MAPPING (0021h) Read/
Write

1603h 4th Receive PDO Mapping PDO_MAPPING (0021h) Read/
Write

1604h
to
17FFh

Additional Receive PDO
Mappings

PDO_MAPPING (0021h) Read/
Write

1800h 1st Transmit PDO Parameter PDO_MAPPING (0020h) Read/
Write

1801h 2nd Transmit PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1802h 3rd Transmit PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1803h 4th Transmit PDO Parameter PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1804h
to
19FFh

Additional Transmit PDO
Parameters

PDO_COMMUNICATION_
PARAMETER (0020h)

Read/
Write

1A00h 1st Transmit PDO Mapping PDO_MAPPING(0021h) Read/
Write

1A01h 2nd Transmit PDO Mapping PDO_MAPPING (0021h) Read/
Write

Index Name Type Access

Table D.7 (Continued) Communication Profile Object Dictionary Entries

Embedded Networking with CAN and CANopen

352

D.3.2 Device Type (1000h)

1A02h 3rd Transmit PDO Mapping PDO_MAPPING (0021h) Read/
Write

1A03h 4th Transmit PDO Mapping PDO_MAPPING (0021h) Read/
Write

1A04h
to
1BFFh

Additional Transmit PDO
Mappings PDO_MAPPING (0021h) Read/

Write

1C00h
to
1F9Fh

Reserved - -

1FA0h
to
1FCFh

Object Scanner List UNSIGNED32 Read/
Write

1FD0h
to
1FFFh

Object Dispatching List UNSIGNED64 Read/
Write

Index 1000h
Name Device Type

Mandatory Yes

Subindex 00h
Type UNSIGNED32

Default Value Determined by device profile used

Access Read Only

Mandatory Yes

Map to PDO No

Index Name Type Access

Table D.7 (Continued) Communication Profile Object Dictionary Entries

353

Appendix D: The Object Dictionary

Description: This entry indicates the number of the device profile used and often
provides some additional basic information about which features of
the device profile are used in the node. The entry value is constructed
as follows:

The Additional Information that may be provided in this entry is
defined in the Device Profile specification.

If the node does not use a device profile then the Device Profile Num-
ber is zero and the Additional Information value is undefined, but
often set to zero as well.

If the node uses more than one device profile, then the Device Profile
Number is the number of the first Device Profile used by the node,
and Additional Information is FFFFh.

This entry is mandatory and must be implemented in all CANopen
nodes. Because of this it is often used as a way of dynamically scan-
ning for nodes connected to the network.

Example: 00030191h

Digital input/output module 191h = 401, which is the number of the
digital input/output device profile. 0003h = the module implements
both digital inputs and outputs.

Bit Description
0 – 15 Device Profile Number

16 - 31 Additional Information

Table D.8 Device Type Contents

Embedded Networking with CAN and CANopen

354

D.3.3 Error Register (1001h)

Description: The error register value indicates if various types of errors have
occurred. The following table indicates the bits used. Bit zero must be
implemented. All other bits are optional.

A set bit indicates the specified error has occurred.

The Generic Error bit is set when any type of error occurs.

Index 1001h
Name Error Register

Mandatory Yes

Subindex 00h
Name Error Register

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes

Map to PDO Yes

Bit Description Mandatory
0 Generic Error Yes

1 Current No

2 Voltage No

3 Temperature No

4 Communication Error No

5 Device Profile Defined Error No

6 Reserved (always zero) No

7 Manufacturer Specific Error No

Table D.9 Error Register Contents

355

Appendix D: The Object Dictionary

The Error Register is included in byte two of the Emergency object,
but may also be mapped into PDOs.

Example: 05h
Voltage error has occurred

D.3.4 Manufacturer Status Register (1002h)

Description: The Manufacturer Status register contents are undefined in the CAN-
open specification. Manufacturers may use this entry for any purpose
desired.

Index 1002h
Name Manufacturer Status Register

Mandatory No

Subindex 00h
Name Manufacturer Status Register

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO Yes

Embedded Networking with CAN and CANopen

356

D.3.5 Pre-Defined Error Field (1003h)

Description: This entry contains up to 254 of the most recent errors that occurred
in the node and resulted in the transmission of the Emergency Object.

Subentries 01h to FEh store information about the errors, with entry
[1003h,01h] storing the most recent error and entry [1003h,FEh] stor-
ing the oldest error.

When a new error occurs it is stored in entry [1003h,01h] and any cur-
rently existing Subentries are shuffled down. For example, the error
previously stored at [1003h,01h] will be moved to [1003h,02h], and

Index 1003h
Name Pre-Defined Error Field

Mandatory No

Subindex 00h
Name Number of Errors

Type UNSIGNED8

Default Value 0

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – FEh
Name Standard Error Field

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

357

Appendix D: The Object Dictionary

the error previously stored at [1003h,02h] will be moved to
[1003h,03h], etc.

Entry [1003h,00h] can be read to determine the number of errors cur-
rently stored. Writing zero to [1003h,00h] erases the error history.

Each entry is constructed as follows:

Example: 00003000h
Voltage error occurred

D.3.6 SYNC COB ID (1005h)

Bit Description
0 – 15 Error Code as transmitted in the Emergency Object

16 - 31 Manufacturer Specific Additional Information

Table D.10 Pre-Defined Error Field Contents

Index 1005h
Name SYNC COB ID

Mandatory
Yes if the node transmits or receives synchronous PDOs or if any
PDO supports changing the transmission type to a synchronous
type

Subindex 00h
Name SYNC COB ID

Type UNSIGNED32

Default Value 00000080h or 40000080h

Access Read/Write

Mandatory
Yes if the node transmits or receives synchronous PDOs or if any
PDO supports changing the transmission type to a synchronous
type

Map to PDO No

Embedded Networking with CAN and CANopen

358

Description: Contains the COB ID used by the SYNC Object along with a flag to
indicate if the node generates the SYNC Object or not.

If the PDOs supported by the node permit a changing of transmission
type to one of the synchronous transmission types, then this entry
must be implemented.

For an 11-bit COB ID, the value of the entry is constructed as follows:

For a 29-bit COB ID, the value of the entry is constructed as follows:

A node can optionally make bits 29 and 30 read only.

If a device cannot generate the SYNC Object, then attempting to set
bit 30 can result in an abort message.

Bit Description
0 – 10 COB ID for SYNC Object

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30
Set to 0 if the node does not generate the SYNC
Object.
Set to 1 if the node does generate the SYNC Object.

31 Not used. Recommendation: set to 0

Table D.11 SYNC COB ID Contents for 11-bit COB ID

Bit Description
0 – 28 COB ID for SYNC Object

29 Set to 1 to select 29-bit COB ID

30
Set to 0 if the node does not generate the SYNC
Object.
Set to 1 if the node does generate the SYNC Object.

31 Not used. Recommendation: set to 0

Table D.12 SYNC COB ID Contents for 29-bit COB ID

359

Appendix D: The Object Dictionary

If a device cannot use 29-bit COB IDs, then it may either ignore an
attempt to set bit 29 or generate an abort message in response.

In order to change the COB ID for the node that is currently generat-
ing the SYNC Object, bit 30 must first be set to 0.

Example: 000007FAh
11-bit SYNC COB ID of 7FAh

D.3.7 Communication Cycle Period (1006h)

Description: This entry defines the period between transmission of the SYNC
Object by the node in µs, if the node is currently the SYNC Object
producer.

A value of zero results in no transmission of the SYNC Object. There-
fore writing the value zero to this entry of the SYNC Object producer
will stop transmission of the SYNC Object.

Example: 00152622h = 1386018
Transmit every 1.386018 seconds

Index 1006h
Name Communication Cycle Period

Mandatory Mandatory if the node generates the SYNC Object or allows bit
30 in entry 1005h to be set

Subindex 00h
Name Communication Cycle Period

Type UNSIGNED32

Default Value 0

Units µs

Access Read/Write

Mandatory Mandatory if the node generates the SYNC Object or allows bit
30 in entry 1005h to be set

Map to PDO No

Embedded Networking with CAN and CANopen

360

D.3.8 Synchronous Window Length (1007h)

Description: The Synchronous Window Length is the period of time in µs after a
SYNC Object has been transmitted on the bus in which synchronous
PDOs must be transmitted.

This period must be shorter than the Communication Cycle Period of
the SYNC Object producer.

Each node using the same COB ID for the SYNC Object must use the
same Synchronous Window Length. For example, if the network has
two SYNC Objects and nodes 02h, 04h and 05h use COB ID 80h for
the SYNC Object, and nodes 01h and 07h use COB ID 7Fh for the
SYNC Object, then nodes 02h, 04h and 05h must use the same Syn-
chronous Window Length and nodes 01 and 07h must use the same
Synchronous Window Length. However, the two Synchronous Win-
dow Lengths used in the network may be different from each other.

If a node attempts to transmit a Synchronous PDO within the Syn-
chronous Window Length but fails to do so (if, for example, higher
priority messages were on the bus), then the node must not transmit
the PDO. That is, synchronous PDOs must never be transmitted out-
side of the Synchronous Window Length.

Index 1007h
Name Synchronous Window Length

Mandatory No

Subindex 00h
Name Synchronous Window Length

Type UNSIGNED32

Default Value 0

Units µs

Access Read/Write

Mandatory No

Map to PDO No

361

Appendix D: The Object Dictionary

Example: 00001432h = 5170
PDOs transmit within 5.17ms of SYNC occurance

D.3.9 Manufacturer Device Name (1008h)

Description: Stores the name of the manufacturer of the node as an ASCII string.
The length of the string is not limited by the CANopen specification,
however minimal CANopen implementions that only support expe-
dited SDO transfers limit the length to four characters.

Example: Embedded Systems Academy, Inc.

Index 1008h
Name Manufacturer Device Name

Mandatory No

Subindex 00h
Name Manufacturer Device Name

Type VISIBLE_STRING

Default Value Not defined

Access Read only

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

362

D.3.10 Manufacturer Hardware Version (1009h)

Description: Stores the hardware version of the node as an ASCII string. The
length of the string is not limited by the CANopen specification, how-
ever minimal CANopen implementions that only support expedited
SDO transfers limit the length to four characters.

Example: Version 1.01

D.3.11 Manufacturer Software Version (100Ah)

Index 1009h
Name Manufacturer Hardware Version

Mandatory No

Subindex 00h
Name Manufacturer Hardware Version

Type VISIBLE_STRING

Default Value Not defined

Access Read only

Mandatory No

Map to PDO No

Index 100Ah
Name Manufacturer Software Version

Mandatory No

Subindex 00h
Name Manufacturer Software Version

Type VISIBLE_STRING

Default Value Not defined

Access Read only

363

Appendix D: The Object Dictionary

Description: Stores the software version of the node as an ASCII string. The length
of the string is not limited by the CANopen specification, however
minimal CANopen implementions that only support expedited SDO
transfers limit the length to four characters.

Example: Version 2.6.3 pre-release 5

D.3.12 Guard Time (100Ch)

Description: Specifies how long the period should be in milliseconds between
node guarding requests sent to the node. If the NMT Master imple-
ments node guarding, then it should read this entry and send the
node guarding requests to the node at the frequency indicated by the
value of this entry.

Mandatory No

Map to PDO No

Index 100Ch
Name Guard Time

Mandatory Yes if the node does not support heartbeats

Subindex 00h
Name Guard Time

Type UNSIGNED16

Default Value 0

Units ms

Access
Read/Write if node guarding is supported
Read Only if node guarding is not supported

Mandatory Yes if the node does not support heartbeats

Map to PDO No

Subindex 00h

Embedded Networking with CAN and CANopen

364

If a response to a node guarding request is not transmitted within the
node life time, then a node guarding event occurs, indicating that the
node may have possibly stopped working. If a node guarding request
from the NMT Master is not received within the node life time, then
the node knows that the NMT Master may have possibly stopped
working.

The node life time is the guard time multiplied by the life time factor
(100Dh).

If the node does not support heartbeats then this entry must be
implemented.

If this entry is implemented and the node does not support node
guarding, then the access is read only and the value is zero to disable
node guarding.

Note that a node must implement either heartbeats or node guarding
or both heartbeats and node guarding.

Example: 1122h = 4386
Requests every 4.386 seconds

D.3.13 Life Time Factor (100Dh)

Index 100Dh
Name Life Time Factor

Mandatory Yes if the node does not support heartbeats

Subindex 00h
Name Life Time Factor

Type UNSIGNED8

Default Value 0

Access
Read/Write if node guarding is supported
Read Only if node guarding is not supported

365

Appendix D: The Object Dictionary

Description: Specifies the number of multiples of the guard time to wait for a
response from the node to a node guarding request.

If a response to a node guarding request is not transmitted within the
node life time, then a node guarding event occurs, indicating that the
node may have possibly stopped working. If a node guarding request
from the NMT Master is not received within the node life time, then
the node knows that the NMT Master may have possibly stopped
working.

The node life time is the guard time multiplied by the life time factor
(100Ch).

If the node does not support heartbeats then this entry must be
implemented.

If this entry is implemented and the node does not support node
guarding, then the access is read only and the value is zero to disable
node guarding.

Note that a node must implement either heartbeats, node guarding or
both heartbeats and node guarding.

Example: 04h
Wait guard time x 4

Mandatory Yes if the node does not support heartbeats

Map to PDO No

Subindex 00h

Embedded Networking with CAN and CANopen

366

D.3.14 Store Parameters (1010h)

Index 1010h
Name Store Parameters

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Save All Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Save Communication Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

367

Appendix D: The Object Dictionary

Description: If a node contains non-volatile memory that can be used to store the
settings, then this entry may optionally be implemented.

By writing to the Subentries, the node can be instructed to immedi-
ately store all or some of the settings in non-voltatile memory.

By reading the Subentries, non-volatile storage capabilities of the
node may be determined.

By writing the value 65766173h (ASCII "save" transmitted with the "e"
first) to a Subentry of 1010h, the related section of the Object Diction-
ary is stored in non-volatile memory, if the node supports this fea-
ture.

If a value other than "save" is written, or if the parameter storing fails
for some reason, an SDO Abort message is transmitted.

Subindex 03h
Name Save Application Parameters

Type UNSIGNED32

Default Value None specified

Access Read/Write

Mandatory No

Map to PDO No

Subindex 04h – 7Fh
Name Save Manufacturer Defined Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

368

The following table shows which sections of the Object Dictionary are saved when the
different Subentries are written to.

Reading a Subentry returns a value that indicates if the node can save parameters
without manual intervention and if the node can save parameters manually. The
returned value is structured as follows:

For example, if the value 00000003h is read from [1010h,02h], then the node can
autonomously (and when requested) save application specific parameters to non-vol-
atile memory. It is then known that writing the value “save” to [1010h,03h] will imme-
diately cause the application specific parameters to be saved.

Subindex Object Dictionary Entries Saved
01h All entries that can be saved

02h
All communication parameters that can be
saved. Entries 1000h – 1FFFh and any manu-
facturer specific communication parameters

03h All application specific parameters that can be
saved. Entries 6000h – 9FFFh

04h – 7Fh Writing to these entries saves manufacturer
defined parameters.

Table D.13 Save Parameters Subentries

Bit Description

0

Set to 1 if the device can save the parameters by writing
to the Subentry
Set to 0 if the device cannot save the parameters by
writing to the Subentry

1

Set to 1 if the device can save the parameters autono-
mously
Set to 0 if the device cannot save the parameters auton-
omously

2 - 31 Reserved. Set to 0

Table D.14 Store Parameters Read Value Contents

369

Appendix D: The Object Dictionary

The CANopen specification does not define what will happen if an attempt is made to
store parameters when that Subindex does not support writing "save." Therefore the
entry with that Subindex should always be read first to ensure the operation is sup-
ported.

D.3.15 Restore Default Parameters (1011h)

Index 1011h
Name Restore Default Parameters

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Restore All Default Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Restore Communication Default Parameters

Type UNSIGNED32

Embedded Networking with CAN and CANopen

370

Description: This entry provides a means to restore some or all of the default val-
ues for parameters in the Object Dictionary. By writing the value
64616F6Ch (ASCII "load" transmitted with the "d" first) to a Subindex,
the parameters corresponding to the entry will be restored to their
default values on the next reset of the node or the next power cycle,
depending on which parameters were restored.

If a value other than "load" is written, or the restoring of the default
parameters fails, then an SDO Abort message is transmitted.

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 03h
Name Restore Application Default Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 04h – 7Fh
Name Restore Manufacturer Defined Default Parameters

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 02h

371

Appendix D: The Object Dictionary

The following table lists the parameters which will be restored when the value "load"
is written, and which type of reset will cause the default values to be used by the
node.

By reading the Subentries, information regarding the capabilities of the node to
restore default values can be determined. The value read is constructed as shown in
Table D.16:

For example, if the value 00000001h is read from Subindex 01h, then the node is able
to restore all default parameters that can be restored. If the value 00000000h is read
from Subindex 03h, then the node is not able to restore application default parame-
ters.

The CANopen specification does not define what will happen if an attempt is made to
restore default parameters when that Subindex does not support writing "load",
therefore the entry with that Subindex should always be read first to ensure the oper-
ation is supported.

Subindex
Object Dictionary Entry
Defaults Restored

Default values
used after

01h All entries that can be restored Node reset

02h

All communication entries that can be
restored. Entries 1000h – 1FFFh and
any manufacturer specific communica-
tion entries.

Communication reset

03h All application entries that can be
restored. Entries 6000h – 9FFFh. Node reset

04h – 7Fh Manufacturer defined entries that can be
restored. Node reset

Table D.15 Restore Parameters Subentries

Bit Description

0
Set to 1 if node can restore default parameters.
Set to 0 if node cannot restore default parameters.

1 - 31 Reserved. Set to 0.

Table D.16 Restore Parameters Read Value Contents

Embedded Networking with CAN and CANopen

372

D.3.16 TIME COB ID (1012h)

Description: This entry specifies the COB ID for the Timestamp Object. It also
specifies whether the node does or does not use the Timestamp
Object and whether the node does or does not produce the Time-
stamp Object.

For an 11-bit COB ID the value of the entry is constructed as follows:

Index 1012h
Name TIME COB ID

Mandatory No

Subindex 00h
Name TIME COB ID

Type UNSIGNED32

Default Value 00000100h

Access Read/Write

Mandatory No

Map to PDO No

Bit Description
0 – 10 COB ID for TIME Object

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30
Set to 0 if the node does not generate the TIME Object.
Set to 1 if the node does generate the TIME Object.

31
Set to 0 if the node does not use the TIME Object.
Set to 1 if the node does use the TIME Object.

Table D.17 TIME COB ID Contents for 11-bit COB ID

373

Appendix D: The Object Dictionary

For a 29-bit COB ID the value of the entry is constructed as follows:

Optionally a node may not allow the values of bits 29 and 30 to be changed if it does
not support dynamic configuration of how the node uses the TIME Object.

If the node does not support generating the TIME Object or does not support 29-bit
COB IDs, then attempts to set bits 29 and 30 will result in SDO Abort messages being
transmitted by the node.

Example: 400001A4h
Node generates TIME Object with 11-bit ID 1A4h. Node does not use
the TIME Object.

D.3.17 High Resolution Timestamp (1013h)

Bit Description
0 – 28 COB ID for TIME Object

29 Set to 1 to select 29-bit COB ID

30
Set to 0 if the node does not generate the TIME Object.
Set to 1 if the node does generate the TIME Object.

31
Set to 0 if the node does not use the TIME Object.
Set to 1 if the node does use the TIME Object.

Table D.18 TIME COB ID Contents for 29-bit COB ID

Index 1013h
Name High Resolution Timestamp

Mandatory No

Subindex 00h
Name High Resolution Timestamp

Type UNSIGNED32

Default Value 0

Units µs

Embedded Networking with CAN and CANopen

374

Description: This entry contains a high resolution timestamp in µs, which may be
mapped into a PDO. The high resolution timestamp allows for local
clock synchronization with great precision. If only the SYNC signal is
used for the synchronization of local clocks the deviation between the
clocks could be several hundreds of microseconds, because even the
high priority SYNC message can be delayed (for example because it
has to wait until a message currently on the bus is transmitted).

When the SYNC Producer finishes transmitting the SYNC Object a
local CAN message transmit complete interrupt is generated. In the
interrupt service routine the high resolution timestamp is taken of
that moment in time. This timestamp is then transmitted in a PDO
after the SYNC Object.

When a SYNC Consumer receives the SYNC Object (recognized by a
CAN message received interrupt) it also takes a high resolution time-
stamp of that moment in time. Shortly afterwards the SYNC Con-
sumer will receive the PDO containing the high resolution timestamp
from the SYNC Producer. The SYNC Consumer compares the two
timestamps, which should be identical if the local clocks of the pro-
ducer and the consumer are perfectly synchronized. If they are not
identical, the SYNC consumer has to start a process of synchronizing
itself with the clock of the SYNC producer.

Note however that there is still an error in the synchronization. It
takes some time for the SYNC Producer to react to the SYNC Object
transmission complete interrupt and generate the timestamp. Also it
takes some time for the SYNC Consumer to react to the SYNC Object
being received and generate a timestamp. These delays are typically
different, however they can be calculated in advance based on the
code executed and used to adjust the high resolution timestamps
accordingly. This behavior, however, is application specific.

The timestamp allows for a maximum delay of 72 minutes before it is
reset back to zero.

Access Read/Write

Mandatory No

Map to PDO Yes

Subindex 00h

375

Appendix D: The Object Dictionary

Example: 00152242h = 1385026
A time stamp of 1.385026 seconds

D.3.18 Emergency COB ID (1014h)

Description: The Emergency COB ID entry defines the Identifier used for the
Emergency Object transmitted by the node. The node may allow the
COB ID to be changed by writing to this entry, or it may be fixed and
unchangeable.

The value stored in the entry also determines if the Emergency Object
exists or not and whether an 11-bit or 29-bit Identifier is used.

For an 11-bit COB ID the value of the entry is constructed as follows:

Index 1014h
Name Emergency COB ID

Mandatory Yes if the Emergency Object is supported by the node

Subindex 00h
Name Emergency COB ID

Type UNSIGNED32

Default Value Node ID + 00000080h

Access Read Only or Read/Write

Mandatory Yes if the Emergency Object is supported by the node

Map to PDO No

Bit Description
0 - 10 COB ID for Emergency Object

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

Table D.19 Emergency COB ID Contents for 11-bit COB ID

Embedded Networking with CAN and CANopen

376

For a 29-bit COB ID the value of the entry is constructed as follows:

If the node does not support 29-bit COB IDs and an attempt is made to write a 1 to bit
29, then the node will respond with an SDO Abort message.

In order to change the COB ID on nodes that support writing to this entry, the Emer-
gency Object must first be disabled by writing a 1 to bit 31. Once the COB ID has been
changed, bit 31 can be set back to 0.

Example: 80000082h
Emergency COB ID of 82h used by the node

30 Reserved. Set to 0

31
Set to 0 if the node does use the Emergency Object.
Set to 1 if the node does not use the Emergency
Object.

Bit Description
0 – 28 COB ID for Emergency Object

29 Set to 1 to select 29-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the Emergency Object.
Set to 1 if the node does not use the Emergency
Object.

Table D.20 Emergency COB ID Contents for 29-bit COB ID

Bit Description

Table D.19 (Continued) Emergency COB ID Contents for 11-bit COB ID

377

Appendix D: The Object Dictionary

D.3.19 Inhibit Time Emergency (1015h)

Description: This entry specifies the inhibit time for the Emergency Object trans-
mitted by the node in multiples of 100µs. If used, once the Emergency
Object has been transmitted the next Emergency Object cannot be
transmitted until the time specified by this entry has elapsed, even if
another emergency occurs.

Implementation of this entry is optional. If this entry is not imple-
mented then the Emergency Object does not have an inhibit time and
can transmit messages as frequently as desired. If the entry is imple-
mented then it must be writeable, allowing dynamic changing of the
inhibit time.

Example: 023Ah = 570
The Emergency Object may be transmitted at most once every 57ms

Index 1015h
Name Inhibit Time Emergency

Mandatory No

Subindex 00h
Name Inhibit Time Emergency

Type UNSIGNED16

Default Value 0

Units 100µs

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

378

D.3.20 Consumer Heartbeat Time (1016h)

Index 1016h
Name Consumer Heartbeat Time

Mandatory Yes if the node consumes at least one heartbeat

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if the node consumes at least one heartbeat

Map to PDO No

Subindex 01h
Name Consumer Heartbeat Time

Type UNSIGNED32

Default Value 0

Units ms

Access Read/Write

Mandatory Yes if the node consumes at least one heartbeat

Map to PDO No

Subindex 02h – 7Fh
Name Consumer Heartbeat Time

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

379

Appendix D: The Object Dictionary

Description: The node may listen to the heartbeat messages generated by other
nodes on the network. This entry specifies the maximum time to wait
for a heartbeat from a specific node before generating an internal
heartbeat event in milliseconds (called the Heartbeat Consumer
Time). Measurement begins after reception of the first heartbeat mes-
sage. It does not begin after reception of a bootup message.

Each Subindex specifies the Heartbeat Consumer Time for a specific
node. The value of the entry is constructed as follows:

The Heartbeat Consumer Time of a specific node must be greater than the Heartbeat
Producer Time of the node. The Producer Time can be read from entry 1017h.

Specifying a Heartbeat Consumer Time of zero for a specific Node ID disables the
heartbeat monitoring of that node.

For a specific Node ID there may be more than one Subindex specifying a Heartbeat
Consumer Time of zero, however attempts to set more than one of those entries to a
non-zero value will result in the node transmitting an SDO Abort message.

Example: 005A1122h (1122h = 4386)
Heartbeat Consumer Time of 4.386 seconds for node 5Ah

Mandatory No

Map to PDO No

Bit Description
0 – 15 Heartbeat Consumer Time

16 – 23 Node ID

24 - 31 Reserved. Set to 0

Table D.21 Heartbeat Consumer Time Value

Subindex 02h – 7Fh

Embedded Networking with CAN and CANopen

380

D.3.21 Producer Heartbeat Time (1017h)

Description: A node must support either node guarding or heartbeat generation. If
the node generates heartbeats then this entry must be implemented.
The value of the entry specifies in milliseconds the time between
transmission of heartbeat messages. A value of zero disables trans-
mission of heartbeat messages by the node.

Because the entry is writeable, the value of the entry may change at
any time.

Note that a node must implement either heartbeats, node guarding or
both heartbeats and node guarding.

Example: 4455h = 17493
The node will transmit a heartbeat message every 17.493 seconds

Index 1017h
Name Producer Heartbeat Time

Mandatory Yes if node guarding is not supported

Subindex 00h
Name Producer Heartbeat Time

Type UNSIGNED16

Default Value 0

Units ms

Access Read/Write

Mandatory Yes if node guarding is not supported

Map to PDO No

381

Appendix D: The Object Dictionary

D.3.22 Identity (1018h)

Index 1018h
Name Identity

Mandatory Yes

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes

Map to PDO No

Subindex 01h
Name Vendor ID

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory Yes

Map to PDO No

Subindex 02h
Name Product Code

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

382

Description: The Identity entry provides some basic information about the node in
order to provide a standard way of differentiating between different
versions of a node.

All nodes must implement Subindexes 00h and 01h. The remaining
Subindexes are optional.

The Vendor ID is a unique ID assigned to each CANopen vendor by
CAN in Automation. This allows the source of the node to be identi-
fied.

Subindex 03h
Name Revision Number

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Subindex 04h
Name Serial Number

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

383

Appendix D: The Object Dictionary

The product code and serial number formats are manufacturer specific, however the
revision number has the following format:

For example, if a new version of the node is produced with any difference in the
CANopen messages, transmission types, Object Dictionary entries, etc., then the
major revision number must be increased, otherwise the minor revision number must
be increased.

Example: 00050001h
Revision number 5.1

D.3.23 Verify Configuration (1020h)

Bits Description

0 – 15
Minor Revision Number
Identifies different versions of the node where the CANopen behav-
ior has not changed.

16 – 31
Major Revision Number
Identifies different versions of the node where the CANopen behav-
ior has changed.

Table D.22 Revision Number Format

Index 1020h
Name Verify Configuration

Mandatory No, but recommended when 1010h and 1011h are implemented

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 02h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Embedded Networking with CAN and CANopen

384

Description: This entry allows an NMT Master to determine if the configuration of
the device matches a known Device Configuration File.

When storing a new configuration for the node by writing to entry
1010h, the NMT Master can first write the current date and time to
this entry along with storing the current date and time in a local copy
of the Device Configuration File. The values in this entry will be
saved along with the other parameters when entry 1010h is written.

Whenever any new values are written to the Object Dictionary of the
node, it must set the current date and time stored in this entry to zero
to indicate that the configuration has changed.

The next time the node is started, the NMT Master can read this entry
and compare the date and time with the date and time stored in the

Subindex 01h
Name Configuration Date

Type UNSIGNED32

Default Value Not defined

Units days

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Configuration Time

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

385

Appendix D: The Object Dictionary

Device Configuration File. If the times match, the NMT Master
knows the current configuration of the node without having to read
any further Object Dictionary entries.

The date value is the number of whole days since January 1, 1984. The
time value is the number of milliseconds since midnight.

Example: 23 in Subentry 01h, 6212000 in Subentry 02h
January 24, 1984, 1:43:32 am

D.3.24 Store EDS (1021h)

Description: The Store EDS entry allows the Electronic Datasheet for the node to
be stored in the node. This removes the requirement that the Elec-
tronic Datasheet files are supplied separately and removes any possi-
ble confusion as to which version of an Electronic Datasheet is to be
used for the node.

The Electronic Data Sheet is read and written according to the format
specified in entry 1022h.

Index 1021h
Name Store EDS

Mandatory No

Subindex 00h
Name Store EDS

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

386

D.3.25 Storage Format (1022h)

Description: This entry defines the format that the Electronic Datasheet is read
from and written to entry 1021h Store EDS. The following table lists
the supported formats and values.

Index 1022h
Name Storage Format

Mandatory Yes if entry 1021h Store EDS is implemented

Subindex 00h
Name Storage Format

Type UNSIGNED16

Default Value Not defined

Access Read/Write

Mandatory Yes if entry 1021h Store EDS is implemented

Map to PDO No

Value Description
0000h Uncompressed ASCII

0001h – FFFFh Reserved

Table D.23 EDS Read and Write Formats

387

Appendix D: The Object Dictionary

D.3.26 OS Command (1023h)

Index 1023h
Name OS Command

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 03h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Command

Type OCTET_STRING

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Status

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Embedded Networking with CAN and CANopen

388

Description: This entry allows a node to provide a command based interface. The
command is written to the Command Subentry. The Status Subentry
is then polled to determine the status of the command. Once the com-
mand has been processed the Status will indicate if there is a reply.
The reply can be read from the Reply entry.

The format of the commands and replies are manfacturer specific and
may be ASCII or binary.

Table D.24 lists the possible values for the Status Subentry.

Subindex 03h
Name Reply

Type OCTET_STRING

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Value Description

00h Last command completed. No error occurred.
No reply.

01h Last command completed. No error occurred.
The reply can now be read.

02h Last command completed. Error occured. No
reply.

03h Last command completed. Error occurred. The
reply can now be read.

04h – FEh Reserved

FFh Command is executing

Table D.24 OS Command Status Values

389

Appendix D: The Object Dictionary

D.3.27 OS Command Mode (1024h)

Description: This entry controls whether the node buffers the OS Commands writ-
ten to entry 1023h or not, and provides some degree of control over
the buffer. Table D.25 describes the possible values that may be writ-
ten to this entry, and their effect.

Index 1024h
Name OS Command Mode

Mandatory No

Subindex 00h
Name OS Command Mode

Type UNSIGNED8

Default Value Not defined

Access Write Only

Mandatory No

Map to PDO No

Value Description

00h Execute the next command immediately (no
buffering of commands)

01h Buffer the next command

02h Execute the commands in the buffer

03h Abort the current command and flush the buffer

04h – FFh Manufacturer specific

Table D.25 OS Command Modes

Embedded Networking with CAN and CANopen

390

D.3.28 OS Debugger Interface (1025h)

Index 1025h
Name OS Debugger Interface

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 03h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Command

Type OCTET_STRING

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Status

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

391

Appendix D: The Object Dictionary

Description: This entry allows a node to provide a debugger interface. The com-
mand is written to the Command Subentry. The Status Subentry is
then polled to determine the status of the command. The reply can be
read from the Reply entry.

The format of the commands and replies are manfacturer specific and may be ASCII
or binary. Table D.26 lists the possible values for the Status Subentry.

Subindex 03h
Name Reply

Type OCTET_STRING

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Value Description
00h Last command completed. No error occurred.

01h Last command completed. Error occurred.

02h – FEh Reserved

FFh Command is executing

Table D.26 OS Debugger Interface Status Values

Embedded Networking with CAN and CANopen

392

D.3.29 OS Prompt (1026h)

Index 1026h
Name OS Prompt

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name StdIn

Type UNSIGNED8

Default Value Not defined

Access Write Only

Mandatory Yes if this entry is implemented

Map to PDO Yes

Subindex 02h
Name StdOut

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO Yes

393

Appendix D: The Object Dictionary

Description: This entry provides a command prompt type interface, where charac-
ters are sent and received one at a time. Characters are written to
StdIn either by SDO or PDO, and the response is read from StdOut
either by SDO or PDO. The error output appears on StdErr.

D.3.30 Module List (1027h)

Subindex 03h
Name StdErr

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO Yes

Index 1027h
Name Module List

Mandatory Yes if modular devices are supported

Subindex 00h
Name Number of Connected Modules

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if modular devices are supported

Map to PDO No

Subindex 01h
Name Module 2

Type UNSIGNED16

Default Value Not defined

Embedded Networking with CAN and CANopen

394

Description: This entry allows modules to be dynamically added to a node. A
module can consist of the device profile sections of the Object Dic-
tionary, or manfacturer specific entries. Each module type must have
a unique number, although a specific module may be added to a node
multiple times, effectively allowing scaling of the node's capabilities.
To add a module, the modules' unique identifying number must be
written to a Subentry.

D.3.31 Emergency Consumer (1028h)

Access Read/Write

Mandatory Yes if modular devices are supported

Map to PDO No

Subindex 02h – FEh
Name Module 3 – 255

Type UNSIGNED16

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Index 1028h
Name Emergency Consumer

Mandatory No

Subindex 00h
Name Number of Consumed Emergency Objects

Type UNSIGNED8

Default Value Not defined

Subindex 01h

395

Appendix D: The Object Dictionary

Description: Specifies which Emergency Objects the node consumes. For each
Emergency Object consumed by the node a Subentry is implemented
specifying the COB ID of the Emergency Object. The Subindex of the
Subentry specifies which node generates the Emergency Object. For
example, Subentry 4Ah contains the COB ID of the Emergency Object
generated by node 4Ah.

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Emergency Consumer 1

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h – 7Fh
Name Emergency Consumer 2 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 00h

Embedded Networking with CAN and CANopen

396

For an 11-bit COB ID the value of the Subentries are constructed as
follows:

For a 29-bit COB ID the value of the Subentries are constructed as fol-
lows:

To change a COB ID, bit 31 must first be set to 1 to disable consuming of the Emer-
gency Object. Once the COB ID has been changed the entry can be reenabled by clear-
ing bit 31.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, will result in
the node transmitting an SDO Abort message.

Bit Description
0 - 10 COB ID

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30 Reserved. Set to 0

31

Set to 0 if the node does consume the Emergency
Object.
Set to 1 if the node does not consume the Emergency
Object.

Table D.27 Emergency Consumer COB ID Contents for 11-bit COB ID

Bit Description
0 – 28 COB ID

29 Set to 1 to select 29-bit COB ID

30 Reserved. Set to 0

31

Set to 0 if the node does consume the Emergency
Object.
Set to 1 if the node does not consume the Emergency
Object.

Table D.28 Emergency Consumer COB ID Contents for 29-bit COB ID

397

Appendix D: The Object Dictionary

Example: 0000073Ch
Node consumes the Emergency Object 73Ch

D.3.32 Error Behavior (1029h)

Index 1029h
Name Error Behavior

Mandatory No

Subindex 00h
Name Number of Error Classes

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Communication Error

Type UNSIGNED8

Default Value 00h

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h – FEh
Name Device Profile or Manufacturer Specific Error

Type UNSIGNED8

Default Value 00h

Access Read/Write

Embedded Networking with CAN and CANopen

398

Description: When a node encounters a serious internal error while in the Opera-
tional state, it must switch to the Pre-operational state. By implement-
ing this entry the node may be configured to enter the Stopped state
instead of Pre-operational, or may not change states at all.

Subentry 01h defines the behavior of the node when a communica-
tion error is encountered. Communication errors include Bus Off,
node guarding events and heartbeat events.

Subentries 02H to FFh define the behavior for other severe errors and
the exact errors are manufacturer-specific.

The following table shows the allowed values that may be stored in
the Subentries to configure the node behavior.

Mandatory No

Map to PDO No

Value Node Behavior When an Error is Encountered
00h Switches to Pre-operational

01h Does not change states

02h Switches to Stopped

03h - FFh Reserved

Table D.29 Error Behavior Values

Subindex 02h – FEh

399

Appendix D: The Object Dictionary

D.3.33 Server SDO Parameters (1200h)

Index 1200h
Name Server SDO Parameter

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name COB ID Client to Server (Receive SDO)

Type UNSIGNED32

Default Value Node ID + 00000600h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name COB ID Server to Client (Transmit SDO)

Type UNSIGNED32

Default Value Node ID + 00000580h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Embedded Networking with CAN and CANopen

400

Description: This entry describes the mandatory default SDO communication
channel for the node. Because all entries are read only, it is optional
for a node to implement this entry. Often it is omitted.

Subentry 01h holds the COB ID of the SDO used to access the Object
Dictionary of the node.

Subentry 02h holds the COB ID of the SDO used by the node to
respond to Object Dictionary requests.

Example: 00000611h in Subentry 01h
Receive SDO is 611h for Node 11h

D.3.34 Server SDO Parameters (1201h – 127Fh)

Index 1201h – 127Fh
Name Server SDO Parameter

Mandatory Yes for each additional Server SDO Channel supported by the
node

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for each additional Server SDO Channel supported by the
node

Map to PDO No

Subindex 01h
Name COB ID Client to Server (Receive SDO)

Type UNSIGNED32

Default Value 00000000h

Access Read/Write

401

Appendix D: The Object Dictionary

Description: If a node implements more than one SDO channel for access to the
Object Dictionary, then for each additional channel one Server SDO
Parameter entry must be implemented. For example, if a node imple-
ments two SDO channels, then entry 1201h must be implemented. If a
node implements three SDO channels, then entries 1201h and 1202h
must be implemented.

The entry defines the COB IDs used for the SDO channel along with
(optionally) the Node ID of the client which will use the channel.

Mandatory Yes for each additional Server SDO Channel supported by the
node

Map to PDO No

Subindex 02h
Name COB ID Server to Client (Transmit SDO)

Type UNSIGNED32

Default Value 00000000h

Access Read/Write

Mandatory Yes for each additional Server SDO Channel supported by the
node

Map to PDO No

Subindex 03h
Name Node ID of the SDO Client

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 01h

Embedded Networking with CAN and CANopen

402

Subentry 01h holds the COB ID of the SDO used to access the Object
Dictionary of the node.

Subentry 02h holds the COB ID of the SDO used by the node to
respond to Object Dictionary requests.

For an 11-bit COB ID the value of Subentries 01h and 02h are con-
structed as follows:

For a 29-bit COB ID the value of Subentries 01h and 02h are con-
structed as follows:

To change a COB ID, bit 31 must first be set to 1 to disable the SDO. Once the COB ID
has been changed the SDO can be reenabled by clearing bit 31.

Bit Description
0 - 10 COB ID for SDO

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the SDO.
Set to 1 if the node does not use the SDO.

Table D.30 SDO Parameters COB ID Contents for 11-bit COB ID

Bit Description
0 – 28 COB ID for SDO

29 Set to 1 to select 29-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the SDO.
Set to 1 if the node does not use the SDO.

Table D.31 SDO Parameters COB ID Contents for 29-bit COB ID

403

Appendix D: The Object Dictionary

Each SDO is only valid and usable if bit 31 in Subentry 01h and Subentry 02h are
cleared. For example, the receive SDO cannot be used if bit 31 of the transmit SDO is
set to 1.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, will result in
the node transmitting an SDO Abort message.

Subentry 03h stores the Node ID of the client, which is the node that will send the
Transmit SDO and process the Receive SDO. This Subentry is optional.

Note that this entry is usually written to by a CANopen Manager during the alloca-
tion of dynamic SDO channels.

Example: 0000051Eh in Subentry 01h
Node uses Receive SDO 51Eh

D.3.35 Client SDO Parameters (1280h – 12FFh)

Index 1280h – 12FFh
Name Client SDO Parameter

Mandatory Yes for each supported SDO Client Channel

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 03h

Access Read Only

Mandatory Yes for each supported SDO Client Channel

Map to PDO No

Subindex 01h
Name COB ID Client to Server (Transmit SDO)

Type UNSIGNED32

Default Value 00000000h

Embedded Networking with CAN and CANopen

404

Description: If the node accesses the Object Dictionary of another node then it is
an SDO Client. For each SDO Client Channel the node supports
(transmit and receive SDO pair) a Client SDO Parameter entry must
be implemented. The Subentries define the COB IDs used for the
transmit and receive SDOs along with the Node ID of the node con-
taining the Object Dictionary.

Subentry 01h stores the COB ID of the SDO used to access the Object
Dictionary of the node specified in Subentry 03h.

Subentry 02h stores the COB ID of the SDO returned from the node
specified in Subentry 03h.

Access Read/Write

Mandatory Yes for each supported SDO Client Channel

Map to PDO No

Subindex 02h
Name COB ID Server to Client (Receive SDO)

Type UNSIGNED32

Default Value 00000000h

Access Read/Write

Mandatory Yes for each supported SDO Client Channel

Map to PDO No

Subindex 03h
Name Node ID of the SDO Server

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes for each supported SDO Client Channel

Map to PDO No

Subindex 01h

405

Appendix D: The Object Dictionary

For an 11-bit COB ID the value of Subentries 01h and 02h are con-
structed as follows:

For a 29-bit COB ID the value of Subentries 01h and 02h are con-
structed as follows:

To change a COB ID, bit 31 must first be set to 1 to disable the SDO. Once the COB ID
has been changed the SDO can be reenabled by clearing bit 31.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, will result in
the node transmitting an SDO Abort message.

Note that this entry is usually written to by a CANopen Manager during the alloca-
tion of dynamic SDO channels.

Example: 000004EDh in SubentrySubentry 01h
Node uses Transmit SDO 4EDh

Bit Description
0 - 10 COB ID for SDO

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the SDO.
Set to 1 if the node does not use the SDO.

Table D.32 SDO Parameters COB ID Contents for 11-bit COB ID

Bit Description
0 – 28 COB ID for SDO

29 Set to 1 to select 29-bit COB ID

30 Reserved. Set to 0

31
Set to 0 if the node does use the SDO.
Set to 1 if the node does not use the SDO.

Table D.33 SDO Parameters COB ID Contents for 29-bit COB ID

Embedded Networking with CAN and CANopen

406

D.3.36 Receive PDO Parameters (1400h – 15FFh)

Index 1400h - 15FFh
Name Receive PDO Parameter

Mandatory Yes for each supported Receive PDO

Subindex 00h
Name Highest Subindex Supported

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for each supported Receive PDO

Map to PDO No

Subindex 01h
Name COB ID used by PDO

Type UNSIGNED32

Default Value See description

Access Read Only or Read/Write

Mandatory Yes for each supported Receive PDO

Map to PDO No

Subindex 02h
Name Transmission Type

Type UNSIGNED8

Default Value Determined by the device profile used

Access Read Only or Read/Write

Mandatory Yes for each supported Receive PDO

Map to PDO No

407

Appendix D: The Object Dictionary

Description: This entry must be implemented for each Receive PDO supported by
the node. The entry describes the communication configuration of the
PDO.

Subindex 03h
Name Inhibit Time

Type UNSIGNED16

Default Value Determined by the device profile used

Units 100µs

Access Read/Write

Mandatory No

Map to PDO No

Subindex 04h
Name Compatibility Entry

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 05h
Name Event Timer

Type UNSIGNED16

Default Value Determined by the device profile used

Units ms

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

408

Subentry 01h defines the COB ID of the PDO. The default value
depends on the Index of the entry, as shown in the following table.

The COB ID entry also indicates if the PDO is used or not, the size of
the identifier and whether remote transmit requests are allowed for
the PDO.

For an 11-bit COB ID the value of the Subentry is constructed as fol-
lows:

Index Default Value
1400h Node ID + 00000200h

1401h Node ID + 00000300h

1402h Node ID + 00000400h

1403h Node ID + 00000500h

1404h –
15FFh 80000000h

Table D.34 Receive PDO Default COB IDs

Bit Description
0 - 10 COB ID for PDO

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30 Set to 1

31
Set to 0 if the node does use the PDO
Set to 1 if the node does not use the PDO

Table D.35 PDO Parameters COB ID Contents for 11-bit COB ID

409

Appendix D: The Object Dictionary

For a 29-bit COB ID the value of the Subentry is constructed as fol-
lows:

To change a COB ID, bit 31 must first be set to 1 to disable the SDO. Once the COB ID
has been changed the SDO can be reenabled by clearing bit 31.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, or attempting
to clear bit 30 on a node that does not support remote transmission requests, will
result in the node transmitting an SDO Abort message.

Subentry 02h specifies the transmission type of the Receive PDO. The following table
lists the available transmission types for a Receive PDO.

If the PDO is a Destination Addressing Mode Multiplexed PDO then it must have
transmission type 254. If the PDO is a Source Addressing Mode Multiplexed PDO
then it must have transmission type 254 or 255.

Bit Description
0 – 28 COB ID for PDO

29 Set to 1 to select 29-bit COB ID

30 Set to 1

31
Set to 0 if the node does use the PDO
Set to 1 if the node does not use the PDO

Table D.36 PDO Parameters COB ID Contents for 29-bit COB ID

Transmission Type Description

0 – 240
The Receive PDO is synchronous. The data in the PDO is
processed on reception of the next SYNC Object. The
actual value of the transmission type is not relevant.

241 – 253 Not used for Receive PDOs

254 The transmission type of the Receive PDO is manufacturer
specific.

255 The Recieve PDO is asynchronous. As soon as the PDO
arrives the data is processed by the node.

Table D.37 Receive PDO Transmission Types

Embedded Networking with CAN and CANopen

410

Subentries 03h and 04h are not used and any attempt to read or write to these entries
will return an SDO Abort message from the node.

Subentry 05h may optionally be implemented. It is an event timer which configures
an event to occur after the specified number of milliseconds. A value of zero disables
the event timer. The functionality of the event timer with regard to Receive PDOs is
not described in the CANopen specification, however it may be used for several pur-
poses, including generating an error if the PDO has not been received within a spe-
cific time.

Example: 00000201h in Subindex 01h, 0h in Subindex 02h
Node uses Receive PDO 201h with the data applied to the outputs
upon reception of a SYNC message.

D.3.37 Receive PDO Mapping (1600h – 17FFh)

Index 1600h – 17FFh
Name Receive PDO Mapping

Mandatory Yes for each supported Receive PDO

Subindex 00h
Name Number of Entries (Number of objects mapped into the PDO)

Type UNSIGNED8

Default Value Defined in the device profile

Access
Read Only if dynamic mapping is not supported.
Read/Write if dynamic mapping is supported.

Mandatory Yes for each supported Receive PDO

Map to PDO No

Subindex 01h – 40h
Name PDO Mapping for an application object

Type UNSIGNED32

Default Value Defined in the device profile

411

Appendix D: The Object Dictionary

Description: This entry defines which process data is stored in a single PDO, along
with the position of the process data in the eight data bytes of the
PDO.

Each Receive PDO supported by the node must have a corresponding
Receive PDO Mapping parameter entry implemented. The entry at
1600h is for the first Receive PDO whose communication parameters
are defined at 1400h. The entry at 1601h is for the second Receive
PDO whose communication parameters are defined at 1401h, etc.

A PDO may have 1 to 64 process data variables mapped to it, with
each variable having any length from 1 to 64 bits, however the total
size of all the process data mapped to a single PDO may not exceed
64 bits (eight bytes). Each Subentry defines a process data variable,
therefore Subentry 00h holds the total number of process data vari-
ables mapped to the PDO.

The value of each Subentry defines the process data variable to be
mapped and the size of the process data variable in bits. The process
data variable is defined by specifying the Object Dictionary location
where the data is stored. The value is constructed as follows:

Access Read/Write

Mandatory No

Map to PDO No

Bit Description
0 – 7 Data length in bits

8 – 15 Subindex data can be read at in Object Dictionary

16 - 31 Index data can be read at in Object Dictionary

Table D.38 PDO Mapping Entry Value

Subindex 01h – 40h

Embedded Networking with CAN and CANopen

412

For example, if a 16-bit process data variable was stored in the Object Dictionary at
Index 6001h, Subindex 04h, then it can be mapped into a PDO using the value
60010410h.

The Subentry number indicates the process data variable position in the eight bytes of
the PDO. The process data variable at Subentry 01h is located in the first bits of the
PDO. Table D.39 shows a mapping example and the location of the data in the PDO.

It is possible to create gaps in the mapping by using dummy entries. A dummy entry
is created by mapping one of the data types located at indexes 0001h – 0007h into the
PDO. For example, to create a gap of 16 bits in the PDO, the UNSIGNED16 data type
must be defined in a Subentry. This is achieved using the UNSIGNED16 Object Dic-
tionary location of Index 0006h Subindex 00h, giving a value for the Subentry of
00060010h.

If Subentry 00h contains the value zero (i.e. no process data variables), then the PDO
is disabled. In order to change the current mapping of a PDO, the PDO must first be
disabled by writing zero to Subentry 00h. Once the new values for the Subentries have
been written, Subentry 00h can be written with the number of process data variables
mapped to the PDO. Attempting to write a non-zero value to Subentry 00h will cause
the node to check and ensure that the entire mapping is valid. For example, the total
number of bits mapped to the PDO does not exceed 64, each mapped process data
variable exists in the Object Dictionary and can be mapped to a PDO. If the mapping
is not valid, then the node will return an SDO Abort message in response to any
attempt to set Subentry 00h to a non-zero value.

Each time a mapping entry is written, the node will check and ensure that the process
data exists and can be mapped. If it does not exist or cannot be mapped then an SDO
Abort message will be returned.

Subentry Contents Description Location in PDO
01h 20010008h 8 bits of entry [2001h,00h] Bits 0 – 7

02h 2002000Ch 12 bits of entry [2002h,00h] Bits 8 – 19

03h 20030008h 8 bits of entry [2003h,00h] Bits 20 - 27

04h 20040004h 4 bits of entry [2004h,00h] Bits 28 - 31

Table D.39 PDO Mapping Example

413

Appendix D: The Object Dictionary

If Subentry 00h contains the value FEh then the PDO is a Source Addressing Mode
Multiplexed PDO (SAM-MPDO). Subentries 01h – 40h are not used for SAM-MPDOs
and any values stored there are ignored.

If Subentry 00h contains the value FFh then the PDO is a Destination Addressing
Mode Multiplexed PDO (DAM-MPDO). For DAM-MPDOs only Subentry 01h is used
and must be implemented. It defines the Object Dictionary entry that the DAM-
MPDO data will be written to upon reception.

Example: 62000108h
8-bit digital output entry located at Index 6200h, Subindex 01h is
mapped to the PDO

D.3.38 Transmit PDO Parameters (1800h – 19FFh)

Index 1800h – 19FFh
Name Transmit PDO Parameter

Mandatory Yes for each supported Transmit PDO

Subindex 00h
Name Highest Subindex Supported

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for each supported Transmit PDO

Map to PDO No

Subindex 01h
Name COB ID used by PDO

Type UNSIGNED32

Default Value See description

Access Read Only or Read/Write

Embedded Networking with CAN and CANopen

414

Mandatory Yes for each supported Transmit PDO

Map to PDO No

Subindex 02h
Name Transmission Type

Type UNSIGNED8

Default Value Determined by the device profile used

Access Read Only or Read/Write

Mandatory Yes for each supported Transmit PDO

Map to PDO No

Subindex 03h
Name Inhibit Time

Type UNSIGNED16

Default Value Determined by the device profile used

Units 100µs

Access Read/Write

Mandatory No

Map to PDO No

Subindex 04h
Name Compatibility Entry

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Subindex 01h

415

Appendix D: The Object Dictionary

Description: This entry must be implemented for each Transmit PDO supported
by the node. The entry describes the communication configuration of
the PDO.

Subentry 01h defines the COB ID of the PDO. The default value
depends on the Index of the entry, as shown in the following table.

The COB ID entry also indicates if the PDO is used or not, size of the identifier and
whether remote transmit requests are allowed for the PDO.

Subindex 05h
Name Event Timer

Type UNSIGNED16

Default Value Determined by the device profile used

Units ms

Access Read/Write

Mandatory No

Map to PDO No

Index Default Value
1400h Node ID + 00000180h

1401h Node ID + 00000280h

1402h Node ID + 00000380h

1403h Node ID + 00000480h

1404h –
15FFh 80000000h

Table D.40 Transmit PDO Default COB IDs

Embedded Networking with CAN and CANopen

416

For an 11-bit COB ID the value of the Subentry is constructed as fol-
lows:

For a 29-bit COB ID the value of the Subentry is constructed as fol-
lows:

To change a COB ID, bit 31 must first be set to 1 to disable the SDO. Once the COB ID
has been changed the SDO can be reenabled by clearing bit 31.

Bit Description
0 - 10 COB ID for PDO

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30

Set to 0 if remote transmit requests are allowed for the
PDO.
Set to 1 if remote transmit requests are not allowed for
the PDO.

31
Set to 0 if the node does use the PDO.
Set to 1 if the node does not use the PDO.

Table D.41 PDO Parameters COB ID Contents for 11-bit COB ID

Bit Description
0 – 28 COB ID for PDO

29 Set to 1 to select 29-bit COB ID

30

Set to 0 if remote transmit requests are allowed for the
PDO.
Set to 1 if remote transmit requests are not allowed for
the PDO.

31
Set to 0 if the node does use the PDO.
Set to 1 if the node does not use the PDO.

Table D.42 PDO Parameters COB ID Contents for 29-bit COB ID

417

Appendix D: The Object Dictionary

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, or attempting
to clear bit 30 on a node that does not support remote transmission requests, will
result in the node transmitting an SDO Abort message.

Subentry 02h specifies the transmission type of the Transmit PDO. Table D.43 lists the
available transmission types for a Transmit PDO.

If the PDO is a Destination Addressing Mode Multiplexed PDO then it must have
transmission type 254. If the PDO is a Source Addressing Mode Multiplexed PDO
then it must have transmission type 254 or 255.

Subindex 03h is optional and defines the inhibit time for the PDO. The inhibit time
specifies the minimum time between transmissions of the PDO. Once the PDO is
transmitted, any additional transmissions of the PDO will not take place during the
inhibit time.

Transmission
Type Description

0

The Transmit PDO is synchronous. Which specific SYNC Object
occurrence triggers the transmission is given in the device profile.
Additional details of the PDO transmission are given in the device
profile.

1 – 240

The Transmit PDO is synchronous. It is transmitted after every
nth SYNC Object within the Synchronous Window Length, where
n is the transmission type. For example, when using transmission
type 34, the PDO is transmitted after every 34th SYNC Object.

241 – 251 Not used for Transmit PDOs

252
The data for the PDO is updated on reception of a SYNC Object,
but the PDO is not transmitted. The PDO is only transmitted on
reception of a Remote Transmission Request.

253 The data for the PDO is updated and the PDO is transmitted on
reception of a Remote Transmission Request.

254 The conditions that cause the Transmit PDO to be transmitted are
manufacturer specific.

255 The Transmit PDO is asynchronous. Details of when the PDO is
transmitted is given in the device profile.

Table D.43 Transmit PDO Transmission Types

Embedded Networking with CAN and CANopen

418

The inhibit time is a multiple of 100µs. For example, a value of 173Ah would give an
inihibit time of 594.6ms. A value of zero disables the inhibit time functionality.

Note that the inhibit time is measured from the time when the node first attempts to
send the PDO. If the PDO is blocked from being sent because of higher priority mes-
sages on the bus, then the delay before the PDO is actually transmitted is included in
the inhibit time. Therefore the inhibit time must be greater than the worst case trans-
mission time of the PDO.

The inhibit time may not be changed while the PDO is being used by the node. To
change the inhibit time the PDO must first be disabled by setting bit 31 of Subentry
01h.

Subentry 04h is not used. It may optionally be implemented, but if it is not imple-
mented then any attempt to read or write the entry will return an SDO Abort message
from the node. If the Subentry is not implemented, Subentry 05h may still be imple-
mented if desired.

Subentry 05h defines the optional event time for a Transmit PDO. A value of zero dis-
ables the event timer.

If the event timer is used, then the PDO is periodically transmitted. The value of the
event timer entry is the number of milliseconds between transmissions. Each time the
PDO is transmitted as a result of the event timer expiring, the event timer is reset.

Example: 00000181h in Subentry 01h, 100 in Subentry 02h, 1000 in Subentry
03h, 3000 in Subentry 04h
The PDO is transmitted with a COB ID of 181h every 100 SYNC mes-
sages, sampling the data to be transmitted in the PDO at the SYNC.
The PDO will be transmitted at most every 1 second and transmitted
every 3 seconds if 100 SYNCS have not occurred.

419

Appendix D: The Object Dictionary

D.3.39 Transmit PDO Mapping (1A00h – 1BFFh)

Description: This entry defines which process data is stored in a single PDO, along
with the position of the process data in the eight data bytes of the
PDO.

Each Transmit PDO supported by the node must have a correspond-
ing Transmit PDO Mapping parameter entry implemented. The entry
at 1A00h is for the first Transmit PDO whose communication param-
eters are defined at 1800h. The entry at 1A01h is for the second Trans-
mit PDO whose communication parameters are defined at 1801h, etc.

Index 1A00h – 1BFFh
Name Transmit PDO Mapping

Mandatory Yes for each supported Transmit PDO

Subindex 00h
Name Number of Entries (Number of objects mapped into the PDO)

Type UNSIGNED8

Default Value Defined in the device profile

Access
Read Only if dynamic mapping is not supported.
Read/Write if dynamic mapping is supported.

Mandatory Yes for each supported Transmit PDO

Map to PDO No

Subindex 01h – 40h
Name PDO Mapping for a process data variable

Type UNSIGNED32

Default Value Defined in the device profile

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

420

A PDO may have 1 to 64 process data variables mapped to it, with
each variable having any length from 1 to 64 bits, however the total
size of all the process data mapped to a single PDO may not exceed
64 bits (eight bytes). Each Subentry defines a process data variable,
therefore Subentry 00h holds the total number of variables mapped to
the PDO.

The value of each Subentry defines the process data variable to be
mapped and the size of the variable in bits. The process data variable
is defined by specifying the Object Dictionary location where the data
is stored. The value is constructed as follows:

For example, if a 16-bit process data variable was stored in the Object Dictionary at
Index 6001h, Subindex 04h, then it can be mapped into a PDO using the value
60010410h.

The Subentry number indicates the process data variable position in the eight bytes of
the PDO. The process data variable at Subentry 01h is located in the first bits of the
PDO. For example, the following table shows an example mapping and the location of
the data in the PDO.

Mapping dummy entries to a Transmit PDO is not permitted. No gaps may appear in
the mapped data in a Transmit PDO.

Bit Description
0 – 7 Data length in bits

8 – 15 Subindex data can be read at in Object Dictionary

16 - 31 Index data can be read at in Object Dictionary

Table D.44 PDO Mapping Entry Value

Subentry Contents Description Location in PDO
01h 20010008h 8 bits of entry [2001h,00h] Bits 0 – 7

02h 2002000Ch 12 bits of entry [2002h,00h] Bits 8 – 19

03h 20030008h 8 bits of entry [2003h,00h] Bits 20 - 27

04h 20040004h 4 bits of entry [2004h,00h] Bits 28 - 31

Table D.45 PDO Mapping Example

421

Appendix D: The Object Dictionary

If Subentry 00h contains the value zero (i.e. no process data variables), then the PDO
is disabled. In order to change the current mapping of a PDO, the PDO must first be
disabled by writing zero to Subentry 00h. Once the new values for the Subentries have
been written, Subentry 00h can be written with the number of process data variables
mapped to the PDO. Attempting to write a non-zero value to Subentry 00h will cause
the node to check and ensure that the entire mapping is valid. For example, the total
number of bits mapped to the PDO does not exceed 64, each mapped process data
variable exists in the Object Dictionary and can be mapped to a PDO. If the mapping
is not valid, then the node will return an SDO Abort message in response to any
attempt to set Subentry 00h to a non-zero value.

Each time a mapping entry is written, the node will check and ensure that the process
data exists and can be mapped. If it does not exist or cannot be mapped then an SDO
Abort message will be returned.

If Subentry 00h contains the value FEh then the PDO is a Source Addressing Mode
Multiplexed PDO (SAM-MPDO). Subentries 01h – 40h are not used for SAM-MPDOs
and any values stored there are ignored.

If Subentry 00h contains the value FFh then the PDO is a Destination Addressing
Mode Multiplexed PDO (DAM-MPDO). For DAM-MPDOs only Subentry 01h is used
and must be implemented. It defines the Object Dictionary entry that the DAM-
MPDO data will contain when transmitted. DAM-MPDOs also contain the Node ID
of the DAM-MPDO consumer and the Index and Subindex of the Consumer's Object
Dictionary entry where the data will be stored. How these values are specified is man-
fuacturer-specific and not covered by the CANopen specification.

Example: 60000108h
Transmit the 8-bit digital input located at Index 6000h, Subindex 01h
in the PDO.

Embedded Networking with CAN and CANopen

422

D.3.40 Object Scanner List (1FA0h – 1FCFh)

Index 1FA0h – 1FCFh
Name Object Scanner List

Mandatory Yes if Source Address Mode Multiplexed PDOs are transmitted
by the node

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if Source Address Mode Multiplexed PDOs are transmitted
by the node

Map to PDO No

Subindex 01h
Name Scan 1

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if Source Address Mode Multiplexed PDOs are transmitted
by the node

Map to PDO No

Subindex 02h – FEh
Name Scan 2 – 254

Type UNSIGNED32

Default Value Not defined

Access Read/Write

423

Appendix D: The Object Dictionary

Description: If a node transmits Source Address Mode Multiplexed PDOs (SAM-
MPDOs) then it must implement the Object Scanner List to specify
which process data is transmitted in the SAM-MPDO.

The scanner list specifies the Object Dictionary Index and Subindex of
the process data, and may optionally specify ranges of Subindexes.
This allows for a large range of data to be specified in the Object Scan-
ner List.

An entry in the Object Scanner List is constructed as shown in the fol-
lowing table:

A SAM-MPDO producer scans the Object Scanner List and decides on a specific
Object Dictionary entry to transmit in a SAM-MPDO. The transmission type of a
SAM-MPDO is manufacturer-specific, therefore the method of determining which
process data to transmit is not covered by the CANopen specification. When the
SAM-MPDO is transmitted, the SAM-MPDO contains the process data along with the
Index and Subindex of where in the node's Object Dictionary the process data is
located.

Example: 03600102h
Entry 6001h, Subentries 02h to 04h

Mandatory No

Map to PDO No

Bit Description
0 – 7 Subindex

8 – 23 Index

24 - 31 Number of Subindexes

Table D.46 Object Scanner List Entry

Subindex 02h – FEh

Embedded Networking with CAN and CANopen

424

D.3.41 Object Dispatching List (1FD0h – 1FFFh)

Index 1FD0h – 1FFFh
Name Object Dispatching List

Mandatory Yes if Source Address Mode Multiplexed PDOs are received by
the node

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if Source Address Mode Multiplexed PDOs are received by
the node

Map to PDO No

Subindex 01h
Name Dispatch 1

Type UNSIGNED64

Default Value Not defined

Access Read/Write

Mandatory Yes if Source Address Mode Multiplexed PDOs are received by
the node

Map to PDO No

Subindex 02h – FEh
Name Dispatch 2 – 254

Type UNSIGNED64

Default Value Not defined

Access Read/Write

425

Appendix D: The Object Dictionary

Description: If a node receives Source Address Mode Multiplexed PDOs (SAM-
MPDOs) then it must implement the Object Dispatching List to spec-
ify which process data is received in the SAM-MPDO.

Each entry in the Object Dispatching List specifies where in the
Object Dictionary the received process data should be stored. It is
cross referenced with the Object Dictionary entry of the node that
produces the SAM-MPDO. The following table shows the contents of
an entry in the Object Dispatching List.

When a SAM-MPDO is received, the Index, Subindex and sender Node ID in the
SAM-MPDO are looked up in the Object Dispatching List. When an entry is found,
the node can then determine in which local Object Dictionary entry to store the data.

It is possible for ranges of entries to be specified allowing more complex mapping of
the sender (SAM-MPDO producer) to the local (SAM-MPDO consumer) Object Dic-
tionary.

For example, assume the following value is used for an Object Dispatching List entry:

Mandatory No

Map to PDO No

Bit Description
0 – 7 Sender Node ID

8 – 15 Sender Subindex

16 – 31 Sender Index

32 – 39 Local Subindex

40 – 55 Local Index

56 - 63 Number of Subindexes

Table D.47 Object Dispatching List Entry

Sender Node ID 0Ah

Sender Subindex 01h

Subindex 02h – FEh

Embedded Networking with CAN and CANopen

426

Then the sender's Object Dictionary entry 6001h Subindexes 01h to 03h are mapped to
the local Object Dictionary entry 2101h Subindexes 06h to 08h.

Sender Index 6001h

Local Subindex 2101h

Local Index 06h

Number of Subindexes 03h

427

Appendix D: The Object Dictionary

D.4 CANopen Managers and Programmable
CANopen Devices

D.4.1 Object Dictionary Entries

The following table gives an overview of all Object Dictionary entries in the Program-
mable CANopen Devices section of the Object Dictionary.

Index Name Type Access
1F00h Request SDO UNSIGNED32 Write Only

1F01h Release SDO UNSIGNED32 Write Only

1F02h SDO Manager COB IDs UNSIGNED32 Read/Write

1F03h SDO Connections Part 1 UNSIGNED32 Read Only

1F04h SDO Connections Part 2 UNSIGNED32 Read Only

1F05h SDO Connections Part 3 UNSIGNED32 Read Only

1F06h SDO Connections Part 4 UNSIGNED32 Read Only

1F10h Dynamic SDO Connection State UNSIGNED32 Read/Write

1F11h Slave Failed UNSIGNED16 Read Only

1F20h Store DCF DOMAIN Read/Write

1F21h Storage Format UNSIGNED8 Read/Write

1F22h Concise DCF DOMAIN Read/Write

1F23h Store Slave EDS DOMAIN Read/Write

1F24h Slave EDS Storage Format UNSIGNED8 Read/Write

1F25h Configure Slave UNSIGNED32 Read/Write

1F26h Expected Configuration Date UNSIGNED32 Read/Write

1F27h Expected Configuraton Time UNSIGNED32 Read/Write

1F50h Download Program Data DOMAIN Read/Write

1F51h Program Control UNSIGNED8 Read/Write

1F52h Verify Application Software UNSIGNED32 Read/Write

Table D.48 Programmable CANopen Devices Object Dictionary Entries

Embedded Networking with CAN and CANopen

428

D.4.2 Request SDO (1F00h)

1F53h Expected Application SW Date UNSIGNED32 Read/Write

1F54h Expected Application SW Time UNSIGNED32 Read/Write

1F70h Process Picture RECORD Read/Write

1F80h NMT Startup UNSIGNED32 Read/Write

1F81h Slave Assignment UNSIGNED32 Read/Write

1F82h Request NMT UNSIGNED8 Read/Write

1F83h Request Guarding UNSIGNED8 Read/Write

1F84h Device Type Identification UNSIGNED32 Read/Write

1F85h Vendor Identification UNSIGNED32 Read/Write

1F86h Product Code UNSIGNED32 Read/Write

1F87h Revision Number UNSIGNED32 Read/Write

1F88h Serial Number UNSIGNED32 Read/Write

1F89h Boot Time UNSIGNED32 Read/Write

1F90h Flying Master Timing Parameters UNSIGNED16 Read/Write

1F91h Startup-capable Device Timing UNSIGNED16 Read/Write

Index 1F00h
Name Request SDO

Mandatory Yes for SDO Managers

Subindex 00h
Name Request SDO

Type UNSIGNED32

Default Value Not defined

Access Write Only

Index Name Type Access

Table D.48 (Continued) Programmable CANopen Devices Object Dictionary

429

Appendix D: The Object Dictionary

Description: If a node referred to in this process as the SDO Requesting Device
(SRD) wishes to request an SDO channel to another node (called the
slave), then it must write to this entry on the SDO Manager. Section
D.5.4 shows the sequence of Object Dictionary accesses involved.

The value of the entry is constructed as follows:

Example: 12800612h
The SRD with Node ID 06h wishes to request an SDO channel to
Node ID 12h. Client SDO entry 1280h is free to be used.

D.4.3 Release SDO (1F01h)

Mandatory Yes for SDO Managers

Map to PDO No

Bit Description
0 – 7 Slave Node ID

8 – 15 SRD Node ID

16 – 31 Index of a free Client SDO Entry in the SRD's Object
Dictionary (1280h – 12FFh)

Table D.49 Request SDO Entry

Index 1F01h
Name Release SDO

Mandatory Yes for SDO Managers

Subindex 00h
Name Release SDO

Type UNSIGNED32

Default Value Not defined

Access Write Only

Subindex 00h

Embedded Networking with CAN and CANopen

430

Description: If a node referred to in this process as the SDO Requesting Device
(called the SRD) wishes to release the SDO channels it is using to con-
nect to another node (called the slave) or release all SDO channels,
then it writes to this entry on the SDO Manager. Section D.5.4 shows
the sequence of Object Dictionary accesses involved.

The value of the entry is constructed as follows:

Example: 12800612h
The SRD with Node ID 06h wishes to release the SDO channel it used
to communicate with Node 12. The Client SDO at 1280h is being
used.

Mandatory Yes for SDO Managers

Map to PDO No

Bit Description

0 – 7 Slave Node ID or zero to release all connections and
un-register as an SRD

8 – 15 SRD Node ID

16 – 31
Index of a Client SDO Entry in the SRD's Object Dic-
tionary (1280h – 12FFh) being used to connect to the
Slave or zero to release all SDO channels to the Slave

Table D.50 Request SDO Entry

Subindex 00h

431

Appendix D: The Object Dictionary

D.4.4 SDO Manager COB IDs (1F02h)

Description: This entry allows a Configuration Tool to specify to the SDO Manager
which COB IDs are available to be used for SDO channels, and also
for reading which COB IDs are currently in use for SDO channels.

Index 1F02h
Name SDO Manager COB IDs

Mandatory Yes for SDO Managers

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes for SDO Managers

Map to PDO No

Subindex 01h - FEh
Name COB ID 1 - 254

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

432

For an 11-bit COB ID the value of the Subentries are constructed as
follows:

For a 29-bit COB ID the value of the Subentries are constructed as fol-
lows:

To change a COB ID, bit 31 must first be set to 1 to disable the Subentry. Once the COB
ID has been changed the entry can be reenabled by clearing bit 31.

Attempting to set bit 29 on a node that does not support 29-bit COB IDs, will result in
the node transmitting an SDO Abort message.

Note that when writing to this entry, it must be ensured that there are no dynamic
SDO connections being used at the time.

Bit Description
0 - 10 COB ID

11 - 28 Set to 0

29 Set to 0 to select 11-bit COB ID

30
Set to 0 if the COB ID is free to be used for an SDO channel
Set to 1 if the COB ID is currently in use for an SDO channel

31
Set to 0 if the COB ID is valid. i.e. this Subentry is being used.
Set to 1 if the COB ID is not valid. i.e. this Subentry is not used.

Table D.51 SDO Manager COB ID Contents for 11-bit COB ID

Bit Description
0 – 28 COB ID

29 Set to 1 to select 29-bit COB ID

30
Set to 0 if the COB ID is free to be used for an SDO channel
Set to 1 if the COB ID is currently in use for an SDO channel

31
Set to 0 if the COB ID is valid. i.e. this Subentry is being used.
Set to 1 if the COB ID is not valid. i.e. this Subentry is not used.

Table D.52 SDO Manager COB ID Contents for 29-bit COB ID

433

Appendix D: The Object Dictionary

Example: 00000412h
COB ID 412h is available and free to be used

D.4.5 SDO Connections Part 1 (1F03h)

Description: This entry describes the first 254 dynamic SDO connections between
nodes in the CANopen network. This entry is implemented on the
SDO Manager.

Index 1F03h
Name SDO Connections Part 1

Mandatory Yes for SDO Managers

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes for SDO Managers

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 1 - 254

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

434

The Subentries are constructed as follows:

Each entry specifies the Server and Client Node IDs.

The Server Offset is added to 1200h to obtain the Index of the Server SDO in the
Server's Object Dictionary.

The Client Offset is added to 1280h to obtain the Index of the Client SDO in the Cli-
ent's Object Dictionary.

If either the Client or Server Node ID is zero, then the connection described is not
valid and not in use.

Section D.5.4 shows the sequence of Object Dictionary accesses used for dynamic SDO
channel assignment.

Example: 03060112h
Node 06h using client SDO 1283h has established an SDO connection
with node 12h using server SDO 1201h.

Bit Description
0 – 7 Server Node ID

8 – 15 Server Offset

16 – 23 Client Node ID

24 - 31 Client Offset

Table D.53 SDO Connection Entry

435

Appendix D: The Object Dictionary

D.4.6 SDO Connections Part 2 (1F04h)

Description: This entry describes up to 254 dynamic SDO connections between
nodes in the CANopen network. This entry is implemented on the
SDO Manager.

Index 1F04h
Name SDO Connections Part 2

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 255 - 508

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

436

The Subentries are constructed as follows:

Each entry specifies the Server and Client Node IDs.

The Server Offset is added to 1200h to obtain the Index of the Server SDO in the
Server's Object Dictionary.

The Client Offset is added to 1280h to obtain the Index of the Client SDO in the Cli-
ent's Object Dictionary.

If either the Client or Server Node ID is zero, then the connection described is not
valid and not in use.

Section D.5.4 shows the sequence of Object Dictionary accesses used for dynamic SDO
channel assignment.

Example: 03060112h
Node 06h using client SDO 1283h has established an SDO connection
with node 12h using server SDO 1201h.

Bit Description
0 – 7 Server Node ID

8 – 15 Server Offset

16 – 23 Client Node ID

24 - 31 Client Offset

Table D.54 SDO Connection Entry

437

Appendix D: The Object Dictionary

D.4.7 SDO Connections Part 3 (1F05h)

Description: This entry describes up to 254 dynamic SDO connections between
nodes in the CANopen network. This entry is implemented on the
SDO Manager.

Index 1F05h
Name SDO Connections Part 3

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 509 - 762

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

438

The Subentries are constructed as follows:

Each entry specifies the Server and Client Node IDs.

The Server Offset is added to 1200h to obtain the Index of the Server SDO in the
Server's Object Dictionary.

The Client Offset is added to 1280h to obtain the Index of the Client SDO in the Cli-
ent's Object Dictionary.

If either the Client or Server Node ID is zero, then the connection described is not
valid and not in use.

Section D.5.4 shows the sequence of Object Dictionary accesses used for dynamic SDO
channel assignment.

Example: 03060112h
Node 06h using client SDO 1283h has established an SDO connection
with node 12h using server SDO 1201h.

Bit Description
0 – 7 Server Node ID

8 – 15 Server Offset

16 – 23 Client Node ID

24 - 31 Client Offset

Table D.55 SDO Connection Entry

439

Appendix D: The Object Dictionary

D.4.8 SDO Connections Part 4 (1F06h)

Description: This entry describes up to 254 dynamic SDO connections between
nodes in the CANopen network. This entry is implemented on the
SDO Manager.

Index 1F06h
Name SDO Connections Part 4

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h - FEh
Name SDO Connection 763 - 1016

Type UNSIGNED32

Default Value Not defined

Access Read Only

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

440

The Subentries are constructed as follows:

Each entry specifies the Server and Client Node IDs.

The Server Offset is added to 1200h to obtain the Index of the Server SDO in the
Server's Object Dictionary.

The Client Offset is added to 1280h to obtain the Index of the Client SDO in the Cli-
ent's Object Dictionary.

If either the Client or Server Node ID is zero, then the connection described is not
valid and not in use.

Section D.5.4 shows the sequence of Object Dictionary accesses used for dynamic SDO
channel assignment.

Example: 03060112h
Node 06h using client SDO 1283h has established an SDO connection
with node 12h using server SDO 1201h.

Bit Description
0 – 7 Server Node ID

8 – 15 Server Offset

16 – 23 Client Node ID

24 - 31 Client Offset

Table D.56 SDO Connection Entry

441

Appendix D: The Object Dictionary

D.4.9 Dynamic SDO Connection State (1F10h)

Description: This entry is implemented in a node (SDO Requesting Device - SRD)
that wishes to obtain an SDO channel to another node (slave). It
allows the SRD to provide information to the SDO Manager as well as
receive configuration data back from the SDO Manager. Therefore,
during the process of obtaining dynamic SDO channels, the SRD
must make specific values available for reading at this entry, and
operate on values written to this entry by the SDO Manager.

This entry is constructed as follows:

Index 1F10h
Name Dynamic SDO Connection State

Mandatory Yes for nodes using dynamic SDO channels

Subindex 00h
Name Dynamic SDO Connection State

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes for nodes using dynamic SDO channels

Map to PDO No

Bit Description
0 Rq Indication

1 - 2 Cnxn State

3 Req. EC

4 - 7 Reserved. Always zero

8 - 15 Error code

16 - 31 Index

Table D.57 Dynamic SDO Connection State Entry

Embedded Networking with CAN and CANopen

442

The SRD sets the Rq Indication flag when it wishes to be registered with the SDO
Manager as an SRD. It sets this bit before sending the Dynamic SDO Request message.
The Request Message has the COB ID 6E0h and contains no data. When the SDO
Manager successfully recognizes the node as an SRD by scanning the Rq Indication
Flag of all nodes on the network, it writes a zero to this bit. Note that the SDO Man-
ager only scans until it finds the first node with the Rq Indication Flag set. Therefore if
there is more than one node wishing to set up a dynamic SDO channel, each node
may have to send the Request Message repeatedly until the SDO Manager recognizes
the node as an SRD.

If the SRD wishes to establish a connection with a slave using a single SDO channel,
then the Cnxn State value is set to 0h before the Dynamic SDO Request message is
transmitted.

If the SRD wishes to obtain all default SDO channels that are currently unused, then it
sets the Cnxn State to 1h instead.

The SDO Manager writes various values to the Cnxn State to indicate the result of
operations.

A value of 0h indicates that the SDO Manager failed to establish an SDO connection
between the SRD and SDO Manager or failed to establish an SDO connection between
the SRD and slave. The reason for the failure is given in the Error code field.

A value of 1h indicates that the SDO Manager has successfully established an SDO
connection between the SRD and SDO Manager.

A value of 2h indicates that the SDO Manager is allowing the SRD to obtain all default
SDO Channels that are currently unused.

A value of 3h indicates that the SDO connection between the SRD and slave has been
established.

The Req EC value must be set to 1h if the SRD wishes the SDO Manager to perform
error control on the slave. This will result in the SDO Manager using either heartbeat
or node guarding to determine that the slave node is present and operational while
the SRD has an SDO channel to the slave.

If the SDO Manager does not support error control on slaves then it will write 0h to
this bit, otherwise it will write 1h.

443

Appendix D: The Object Dictionary

The error code field is only used if the SDO Manager fails to establish an SDO connec-
tion between itself and the SRD or between the SRD and slave. It has one of the fol-
lowing values:

The SRD specifies the Index (1280h – 12FFh) of the Client SDO to use to communicate
with the SDO Manager in the Index field. If all unused default SDOs are being
requested then the Index field is ignored by the SDO Manager.

The SDO Manager writes the Client SDO Index of the Client SDO that will actually be
used to communicate with the SDO Manager.

Section D.5.4 lists the sequence of Object Dictionary accesses used for dynamic SDO
channel assignment.

D.4.10 Slave Failed (1F11h)

Error Code Description
00h Unspecified error

01h There was no free SDO channel to create a connection between
the SDO Manager and SRD

02h There were no more free SDO channels in the CANopen network

03h The Slave does not have any free Server SDOs

04h The Slave node is not available

05h – FFh Reserved

Table D.58 Dynamic SDO Connection Error Codes

Index 1F11h
Name Slave Failed

Mandatory No

Subindex 00h
Name Slave Failed

Type UNSIGNED16

Embedded Networking with CAN and CANopen

444

Description: If a node (SDO Requesting Device - SRD) has established an SDO
Connection with another node (slave) and specified that the SDO
Manager should use error control, then this entry which is imple-
mented on the SRD will be written to by the SDO Manager should a
heartbeat or node guarding event occur.

If this entry is written to, then the SRD must assume that the SDO
connection it has with the slave is no longer valid. The SDO Manager
will automatically take steps to release the SDO Connection between
the SRD and the slave.

The value written is the Node ID of the slave.

D.4.11 Store DCF (1F20h)

Default Value Not defined

Access Write Only

Mandatory No

Map to PDO No

Index 1F20h
Name Store DCF

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 00h

445

Appendix D: The Object Dictionary

Description: This entry is implemented on a Configuration Manager and allows
the Device Configuration Files (DCF) to be written to and read from
the manager. Each Subentry corresponds to a node on the network,
with the Subindex specifying the Node ID. For example, to store the
DCF for node 3Ah in the Configuration Manager, the DCF is written
to Subentry 3Ah.

The format that the DCF is read and written is specified by OD entry
1F21h.

D.4.12 Storage Format (1F21h)

Subindex 01h – 7Fh
Name Store DCF Node 1 – 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F21h
Name Storage Format

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Embedded Networking with CAN and CANopen

446

Description: This entry specifies the storage format of the DCF when read to and
written from OD entry 1F20h. Currently the following values are
implemented. All other values are reserved.

Note that the internal storage format of the DCFs is manufacturer-specific and may be
compressed if desired.

D.4.13 Concise DCF (1F22h)

Subindex 01h – 7Fh
Name Storage Format Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Value Format
00h Non-compressed ASCII

Table D.59 DCF Storage Formats

Index 1F22h
Name Concise DCF

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

447

Appendix D: The Object Dictionary

Description: If a Configuration Manager does not have enough disk or non-vola-
tile memory space to store the full Device Configuration Files (DCFs),
then it may optionally implement this entry to store concise versions
of the DCFs.

There is one Subentry for each possible node on the network, allow-
ing a DCF to be read or written for each node. For example, to store
the DCF for node 3Ah on the Configuration Manager, the Concise
DCF is written to Subentry 3Ah.

The concise version of the DCF is stored as a stream of data contain-
ing information about where the Object Dictionary data is stored and
how large it is.

The data stream is structured as follows:

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Concise DCF Node 1 - 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Number of supported entries n (UNSIGNED32)

Entry 1

Entry 2

…

Entry n

Table D.60 Concise DCF Data Stream

Subindex 00h

Embedded Networking with CAN and CANopen

448

Where each entry has the following data format:

The first item of data indicates the number of entries that are contained in the data
stream and has the type UNSIGNED32. Each entry then follows.

In order to simplify the operation of the Configuration Manager when using the con-
cise DCF to configure nodes, the Configuration Manager writes to the Object Diction-
ary of the node by processing each entry in the data stream one at a time. For example,
if entry 1 in the data stream specifies the value 12h for entry [2001h,04h] and entry 2
specifies the value 6Ah for entry [25AFh,00h] then the Configuration Manager will
first write 12h to [2001h,04h] then write 6Ah to [25AFh,00h]. This means that when
writing to entries that require a flag to be set or cleared before the contents can be
changed (for example COB ID entries), multiple entries in the data stream must be
used. For example to change the COB ID of a PDO there must be two entries specified
in the data stream. The first only sets bit 31 to 1 to disable the PDO. The second sets
the new COB ID and clears bit 31 to enable the PDO.

An empty stream can be written by specifying zero for the number of entries in the
stream. Reading an unused entry will result in a stream with zero for the number of
entries.

Name Type
Index UNSIGNED16

Subindex UNSIGNED8

Data size UNSIGNED32

Data DOMAIN

Table D.61 Concise DCF Entry

449

Appendix D: The Object Dictionary

D.4.14 Store Slave EDS (1F23h)

Description: This entry is implemented on a Configuration Manager, and allows
the Electronic Datasheets (EDSs) to be written to and read from the
manager, usually by a configuration tool. Each Subentry corresponds
to a node on the network, with the Subindex specifying the Node ID.
For example, to store the EDS for node 3Ah in the Configuration
Manager, the EDS is written to Subentry 3Ah.

The format in which the EDS is read and written is specified by OD
entry 1F24h.

Index 1F23h
Name Store Slave EDS

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Store Slave EDS Node 1 - 127

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Embedded Networking with CAN and CANopen

450

D.4.15 Slave EDS Storage Format (1F24h)

Description: This entry specifies the storage format of the Electronic Datasheet
(EDS) when read to and written from OD entry 1F23h. Currently the
following values are implemented. All other values are reserved.

Index 1F24h
Name Slave EDS Storage Format

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Slave EDS Storage Format Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Value Format
00h Non-compressed ASCII

Table D.62 EDS Storage Formats

451

Appendix D: The Object Dictionary

Note that the internal storage format of the EDSs is manufacturer-specific and may be
compressed if desired.

D.4.16 Configure Slave (1F25h)

Index 1F25h
Name Configure Slave

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 80h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Configure Slave 1 - 127

Type UNSIGNED32

Default Value Not Defined

Access Write Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 80h
Name Configure All Slaves

Type UNSIGNED32

Default Value Not Defined

Access Write Only

Embedded Networking with CAN and CANopen

452

Description: Nodes may write to this entry, implemented on the Configuration
Manager, to request that the manager configure a specific node or all
nodes. By writing the value "conf" (666E6F63h) to Subentries 01h –
7Fh, the corresponding node whose Node ID matches the Subindex
will be subsequently configured by the Configuration Manager. By
writing "conf" to Subentry 80h, all nodes will be configured.

D.4.17 Expected Configuration Date (1F26h)

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F26h
Name Expected Configuration Date

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Configuration Date Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Units Days

Access Read/Write

Subindex 80h

453

Appendix D: The Object Dictionary

Description: This entry is implemented on the Configuration Manager and stores
the expected configuration date of each node. Each Subentry corre-
sponds to a node on the network, with the Subindex indicating the
Node ID.

When the Configuration Manager wishes to check if the node is using
the currently known configuration it may read this entry to deter-
mine if an expected configuration date exists. This is indicated by a
non-zero value. If an expected configuration date exists then it is
compared with the date stored in the corresponding node in OD
entry 1020h. If the two dates match (along with the expected configu-
ration time) then the configuration of the node is known to match
with the Device Configuration File stored in the Configuration Man-
ager. If the dates (or times) do not match or entry 1020h could not be
read, or if there is no expected configuration date (or time) stored,
then the Configuration Manager can proceed to download the config-
uration to the node using the DCF.

The date is stored as the number of whole days since January, 1984.

Example: 23
January 24, 1984

D.4.18 Expected Configuration Time (1F27h)

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F27h
Name Expected Configuration Time

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Subindex 01h – 7Fh

Embedded Networking with CAN and CANopen

454

Description: This entry is implemented on the Configuration Manager and stores
the expected configuration time of each node. Each Subentry corre-
sponds to a node on the network, with the Subindex indicating the
Node ID.

When the Configuration Manager wishes to check if the node is using
the currently known configuration it may read this entry to deter-
mine if an expected configuration time exists. This is indicated by a
non-zero value. If an expected configuration time exists then it is
compared with the time stored in the corresponding node in OD
entry 1020h. If the two times match (along with the expected configu-
ration date) then the configuration of the node is known to match
with the Device Configuration File stored in the Configuration Man-
ager. If the times (or dates) do not match or entry 1020h could not be
read, or if there is no expected configuration time (or date) stored,
then the Configuration Manager can proceed to download the config-
uration to the node using the DCF.

The date is stored as the number of milliseconds since midnight.

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Configuration Time Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 00h

455

Appendix D: The Object Dictionary

Example: 6212000
1:43:32 am

D.4.19 Download Program Data (1F50h)

Description: This entry allows firmware to be programmed into a node. Each node
may support up to 254 programs. This can be used, for example, to
re-program individual tasks. The firmware is written to the appropri-
ate Subentry and the data format used is not defined by the CANo-
pen specification. For example, raw binary, Intel HEX File, etc. could
be used.

Program execution is controlled by Object Dictionary entry 1F51h.

Index 1F50h
Name Download Program Data

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – FEh
Name Program 1 – 254

Type DOMAIN

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

456

D.4.20 Program Control (1F51h)

Description: By writing values to this entry, the corresponding program is con-
trolled. Programs are written using Object Dictionary entry 1F50h.
Once a program has been written, it may be stopped, started or reset

Index 1F51h
Name Program Control

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value Not defined

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – FEh
Name Control Program 1 – 254

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

457

Appendix D: The Object Dictionary

by writing to the program control Subentry for that program. The fol-
lowing table lists the values that may be written.

When the Subentries are read, information is given on the current state of the corre-
sponding program. The following table lists the meanings of the values that can be
read.

D.4.21 Verify Application Software (1F52h)

Value Description
00h Stop program

01h Start program

02h Reset Program

Table D.63 Program Control Values

Value Description
00h Program is stopped

01h Program is running

02h Program is stopped

Table D.64 Program Control States

Index 1F52h
Name Verify Application Software

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 02h

Access Read Only

Embedded Networking with CAN and CANopen

458

Description: This entry allows the date and time of program 1 to be stored. Pro-
gram 1 is loaded into the node by writing to Object Dictionary entry
[1F50h,01h]. It allows another node to determine the current version
of a programmable portion of the firmware for the node.

The date is the number of days since January 1, 1984. The time is the
number of milliseconds since midnight.

Example: 23 in Subentry 01h, 6212000 in Subentry 02h
January 24, 1984, 1:43:32 am

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Application Software Date

Type UNSIGNED32

Default Value Not defined

Units Days

Access Read/Write

Mandatory No

Map to PDO No

Subindex 02h
Name Application Software Time

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

Mandatory No

Map to PDO No

Subindex 00h

459

Appendix D: The Object Dictionary

D.4.22 Expected Application SW Date (1F53h)

Description: This entry is implemented on the CANopen Manager and stores the
expected application software date of each node. Each Subentry cor-
responds to a node on the network, with the Subindex indicating the
Node ID. When the CANopen Manager wishes to check if the node is
using the currently known software version, it is compared with the
date stored in the corresponding node in OD entry 1F52h.

The date is stored as the number of whole days since January 1, 1984.

Index 1F53h
Name Expected Application SW Date

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Application SW Date Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Units Days

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Embedded Networking with CAN and CANopen

460

Example: 23
January 24, 1984

D.4.23 Expected Application SW Time (1F54h)

Description: This entry is implemented on the CANopen Manager and stores the
expected application software time of each node. Each Subentry cor-
responds to a node on the network, with the Subindex indicating the
Node ID. When the CANopen Manager wishes to check if the node is
using the currently known software version, it is compared with the
time stored in the corresponding node in OD entry 1F52h.

Index 1F54h
Name Expected Application SW Time

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Expected Application SW Time Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Units ms

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

461

Appendix D: The Object Dictionary

The time is stored as the number of milliseconds since midnight.

Example: 6212000
1:43:32 am

D.4.24 Process Picture / Process Image (1F70h)

Index 1F70h
Name Process Picture / Process Image

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 02h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h
Name Selected Range

Type UNSIGNED32

Default Value 0h

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 02h
Name Process Picture Domain / Process Image Domain

Type DOMAIN

Embedded Networking with CAN and CANopen

462

Description: This entry allows Object Dictionary entries to be treated like vari-
ables. By writing to this entry the Object Dictionary containing these
variables can be configured.

Sections of the Object Dictionary are grouped together into segments.
The segment to read or write is first specified by writing to the
Selected Range Subentry. Once the segment has been specified, the
segment data can be read and written using the Process Image
Domain Subentry.

The following table shows the structure of the value written to the Selected Range
Subentry.

The Object Segment is the Index of the segment to read or write. The Data Length is
the number of bytes to read or write. If a Data Length of zero is used then the com-
plete segment may be accessed.

The segment is written as a stream of bytes.

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Bit Description
0 – 15 Object Segment

16 – 31 Data Length

Table D.65 Process Image Selected Range Value

Subindex 02h

463

Appendix D: The Object Dictionary

D.4.25 NMT Startup (1F80h)

Description: This entry configures the startup of a device that is able to operate as
an NMT Master. Each bit is writable unless the node does not support
that particular feature, in which case that bit is read only. The follow-
ing table describes the meaning of each bit.

Index 1F80h
Name NMT Startup

Mandatory No

Subindex 00h
Name NMT Startup

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Bit Description

0
If 0 the device is not the NMT Master.
If 1 the device is the NMT Master.

1
If 0 then start only explicitly assigned nodes.
If 1 then start all nodes.
If bit 3 is 1 then this bit is ignored.

2
If 0 then automatically enter the Operational state on bootup.
If 1 then do not automatically enter the Operational state on bootup.

3
If 0 then the NMT Master may automatically start nodes. The behavior is
configured using bit 1.
If 1 then the NMT Master not not automatically start nodes. Bit 1 is ignored.

Table D.66 NMT Master Startup

Embedded Networking with CAN and CANopen

464

Bit 0 indicates if the node is an NMT Master or not. If the node also participates in the
Flying Master process (bit 5 is set to 1), but loses out in the process it should not clear
bit 0.

Bit 2 determines if the node should automatically enter the operational state on boo-
tup, or whether it should wait until it is told to enter the operational state. This feature
is useful for networks without NMT Masters as it allows the node to startup autono-
mously.

Bit 3 controls whether or not the node may start nodes automatically. If it may, then
the behavior of this functionality is configured using bit 1.

Bits 4 and 6 configure how the node should operate in the event of a node guarding or
heartbeat event, whether it should only handle the node that failed to transmit a
heartbeat or respond to a node guarding request, or whether all nodes on the network
should be reset or stopped.

Bit 5 indicates if the node should participate in the Flying Master process and attempt
to become the NMT Master for the network.

Example: 00000017h
NMT Master, starts all nodes, resets all nodes if node guarding or
heartbeat event occurs, not a flying master.

4

If 0 and a node fails to respond to node guarding or heartbeat, only handle
that node.
If 1 and a node fails to respond to node guarding or heartbeat, reset all
nodes.
If bit 6 is 1 then this bit is ignored.

5
If 0 then the NMT Master will not participate in the Flying Master process.
If 1 then the NMT Master will participate in the Flying Master process.

6
If 0 then use the configuaration specified by bit 4.
If 1 then ignore bit 4 and if a node fails to respond to node guarding or
heartbeat, stop all nodes.

7 – 31 Reserved. Always zero.

Bit Description

Table D.66 (Continued) NMT Master Startup

465

Appendix D: The Object Dictionary

D.4.26 Slave Assignment (1F81h)

Description: This entry defines which slaves are assigned to the NMT Master and
how the NMT Master controls the slave.

Each entry corresponds to one node on the network, with the Subin-
dex indicating the Node ID. For example, Subentry 1Ah contains
information relating to Node 1Ah.

Index 1F81h
Name Slave Assignment

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Slave Assigment Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

466

The values stored in this entry are constructed as shown in the following table.

If the NMT Master does not support specific features, then those bits are read only.

If the NMT Master transmits a node guarding request to a node and does not receive a
reply it will keep retrying until it has sent the request the number of times specified
by the Retry Factor. The interval between transmission of node guarding request is
specified by the Guard Time value for the node. If either Retry Factor or Guard Time
are zero for a specific node, then the NMT Master will not perform node guarding on
that node.

Bit Description

0
Set to 0 if the node is not a slave for this NMT Master.
Set to 1 if the node is a slave for this NMT Master.

1 Reserved.

2

Set to 0 if the node should not be automatically configured and started
when a bootup message is detected being transmitted from the node.
Set to 1 if the node should be automatically configured and started when a
bootup message is detected being transmitted from the node.

3

Set to 0 if the node is an optional slave. The network may be started if this
node cannot be contacted.
Set to 1 if the node is a mandatory slave. Do not start the network if this
node cannot be contacted.

4

Set to 0 if the node may be reset regardless of the current state of the
node.
Set to 1 if the node may only be reset if the node is currently not opera-
tional.

5
Set to 0 if application software version verification is not required for the
node.
Set to 1 if application software version verification is required for the node.

6
Set to 0 if automatic software update of the node is not allowed.
Set to 1 if automatic software update of the node is allowed.

7 Reserved.

8 – 15 Retry Factor.

16 – 31 Guard Time.

Table D.67 Slave Assignment Entry

467

Appendix D: The Object Dictionary

Example: 03E80101h
Node is an optional slave, not automatically configured and started,
may be reset regardless of state, no software verification, no auto-
matic update, 1 second guard time, 1 retry.

D.4.27 Request NMT (1F82h)

Index 1F82h
Name Request NMT

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 80h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Request NMT for Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 80h
Name Request NMT for All Nodes

Type UNSIGNED8

Embedded Networking with CAN and CANopen

468

Description: A CANopen network only allows one NMT Master at any one time.
This ensures that only one node transmits messages with ID 000h. If
another node wishes to perform NMT operations then it must write
to this entry on the NMT Master requesting an NMT operation take
place. The NMT Master will then transmit the NMT command.

Writing to Subentries 01h – 7Fh will result in the NMT Master send-
ing the NMT command to the node whose ID matches the Subindex
written to. For example, writing to Subentry 5Ah will result in the
NMT Master sending an NMT command to node 5Ah.

Writing to Subentry 80h sends an NMT command to all nodes.

The following table lists the values that may be written to this entry.

Default Value Node defined

Access Write Only

Mandatory Yes if this entry is implemented

Map to PDO No

Value NMT Command
04h Stop

05h Enter Operational

06h Reset

07h Reset Communication

7Fh Enter Pre-operational

Table D.68 Request NMT Commands

Subindex 80h

469

Appendix D: The Object Dictionary

Subentries 01h – 7Fh may be read to find out the current state of a node. The following
table lists the values that may be read from these Subentries.

D.4.28 Request Guarding (1F83h)

Value NMT State
00h State not known

01h Node missing

04h Stopped

05h Operational

7Fh Pre-operational

Table D.69 Request NMT Read Values

Index 1F83h
Name Request Guarding

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 80h

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Request Guarding for Node 1 - 127

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Embedded Networking with CAN and CANopen

470

Description: A CANopen network only allows one NMT Master at any one time.
This ensures that only one node transmits the node guarding mes-
sages. If another node wishes to perform node guarding then it must
write to this entry on the NMT Master requesting that node guarding
take place. The NMT Master will then perform the node guarding.

Writing to Subentries 01h – 7Fh will result in the NMT Master send-
ing the node guarding requests to the node whose ID matches the
Subindex written to. For example, writing to Subentry 5Ah will result
in the NMT Master sending node guarding requests to node 5Ah.

Writing to Subentry 80h sends node guarding requests to all nodes.

The following table lists the values that may be written to this entry.

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 80h
Name Request Guarding for All Nodes

Type UNSIGNED8

Default Value Node defined

Access Write Only

Mandatory Yes if this entry is implemented

Map to PDO No

Value NMT Command
00h Stop node guarding

01h Start node guarding

Table D.70 Request Guarding Commands

Subindex 01h – 7Fh

471

Appendix D: The Object Dictionary

Subentries 01h – 7Fh may be read to find out whether a node is being
guarded or not. The following table lists the values that may be read
from these Subentries.

D.4.29 Device Type Identification (1F84h)

Value NMT State
00h Node is not being guarded

01h Node is being guarded

Table D.71 Request Guarding Read Values

Index 1F84h
Name Device Type Identification

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Device Type Identification for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Embedded Networking with CAN and CANopen

472

Description: This entry lists the expected Device Type values for slave nodes. Each
Subentry correponds to the node with an ID the same as the Subin-
dex. For example, Subindex 31h holds the expected Device Type for
Node 31h.

If the value stored is zero, then the Device Type of the node is marked
as "don't care." If the value stored is not zero, then the Device Type
read from the node must match the expected value stored in this
entry. If the values do not match then the node bootup is not com-
pleted.

The Subentry that corresponds to the NMT Master is ignored.

D.4.30 Vendor Identification (1F85h)

Index 1F85h
Name Vendor Identification

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Vendor Identification for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

473

Appendix D: The Object Dictionary

Description: This entry lists the expected Vendor ID values for slave nodes. Each
Subentry correponds to the node with an ID the same as the Subin-
dex. For example, Subindex 31h holds the expected Vendor ID for
Node 31h.

If the value stored is zero, then the Vendor ID of the node is marked
as "don't care." If the value stored is not zero, then the Vendor ID read
from the node must match the expected value stored in this entry. If
the values do not match then the node bootup is not completed.

The Subindex that corresponds to the NMT Master is ignored.

D.4.31 Product Code (1F86h)

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F86h
Name Product Code

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Product Code for Node 1 - 127

Type UNSIGNED32

Subindex 01h – 7Fh

Embedded Networking with CAN and CANopen

474

Description: This entry lists the expected Product Code values for slave nodes.
Each Subentry correponds to the node with an ID the same as the
Subindex. For example, Subindex 31h holds the expected Product
Code for Node 31h.

If the value stored is zero, then the Product Code of the node is
marked as "don't care." If the value stored is not zero, then the Prod-
uct Code read from the node must match the expected value stored in
this entry. If the values do not match then the node bootup is not com-
pleted.

The Subindex that corresponds to the NMT Master is ignored.

D.4.32 Revision Number (1F87h)

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F87h
Name Revision Number

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh

475

Appendix D: The Object Dictionary

Description: This entry lists the expected Revision Number values for slave nodes.
Each Subentry correponds to the node with an ID the same as the
Subindex. For example, Subindex 31h holds the expected Revision
Number for Node 31h.

If the value stored is zero, then the Revision Number of the node is
marked as "don't care." If the value stored is not zero, then the Revi-
sion Number read from the node must match the expected value
stored in this entry. If the values do not match then the node bootup is
not completed.

The Subindex that corresponds to the NMT Master is ignored.

D.4.33 Serial Number (1F88h)

Subindex 01h – 7Fh
Name Revision Number for Node 1 – 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Index 1F88h
Name Serial Number

Mandatory No

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 7Fh

Access Read Only

Embedded Networking with CAN and CANopen

476

Description: This entry lists the expected Serial Number values for slave nodes.
Each Subentry corresponds to the node with an ID the same as the
Subindex. For example, Subindex 31h holds the expected Serial Num-
ber for Node 31h.

If the value stored is zero, then the Serial Number of the node is
marked as "don't care." If the value stored is not zero, then the Serial
Number read from the node must match the expected value stored in
this entry. If the values do not match then the node bootup is not com-
pleted.

The Subindex that corresponds to the NMT Master is ignored.

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 01h – 7Fh
Name Serial Number for Node 1 - 127

Type UNSIGNED32

Default Value Not defined

Access Read/Write

Mandatory Yes if this entry is implemented

Map to PDO No

Subindex 00h

477

Appendix D: The Object Dictionary

D.4.34 Boot Time (1F89h)

Description: This entry defines the maximum time the NMT Master will wait
when trying to read the Device Type of a mandatory slave. The time
is in milliseconds. A value of zero indicates that the NMT Master
should wait forever. The timing starts from the first attempt to read
the Device Type of the slave. If the time elapses without a successful
read of the Device Type then the NMT Master will give up on
attempting to start the network, enter an error state and inform the
application.

Example: 3000
NMT Master will wait 3 seconds

Index 1F89h
Name Boot Time

Mandatory No

Subindex 00h
Name Boot Time

Type UNSIGNED32

Default Value 0h

Units ms

Access Read/Write

Mandatory No

Map to PDO No

Embedded Networking with CAN and CANopen

478

D.4.35 Flying Master Timing Parameters (1F90h)

Index 1F90h
Name Flying Master Timing Parameters

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 06h

Access Read Only

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 01h
Name Timeout for Detection of an Active NMT Master

Type UNSIGNED16

Default Value 100

Units ms

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 02h
Name NMT Master Negotiation Time Delay

Type UNSIGNED16

Default Value 500

Units ms

Access Read/Write

479

Appendix D: The Object Dictionary

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 03h
Name Master Priority Level

Type UNSIGNED8

Default Value Not defined

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 04h
Name Priority Time Slot

Type UNSIGNED16

Default Value 1500

Units ms

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 05h
Name Node Time Slot

Type UNSIGNED16

Default Value 10

Units ms

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

Subindex 02h

Embedded Networking with CAN and CANopen

480

Description: This entry must be implemented if the NMT Master supports the Fly-
ing Master functionality. It specifies the timing parameters and prior-
ity to be used in the Flying Master protocol.

All values except for the Master Priority Level are times given in mil-
liseconds.

The Timeout for Detection of an Active NMT Master is the timeout
period in which any currently active NMT Master must respond to
the request for the NMT Master Priority Level.

The NMT Master Negotiation Time Delay is the time which NMT
Master capable devices must wait after a cold or warm boot. This is
used to ensure that other devices have completed resets and initial-
ization before an NMT Master capable device proceeds with the
negotiation.

The Master Priority Level, Priority Time Slot and Node Time Slot are
combined with the Node ID of the NMT capable device to calculate a
wait time. After receiving the Trigger Timeslot message, each NMT
Master capable device transmits an identification message after the
wait time has elapsed. This ensures that the NMT Master capable
device with the lowest wait time will transmit an identification mes-
sage first. The wait time is calculated as follows:

Wait time = (Master Priority Level x Priority Time Slot) + (Node ID X Node Time Slot)

Subindex 06h
Name Multiple Master Detect Cycle Time

Type UNSIGNED16

Default Value (4000 + Node ID) x 10

Units ms

Access Read/Write

Mandatory Yes if the NMT Master supports the Flying Master Mechanism

Map to PDO No

481

Appendix D: The Object Dictionary

The Priority Time Slot must be greater than the the Node Time Slot
multiplied by 127.

Priority time slot > 127 x Node Time Slot

The Master Priority level may have the value 0 to 2, with 0 being the
highest priority level and 2 being the lowest priority level.

To allow an NMT Master to detect the presence of other NMT Mas-
ters, they each must periodically transmit the Forcing New NMT
Master Negotiation Protocol message. The period between transmis-
sion of these messages is the Multiple Master Detect Cycle Time.

D.4.36 Startup-capable Device Timing (1F91h)

Index 1F91h
Name Startup-capable Device Timing

Mandatory Yes if the node is Startup Capable

Subindex 00h
Name Number of Entries

Type UNSIGNED8

Default Value 03h

Access Read Only

Mandatory Yes if the node is Startup Capable

Map to PDO No

Subindex 01h
Name Timeout for selection of an NMT Master Capable Device

Type UNSIGNED16

Default Value 100

Units ms

Access Read/Write

Embedded Networking with CAN and CANopen

482

Description: This entry specifies timing for a node that is capable of starting up
without an NMT Master. Nodes that are Startup Capable automati-
cally enter the operational state and optionally start a group of nodes.

All values are times given in milliseconds.

After initialization of a startup capable node, it must wait before
starting the protocol to determine if there is a NMT Master capable
node on the bus. This delay is configurable and stored in Subentry
02h – Delay time for an NMT Master Capable Device Request.

Mandatory Yes if the node is Startup Capable

Map to PDO No

Subindex 02h
Name Delay time for an NMT Master Capable Device Request

Type UNSIGNED16

Default Value 500

Units ms

Access Read/Write

Mandatory Yes if the node is Startup Capable

Map to PDO No

Subindex 03h
Name Node Time Slot

Type UNSIGNED16

Default Value 15

Units ms

Access Read/Write

Mandatory Yes if the node is Startup Capable

Map to PDO No

Subindex 01h

483

Appendix D: The Object Dictionary

Once the node has transmitted the request for any NMT Master capa-
ble devices to identify themselves, it waits for a timeout period speci-
fied in Subentry 01h - Timeout for selection of an NMT Master
Capable Device.

If no NMT Master capable devices have been found on the bus then
the node should wait for a delay period before transmitting the NMT
message to start all nodes. In order to avoid multiple nodes transmit-
ting the message at the same time, the delay is configurable and
dependent on the Node ID. It is calculated as follows.

Delay = Node ID x Node Time Slot

The Node Time Slot is specified in Subentry 03h.

Embedded Networking with CAN and CANopen

484

D.5 Object Dictionary Access Sequences

D.5.1 PDO Communication Parameters

When changing the PDO Communication Parameters (Transmit or Receive) the fol-
lowing procedure is used.

1. Write to Subentry 01h setting bit 31 to disable the PDO.

2. Perform writes to the Subentries that should be changed (02h, 03h and 05h).

3. Write to Subentry 01h specifying the new COB ID to be used, ensuring bit 31 is cleared to
enable the PDO.

D.5.2 PDO Mapping Parameters

To change the PDO Mapping Parameters (Transmit or Receive) the following proce-
dure is used.

1. Write to Subentry 01h of the PDO Communication Parameters setting bit 31 to disable the
PDO.

2. Write 00h to Subentry 00h of the Mapping Parameters to disable the mapping.

3. Write the new mapping to the Mapping Parameters.

4. Write the highest Subindex used in the mapping to Subentry 00h of the Mapping Parame-
ters to enable the mapping.

5. Write to Subentry 01h of the PDO Communication Parameters clearing bit 31 to enable the
PDO and specifying the desired COB ID to use for the PDO.

D.5.3 Dynamic SDO Channel Request – All Channels

The following procedure is used for a node (referred to as the SDO Requesting Device
– SRD) to obtain all available SDO channels from the SDO Manager.

1. SRD sends Dynamic SDO Request (COB ID 6E0h, no data).

2. SDO Manager reads [1F10h,00h] of each node in turn until the SRD is found.

3. Upon read from [1F10h,00h] SRD response is 00000003h.

4. SDO Manager writes 00000004h to [1F10h,00h] of SRD to confirm.

485

Appendix D: The Object Dictionary

5. SRD can use all SDO channels.

6. When done, SRD writes 0000xx00h (xx being the SRD Node ID) to [1F01h,00h] of SDO
Manager .

D.5.4 Dynamic SDO Channel Request – Single Channel

The following procedure is used for a node (referred to as the SDO Requesting Device
– SRD) to obtain SDO channels from the SDO Manager to a slave node.

Register as an SRD

1. SRD sends Dynamic SDO Request (COB ID 6E0h, no data).

2. SDO Manager reads [1F10h,00h] of each node in turn until the SRD is found.

3. Upon read from [1F10h,00h] SRD response is aaaa0001h, with aaaa being the Index of an
SDO client communication parameter record in the SRD.

4. SDO Manager configures an SDO client channel in SRD at aaaa with the SDO Manager
itself being the server to that client.

5. SDO Manager writes 00000002h to [1F10h,00h] of SRD to confirm that SDO channel to
SDO Manager is established.

Request a Channel

6. Using the new SDO channel, SRD writes xxxxyyzzh to [1F00h,00h] of SDO Manager with
xxxx being another SDO client communication parameter record (must be different than
previous one), yy the Node ID of the SRD and zz the Node ID of the slave node.

7. SDO Manager now sets up an additional SDO server in zz. If the slave node only has one
SDO channel, then the SDO Manager sets up the additional SDO server on itself and acts
as a relay to the slave.

8. SDO Manager now sets up the SDO client xxxx in SRD.

9. The SDO Manager writes 00000006h to [1F10h,00h] of SRD to confirm that the SDO
channel to the slave is established. The channel is not valid until this value is written. If
there was an error in configuring the SDO channel, then the SDO Manager writes
0000xx00h to [1F10h,00h] to notify the SRD of the error.

To Release the Channel

Embedded Networking with CAN and CANopen

486

10. The SRD still owns the SDO client channel aaaa to SDO Manager and can use it to send a
release request to [1F01h,00h] using the same value as used in 6.

11. SDO Manager now releases the SDO client xxxx in SRD.

12. SDO Manager now releases the SDO server in zz

To De-register as an SRD

13. The SRD still owns the SDO client channel aaaa to SDO Manager and can use it to send a
release request to [1F01h,00h] using 0000yy00h.

14. SDO Manager accesses the SRD and removes the SDO client aaaa.

487

 E Minimal Object Dictionaries

E.1 Standard Object Dictionary Entries

It is recommended that the Object Dictionary entries listed below be available in all
CANopen nodes.

Objective

One of the first questions that comes up when developing a CANopen node is
Which Object Dictionary entries should I implement? This appendix gives you gen-
eral guidelines about particular I/O functionality and which entries are recom-
mended for implementation.

Important: All numbers in this section are hexadecimal. For a more detailed
description of some of the individual entries, see the Object Dictionary entry
reference section.

Embedded Networking with CAN and CANopen

488

E.2 Digital Input Entries

The Object Dictionary entries listed here are those that need to be implemented for
DS401 compliant generic digital input.

Index Description
[1000h,00h] Device Type Information

[1001h,00h] Error Register

[1008h,00h]
Device Name
Although not mandatory, this ASCII-string entry is read by many config-
uration tools and managers and displayed to their users.

[1016h,xxh]
Heartbeat: Consumer Time
This entry is only needed if the local node needs to be able to monitor
the heartbeats of other nodes.

[1017h,00h]
Heartbeat: Producer Time
Node guarding or heartbeat or both must be supported by all CANopen
compliant nodes.

[1018h,xxh] Identity Object
Only the Subentry with the Vendor ID must be implemented

[1F80h,00h]
NMT Startup
Nodes that autostart (go to operational without waiting for the NMT
startup message) should report 0 in this entry.

Index Description
[1800h,xxh] 1st TPDO Communication Parameters

[180xh,xxh] Additional TPDOs as required by the application

[1A00h,xxh] 1st TPDO Mapping Parameters

[1A0xh,xxh] Additional TPDOs as required by the application

[6000h,xxh] Read Digital Input (8bit)

[6002h,xxh] Polarity Digital Input
Only if needed by the application.

489

Appendix E: Minimal Object Dictionaries

E.3 Digital Output Entries

The Object Dictionary entries listed here are those that need to be implemented for
DS401 compliant generic digital output.

E.4 Analog Input Entries

The Object Dictionary entries listed here are those that need to be implemented for
DS401 compliant generic analog input.

Index Description
[1400h,xxh] 1st RPDO Communication Parameters

[140xh,xxh] Additional RPDOs as required by the application

[1600h,xxh] 1st RPDO Mapping Parameters

[160xh,xxh] Additional RPDOs as required by the application

[6200h,xxh] Write Digital Output (8 bit)

[6202h,xxh] Polarity Digital Output
Only if needed by the application.

[6206h,xxh]
Error Mode Output
Although not mandatory, this is a useful entry to enable default output
values to be used when an error occurs.

[6207h,xxh]
Error Value Output
Although not mandatory, this is a useful entry to set the default output
values to be used when an error occurs.

Index Description

[180xh,xxh]

TPDO Communication Parameters
Per default TPDO 2, 3 and 4 are used for analog data. However, if a
node does not have digital inputs TPDO 1 may be used for analog
inputs, too.

[1A0xh,xxh] TPDOs Mapping Parameters

[6401h,xxh] Read Analog Input (16 bit)

Embedded Networking with CAN and CANopen

490

E.5 Analog Output Entries

The Object Dictionary entries listed here are those that need to be implemented for
DS401 compliant generic analog output.

E.6 Encoder Input Entries

The Object Dictionary entries listed here are those that need to be implemented for
DS406 compliant encoders.

Index Description

[140xh,xxh]

RPDO Communication Parameters
Per default RPDO 2, 3 and 4 are used for analog data. However, if a
node does not have digital outputs, RPDO 1 may be used for analog
outputs, too.

[160xh,xxh] RPDOs Mapping Parameters

[6411h,xxh] Write Analog Output (16 bit)

[6443h,xxh]
Error Mode Output
Although not mandatory, this is a useful entry to enable default output
values to be used when an error occurs.

[6444h,xxh]
Error Value Output
Although not mandatory, this is a useful entry to set the default output
values to be used when an error occurs.

Index Description
[1801h,xxh] 1st TPDO Communication Parameters

[1A01h,xxh] 1st TPDO Mapping Parameters

[6000h,00h] Operating Parameters

[6003h,00h]
Preset Value
This entry is not mandatory but very useful to many applications, as it
allows to set the mechanical zero point of the encoder.

[6004h,00h] Position Value

491

Appendix E: Minimal Object Dictionaries

E.7 Support of Code Download

The Object Dictionary entries listed here are those that need to be implemented if a
node is to receive code updates through the CANopen interface.

[6500h,00h] Operating Status

[6501h,00h] Resolution

[6502h,00h] Number of Revolutions
Only needed for rotary encoders

Index Description

[1F50h,xxh] Download Program Data
In general it is sufficient to implement Subentry 00h and 01h.

[1F51h,xxh] Program Control
In general it is sufficient to implement Subentry 00h and 01h.

Index Description

493

 F Communication Object Identifiers
(COB IDs)

F.1 Pre-defined Connection Set

The following table lists the default COB IDs used for the various CANopen commu-
nication objects. This collection of defaults is referred to as the Pre-defined Connec-
tion Set.

Objective

Each message transmitted must have a Communications Object Identifier
(COB ID). This appendix lists both the default COB IDs used in CANopen, and
the reserved COB IDs, providing at a glance what may need to be configured
and what cannot be configured.

COB ID Used For Constructed Using
000h NMT (Network Management) -

001h Global Failsafe Command -

Table F.1 Pre-defined Connection Set

Embedded Networking with CAN and CANopen

494

071h – 076h Flying Master Protocol -

080h SYNC -

081h – 0FFh Emergency 80h + Node ID

100h Time Stamp -

101h – 180h Safety Relevent Data Objects 100h + Node ID

181h – 1FFh Transmit PDO 1 180h + Node ID

201h – 27Fh Receive PDO 1 200h + Node ID

281h – 2FFh Transmit PDO 2 280h + Node ID

301h – 37Fh Receive PDO 2 300h + Node ID

381h – 3FFh Transmit PDO 3 380h + Node ID

401h – 47Fh Receive PDO 3 400h + Node ID

481h – 4FFh Transmit PDO 4 480h + Node ID

501h – 57Fh Receive PDO 4 500h + Node ID

581h – 5FFh Transmit SDO 580h + Node ID

601h – 67Fh Receive SDO 600h + Node ID

6E0h Dynamic SDO Request -

701h – 77Fh NMT Error Control (Heartbeat and
Node Guarding) 700h + Node ID

COB ID Used For Constructed Using

Table F.1 Pre-defined Connection Set

495

Appendix F: Communication Object Identifiers (COB IDs)

F.2 Reserved COB IDs

The following table lists the COB IDs that may not be used by objects which allow the
COB ID to be configured.

COB ID Used For
000h NMT

001h Reserved

101h – 180h Reserved

581h – 5FFh Transmit SDOs

601h – 67Fh Receive SDOs

6E0h Reserved

701h – 77Fh NMT Error Control

780h – 7FFh Reserved

Table F.2 Reserved COB IDs

497

 G Emergency Objects

G.1 Emergency Object Error Codes

The following table lists the standard error codes that may be transmitted in Emer-
gency Objects. Several Device Profiles define additional error codes.

Objective

It is often useful when working with CANopen to be able to interpret values in
the CAN messages. This appendix lists the codes that may be transmitted in
Emergency Objects, along with their meanings

Error Code Description
0000h – 00FFh No error (or Error reset)

1000h – 10FFh Generic

2000h – 20FFh Current

Table G.1 Emergency Message Error Codes

Embedded Networking with CAN and CANopen

498

2100h – 21FFh Current – device inputs

2200h – 22FFh Current – inside the device

2300h – 23FFh Current – device outputs

3000h – 30FFh Voltage

3100h – 31FFh Voltage – mains voltage

3200h – 32FFh Voltage – inside the device

3300h – 33FFh Voltage – output

4000h – 40FFh Temperature

4100h – 41FFh Temperature – Ambient

4200h – 42FFh Temperature – Device

5000h – 50FFh Device Hardware

6000h – 60FFh Device Software

6100h – 61FFh Device Software – internal

6200h – 62FFh Device Software – user

6300h – 63FFh Device Software – data set

7000h – 70FFh Additional Modules

8000h – 80FFh Monitoring

8100h – 81FFh Monitoring - communication

8110h Monitoring – CAN Overrun (objects lost)

8120h Monitoring – CAN in error passive mode

8130h Monitoring – Node Guarding or Heartbeat Error

8140h Monitoring – recovering from bus off

8150h Monitoring – COB ID

8200h – 82FFh Protocol

8210h Protocol – PDO not processed due to length error

8220h Protocol – PDO length exceeded

9000h – 90FFh External

Error Code Description

Table G.1 (Continued) Emergency Message Error Codes

499

Appendix G: Emergency Objects

F000h – F0FFh Additional functions

FF00h – FFFFh Device specific

Error Code Description

Table G.1 (Continued) Emergency Message Error Codes

501

 H SDO Abort Messages

H.1 SDO Abort Codes

The following table lists the abort codes that may be transmitted by Clients and Serv-
ers when implementing the SDO Protocol.

Objective

This appendix provides a quick reference to the SDO Abort codes and their
meanings.

Abort Code Description
05030000h Toggle bit not alternated

05040000h SDO Protocol timed out

05040001h Client/Server command specifier not valid or unknown

05040002h Invalid block size (block mode)

Table H.1 SDO Abort Codes

Embedded Networking with CAN and CANopen

502

05040003h Invalid sequence number (block mode)

05040004h CRC error (block mode)

05040005h Out of memory

06010000h Unsupported access to an object

06010001h Attempt to read a write-only object

06010002h Attempt to write a read-only object

06020000h Object does not exist in the Object Dictionary

06040041h Object cannot be mapped to the PDO

06040042h The number and length of the objects to be mapped would
exceed PDO length

06040043h General parameter incompatibility

06040047h General internal incompatibility in the device

06060000h Access failed due to a hardware error

06070010h Data type does not match. Length of service parameter does not
match.

06070012h Data type does not match. Length of service parameter is too
high.

06070013h Data type does not match. Length of service parameter is too
low.

06090011h Subindex does not exist

06090030h Value range of parameter exceeded (write access only)

06090031h Value of parameter written is too high

06090032h Value of parameter written is too low

06090036h Maximum value is less than the minimum value

08000000h General error

08000020h Data cannot be transferred or stored to the application

08000021h Data cannot be transferred or stored to the application because
of local control

Abort Code Description

Table H.1 (Continued) SDO Abort Codes

503

Appendix H: SDO Abort Messages

08000022h Data cannot be transferred or stored to the application because
of the present device state

08000023h Object Dictionary dynamic generation failed or no Object Dictio-
nary is present

Abort Code Description

Table H.1 (Continued) SDO Abort Codes

505

 I Node States

I.1 Node State Functionality

The following table shows which communication objects a node may transmit and
process when in the different states. A “Yes” indicates that the node may use that
communication object.

Objective

Only certain objects may be transmitted while in specific node states. The aim
of this appendix is to provide a description of what may be transmitted for
each state.

Embedded Networking with CAN and CANopen

506

Initializing
Pre-
operational Operational Stopped

PDOs No No Yes No

SDOs No Yes Yes No

SYNC No Yes Yes No

Time Stamp No Yes Yes No

Emergency No Yes Yes No

Bootup Yes No No No

Node
Guarding
and Heart-
beat

No Yes Yes Yes

Table I.1 Communication Objects Used in Different States

507

 J References

[Barr99]
Barr, Michael. Programming Embedded Systems in C and C++. 1999, O'Reilly & Associ-
ates.

[Bentham02]
Bentham, Jeremy, and Michael Barr. TCP/IP Lean: Web Servers for Embedded Systems.
2002, CMP Books.

[Berger01]
Berger, Arnold S. Embedded Systems Design: An Introduction to Processes, Tools and Tech-
niques. 2001, CMP Books.

[Charzinski]
J. Charzinski “Performance of the the Error Detection Mechanisms in CAN”

[CiADRP3031]
“CANopen Cabling and Connector Pin Assignment”, CiA Draft Recommendation
Proposal 303-1, Version 1.1.1

[CiADRP3032]
“CANopen representation of SI units and prefixes”, CiA Draft Recommendation Pro-
posal 303-2, Version 1.1

Embedded Networking with CAN and CANopen

508

[CiADRP3033]
“CANopen indicator specification”, CiA Draft Recommendation Proposal 303-3, Ver-
sion 1.0

[CiADS301]
“CANopen application layer and communication profile”, CiA Draft Standard 301,
Version 4.02

[CiADS401]
“CANopen device profile for generic I/O modules”, CiA Draft Standard 401, Version
2.1

[CiADS404]
“CANopen device profile measuring devices and closed loop controllers”, CiA Draft
Standard 404, Version 1.2

[CiADS405]
“CANopen interface and device profile for IEC 61131-3 programmable devices”, CiA
Draft Standard 405, Version 2.0

[CiADS406]
“CANopen device profile for encoders”, CiA Draft Standard 406, Version 3.0

[CiADSP302]
“CANopen framework for CANopen managers and programmable CANopen
devices”, CiA Draft Standard Proposal 302, Version 3.2

[CiADSP304]
“CANopen framework for safety-relevant communication”, CiA Draft Standard Pro-
posal 304, Version 1.0

[CiADSP305]
“CANopen layer setting services and protocols (LSS)”, CiA Draft Standard Proposal
305, Version 1.1.1

[CiADSP306]
“CANopen electronic data sheet (EDS) specification for CANopen”, CiA Draft Stan-
dard Proposal 306, Version 1.1

[CiADSP307]
“CANopen framework for maritime electronics”, CiA Draft Standard Proposal 307,
Version 1.01

509

Appendix J: References

[CiADSP402]
“CANopen device profile for drives and motion control”, CiA Draft Standard Pro-
posal 402, Version 2.0

[CiADSP406]
“CANopen device profile for encoders”, CiA Draft Standard Proposal 406, Version 2.0

[CiADSP407]
“CANopen application profile for passenger information”, CiA Draft Standard Pro-
posal 407, Version 1.0

[CiADSP410]
“CANopen device profile for inclinometer”, CiA Draft Standard Proposal 410, Ver-
sion 1.0

[CiADSP413]
“CANopen device profiles for truck gateways”, CiA Draft Standard Proposal 413,
Version 1.0

[CiADSP414]
“CANopen device profiles for weaving machines”, CiA Draft Standard Proposal 414,
Version 1.0

[CiADSP418]
“CANopen device profile for battery modules”, CiA Draft Standard Proposal 418,
Version 1.0

[CiADSP419]
“CANopen device profile for battery charger”, CiA Draft Standard Proposal 419, Ver-
sion 1.0

[CiADSP420]
“CANopen profiles for extruder downstream devices”, CiA Draft Standard Proposal
420, Version 1.0

[CiATR308]
“CANopen performance testing”, CiA Technical Recommendation 308, Version 1.0

[Comer00]
Comer. Douglas. Internetworking with TCP/IP Vol.1: Principles, Protocols, and Architec-
ture, 4th Edition. 2000, Prentice Hall.

Embedded Networking with CAN and CANopen

510

[Etschberger01]
Etschberger, Konrad. Controller Area Network. 2001, IXXAT Automation.

[Farsi99]
Farsi, Mohammad, Manuel Bernado and Martin Barbosa. CANopen Implementation.
1999, Research Studies Pr.

[Ganssle00]
Ganssle, Jack. The Art of Designing Embedded Systems. 2000, Newnes

[Ganssle03]
Ganssle, Jack and Michael Barr. Embedded Systems Dictionary. 2003, CMP Books.

[ISO7498]
ISO 7498-1:1994 Information technology - Open Systems Interconnection - Basic Ref-
erence Model: The Basic Model"

[Lawrenz97]
Lawrenz, Wolfhard. CAN System Engineering: From Theory to Practical Applications.
1997, Springer Verlag.

[Nolte]
Nolte, Thomas, Hans Hansson and Christer Norstrom. “Probabilistic Worst-Case
Response-Time Analysis for the Controller Area Network”

[Pfeiffer01_1]
Pfeiffer, Olaf and John Rodrigues. “Internetworking Treads on MCU Turf” EETimes,
May 21, 2001.

[Pfeiffer01_2]
Pfeiffer, Olaf. “Targeting Europe: Implementing CANopen” Circuit Cellar Ink #134,
2001

[Pfeiffer02_1]
Pfeiffer, Olaf. “Selecting the Best CAN Controller” Circuit Cellar Ink #143, 2002

[Pfeiffer02_2]
Pfeiffer, Olaf. “Making Medical Devices Smarter with CAN and CANopen Protocols”
Medical Electronics Manufacturing, Fall, 2002

511

Appendix J: References

[Pfeiffer03]
Pfeiffer, Olaf and Paul Lukowicz. “Remote Access to Embedded Devices” Internet
draft published 2003 with the RFC editor (www.rfc-editor.org).

[Rostan02]
Rostan, Martin and Josef Langermann. “High Precision Drive Synchronisation with
CANopen” Proceedings of the 8th International CAN Conference, CAN in Automa-
tion.

[Smith01]
Smith, David. Functional Safety. 2001, Butterworth Heinemann.

[Stenerson02]
Stenerson, Jon. Industrial Automation and Process Control. 2002, Prentice Hall.

[Zuberi]
Zuberi, Khawar M. and Kang G. Shin. “Non-Preemptive Scheduling of Messages on
Controller Area Network for Real-Time Control Applications”

513

 K CANopen Glossary

The following Glossary is owned and copyrighted by the CAN in Automation inter-
national users' and manufacturers' group. Used by permission.

A

application layer

The application layer is the communication entity of the OSI
(Open System Interface) reference model. It provides commu-
nication services to the application program.

application
objects

Application objects are signals and parameters of the applica-
tion program visible at the application layer API (application
programming interface).

application profile
Application profiles define all communication objects and appli-
cation objects in all devices that the network consists of.

asynchronous PDO

An asynchronous PDO is transmitted whenever a defined inter-
nal event occurs. This event may also be the elapsing of the
PDO's event timer. If an asynchronous PDO is received the
protocol software immediately updates the mapped objects in
the Object Dictionary.

Embedded Networking with CAN and CANopen

514

B

boot-up message
CANopen communication service transmitted whenever a node
enters the pre-operational state after initialization.

bus

Topology of a communication network, where all nodes are
reached by passive links, which allows transmission in both
directions.

bus analyzer

Tool, which monitors the bus and displays the transmitted bits.
There are bus analyzers available on the physical layer, the
data link layer, and different application layers (e.g. CANopen
or DeviceNet.

bus arbitration

If at the very same moment several nodes try to access the
bus, an arbitration process is necessary. At the end of this pro-
cess, only one node has bus access. The bus arbitration pro-
cess used in CAN protocol is CMSA/CD (Carrier Sense
Multiple Access/Collision Detection) with AMP (Arbitration on
Message Priority). This allows bus arbitration without destruc-
tion of messages.

bus length

The network cable length between the both termination resis-
tors. The bus length of CANopen networks is limited by the
used transmission rate. At 1 Mbps the maximum length is 25 m.
When using lower transmission rates, longer bus lines may be
used: at 50 kbps a length of 1 km is possible.

bus off state

The CAN controllers switch to bus off state when the TEC
(transmit error counter) has reached 255. During bus off state,
the CAN controller transmits recessive bits. When a CANopen
device recovers from bus off state, it has to transmit the boot-
up message and it is recommended to send an Emergency
message with the appropriate error code.

C

CAN

Controller Area Network (CAN) is a serial bus system originally
developed by the Robert Bosch GmbH. It is internationally
standardized by ISO 11898-1. CAN has been implemented by
many semiconductor manufacturers.

CANopen

Family of profiles for embedded networking in industrial
machinery, medical equipment, building automation (e.g. lift
control systems, electronically controlled doors, integrated
room control systems), railways, maritime electronics, truck-
based superstructures, off-highway and off-road vehicles, etc.

515

Appendix K: CANopen Glossary

CANopen
application layer

The CANopen application layer and communication profile is
standardized by EN 50325-4. It defines communication ser-
vices and objects. In addition, it specifies the Object Dictionary
and the network management (NMT).

CANopen
Manager

The CANopen manager is responsible for the management of
the network. The CANopen manager device shall include the
NMT (network management) master, the SDO (service data
object) manager, and the Configuration manager.

CANopen Safety

Communication protocol allowing transmission of safety-rele-
vant data. The protocol requires just one physical CAN net-
work. Redundancy is achieved by sending each message twice
with bit-wise inverted content using two identifiers differing at
least in two bits.

CAN protocol
controller

The CAN protocol controller is part of a CAN module perform-
ing data en-/de-capsulation, bit-timing, CRC, bit-stuffing, error
handling, failure confinement, etc.

CAN transceiver

The CAN transceiver is connected to the CAN controller and to
the bus lines. It provides the line transmitter and the receiver.
There are high-speed, fault-tolerant, and single-wire transceiv-
ers available as well as transceivers for power-line or fiber optic
transmissions.

Certification
Official compliance test of components or devices to a specific
standard. CiA officially certifies CANopen devices.

CiA DR 303

Draft recommendation for CANopen cabling and connector pin
assignments, coding of prefixes and SI unit as well as LED
usage.

CiA DS 102
Draft standard for high-speed transmission according to ISO
11898-2 using 9-pin D-sub connectors.

CiA DS 301

The CANopen application layer and communication profile
specification covers the functionality of CANopen NMT (net-
work management) slave devices.

CiA DSP 302

The draft standard proposal for programmable CANopen
devices includes CANopen manager functions, dynamic SDO
connections, standardized boot-up procedure for NMT slaves
as well as program download.

CiA DSP 304
The CANopen safety protocol specification is approved by Ger-
man authorities and is compliant to SIL class 3 applications.

CiA DSP 305
The Layer Setting Services (LSS) specify how to set node-ID
and transmission rate via the CANopen network.

CiA DSP 306
This draft standard proposal defines format and content of
Electronic Data Sheets (EDS) to be used in configuration tools.

Embedded Networking with CAN and CANopen

516

CiA DSP 308

The CANopen framework for maritime applications defines
redundancy of networks including swapping mechanism for
SDOs and PDOs.

CiA DSP 309
Set of gateway specifications for CANopen to Ethernet-based
networks (e.g. Modbus TCP(IP).

CiA DS 401
The CANopen device profile for generic I/O modules covers the
definition of digital and analog input and output devices.

CiA DSP 402

The CANopen device profile for drives and motion controllers
defines the interface to frequency inverters, servo controllers
as well as stepper motors.

CiA DS 404
The CANopen device profile for measuring devices and closed-
loop controllers supports also multi-channel devices.

CiA DSP 405

The CANopen device and interface profile for IEC 61131-3
compatible controllers is based on the CiA DSP 302 specifica-
tion using network variables to be mapped into PDOs, and
function blocks for SDO services, etc.

CiA DS 406
The CANopen device profile for encoders defines the commu-
nication of rotating as well as linear sensors.

CiA DSP 407

The CANopen application profile for passenger information
systems developed in cooperation with the German VDV spec-
ifies interfaces for a range of devices including displays, ticket
printers, passenger counting units, main onboard computer,
etc.

CiA DSP 408

The CANopen device profile for hydraulic controllers and pro-
portional valves is compliant to the bus-independent VDMA
device profile.

CiA DSP 410
The CANopen device profile for inclinometer supports 16-bit as
well as 32-bit sensors.

CiA DSP 412

The CANopen device profiles for medical equipment specify
the interfaces for x-ray collimators, x-ray generators, stands
and tables.

CiA DSP 413

The CANopen interface profiles for in-vehicle truck gateways
specify gateways to ISO 11992, J1939, and other in-vehicle
networks. The CANopen network is mainly used for truck- or
trailer-based superstructures, e.g. as in garbage trucks, truck-
mounted cranes, and concrete mixers.

CiA DSP 414
The CANopen device profile for weaving machines specifies
the interface for feeder sub-systems.

517

Appendix K: CANopen Glossary

CiA DSP 415

The CANopen application profile for asphalt pavers specifies
interfaces to different devices used in road construction
machinery.

CiA DSP 416

The CANopen application profile for building doors specifies
interfaces for locks, sensors, and other devices used in elec-
tronically controlled building doors.

CiA DSP 417

The CANopen application profile for lift control specifies the
interfaces for car controller, door controller, call controller and
other controllers as well as for car units, door units, input pan-
els, and display units, etc.

CiA DSP 418
The CANopen device profile for battery modules specifies the
interface to communicate with battery chargers.

CiA DSP 419
The CANopen device profile for battery charger specifies the
interface to communicate with the battery module.

CiA DSP 420

The CANopen device profile family for extruder downstream
devices defines interfaces for puller, corrugator and saw
devices.

CiA DSP 421

The CANopen device profile for railways specifies interfaces to
sub-systems such as diesel engines, brake controllers, door
controllers, etc.

CiA DSP 422
The CANopen application profile for municipal vehicles defines
the communication of sub-systems used in garbage trucks.

CiA TR 308
This technical report specifies some timings for CANopen per-
formance testing tools.

Client SDO
The Client SDO initiates the SDO communication by means of
reading or writing to the Object Dictionary of the server device.

Client/server
communication

In a client/server communication the client initiates the commu-
nication with the server. It is always a point-to-point communi-
cation.

COB ID

The COB ID is the object specifying the CAN message identi-
fier and additional parameters such as valid/invalid and remote
frame support.

communication object
(COB)

A communication object is one or more CAN messages with a
specific functionality, e.g. PDO, SDO, Emergency, Time, or
Error Control.

communication profile

A communication profile defines the content of communication
objects such as Emergency, Time, Sync, Heartbeat, NMT, etc.
in CANopen.

Configuration Man-
ager

The Configuration Manager (CMT) provides mechanisms for
configuration of CANopen devices during boot-up.

Embedded Networking with CAN and CANopen

518

confirmed
communication

Confirmed communication services requires a bi-directional
communication, meaning that the receiving node sends a con-
firmation that the message has been received successfully.

conformance test plan

Definitions of test cases that have to be passed successfully in
order to achieve conformance to a communication standard.
The conformance test plan for CAN is standardized by ISO
16845.

conformance test tool
A conformance test tool is the implementation of a confor-
mance test plan.

consumer
In CAN networks a receiver of messages is called a consumer
meaning the acceptance filter is opened.

D

data type
Object attribute in CANopen defining the format, e.g.
UNSIGNED8, INTEGER16, BOOLEAN, etc.

data link layer

Second layer in the OSI reference model providing basic com-
munication services. The CAN data link layer defines data,
remote, error, and overload frames.

default value
Object attribute in CANopen defining the pre-setting of not
user-configured objects after power-on or application reset.

device profile
A device profile defines the device-specific communication ser-
vices including the configuration services in all details.

Draft
Recommendation
(DR)

This kind of recommendation is not fixed, but it is published.
CiA's draft recommendations are not changed within one year.

Draft Standard (DS)
This kind of standard is not fixed, but it is published. CiA's draft
standards are not changed within one year.

Draft Standard Pro-
posal (DSP)

This kind of standard is a proposal, but it is published. CiA's
draft standard proposals may be changed anytime without noti-
fication.

D-sub connector

Standardized connectors. Most common in use is the 9-pin D-
sub connector (DIN 41652); its pin-assignment for CAN net-
works is specified in CiA DS 102.

E

EDS checker

Software tool that checks the conformity of electronic data
sheets. The CANopen EDS checker is available on CiA's web-
site to be downloaded..

519

Appendix K: CANopen Glossary

EDS generator Software tool that generates CANopen electronic data sheets.

Electronic Data Sheet
(EDS)

Electronic data sheets describe the functionality of a device in a
standardized manner.

Emergency
message

Pre-defined communication service in CANopen mapped into a
single 8-byte data frame containing a 2-byte standardized error
code, the 1-byte error register, and 5-byte manufacturer-spe-
cific information. It is used to communicate device and applica-
tion failures.

EN 50325-4
CENELEC standard defining the CANopen application layer
(version 4.0).

Entry category
Object attribute in CANopen defining if this object is mandatory
or optional.

Error code
CANopen specifies standardized error codes transmitted in
emergency messages.

Error control
message

The CANopen error control messages are mapped to a single
1-byte CAN data frame assigned with a fixed identifier that is
derived from the device's Node ID. It is transmitted as boot-up
message before entering pre-operational state after inititializa-
tion, and it is transmitted if remotely requested by the NMT
Master (node guarding) or periodically by the device (heart-
beat).

event driven

Event driven messages are transmitted when a defined event
occurs in the node. This may be a change of input states,
elapsing of a local timer, or any other local event.

event timer
The event timer is assigned in CANopen to one PDO. It defines
the frequency of transmission.

expedited SDO

This is a confirmed communication service of CANopen (peer-
to-peer). It is made up by one SDO initiate message of the cli-
ent node and the corresponding confirmation message of the
server node. Expedited SDOs are used if not more than 4 byte
of data has to be transmitted.

F

flying master

In safety-critical applications, it may be required that a missing
NMT Master is substituted automatically by another stand-by
NMT Master. This concept of redundancy is called flying mas-
ter.

Embedded Networking with CAN and CANopen

520

form error

A corruption of one of the pre-defined recessive bits (CRC
delimiter, ACK delimiter and EOF) is regarded as a form error
condition that will cause the transmission of an error frame in
the very next bit-time.

function code

First four bits of the CAN identifier in the CANopen pre-defined
identifier set indicating the function of the communication object
(e.g. TPDO_1 or Error Control message).

G

galvanic isolation

Galvanic isolation in CAN networks is performed by optocou-
plers or transformers placed between CAN controller and CAN
transceiver chip.

gateway

Device with at least two network interfaces transforming all
seven OSI (open system interconnection) protocol layers, e.g.
CANopen-to-Ethernet gateway.

H

heartbeat
CANopen uses heartbeat message to indicate that a node is
still alive. This message is transmitted periodically.

heartbeat
consumer time

The heartbeat consumer time defines the time when a node is
regarded as no longer alive due to a missing heartbeat mes-
sage.

heartbeat
producer time

The heartbeat producer time defines the transmission fre-
quency of a heartbeat message.

I

identifier

In general, the term identifier refers to a CAN message identi-
fier. The CAN message identifier identifies the content of a data
frame. The identifier of a remote frame corresponds to the iden-
tifier of the requested data frame. The identifier includes implic-
itly the priority for the bus arbitration.

Index
16-bit address to access the CANopen dictionary; for array and
records the address is extended by an 8-bit Subindex.

line topology

Networks, where all nodes are connected directly to one bus
line. CAN networks use theoretically just line topologies without
any stub cable. However in practice you find tree and star
topologies as well.

521

Appendix K: CANopen Glossary

inhibit timer

Object in CANopen for PDOs and Emergency messages that
forbids for the specified time (inhibit time) a transmission of this
communication object.

Initialization state
NMT slave state in CANopen that is reached automatically after
power on and communication or application reset.

interface profile

CANopen profile that describes just the interface and not the
application behavior of device, e.g. gateway and bridge
devices.

ISO 11898-1
International standard defining the CAN data link layer includ-
ing LLC, MAC and PLS sub-layers.

ISO 11898-2 International standard defining the CAN high-speed MAU.

L

Life guarding

Method in CANopen to detect that the NMT Master does not
guard the NMT slave anymore. This not recommended for new
systems designs.

M

master

Communication or application entity that is allowed to control a
specific function. In networks this is for example the initializa-
tion of a communication service.

Multiplexed PDO
(MPDO)

The MPDO is made of 8 byte including one control byte, three
multiplexer bytes (containing the 24-bit Index and Subindex),
and four bytes of object data.

N

network length

Bus length. The network cable length between the both termi-
nation resistors. The bus length of CANopen networks is limited
by the used transmission rate. At 1 Mbps the maximum length
is 25 m. When using lower transmission rates, longer bus lines
may be used: at 50 kbps a length of 1 km is possible.

network
management

Entity responsible for the network boot-up procedure and the
optional configuration of nodes. It also may include node-
supervising functions such as node guarding.

network variables

Network variables are used in programmable CANopen
devices to be mapped into PDOs after programming the
device.

Embedded Networking with CAN and CANopen

522

NMT Network management in CANopen.

NMT Master

The NMT Master device performs the network management by
means of transmitting the NMT message. With this message, it
controls the state machines of all connected NMT Slave
devices.

NMT Slave

The NMT Slaves receive the NMT message, which contains
commands for the NMT state machine implemented in CANo-
pen devices.

NMT state
machine

The NMT state machines support different states and the high-
est prior CAN message transmitted controls the transition to the
states by the NMT Master.

node guarding

Mechanism used in CANopen and CAL to detect bus off or dis-
connected devices. The NMT Master sends a remote frame to
the NMT slave that is answered by the corresponding error
control message.

Node ID

Unique identifier for a device required by different CAN-based
higher-layer protocols in order to assign CAN identifiers to this
device, e.g. in CANopen and DeviceNet. In the pre-defined
connection set of CANopen some of the CAN message identi-
fier are derived from the assigned Node ID.

O

Object Dictionary
Heart of each CANopen device containing all communication
and application objects.

operational state
In the NMT operational state all CANopen communication ser-
vices are available.

P

PDO mapping
In PDOs, there may be mapped up to 64 objects. The PDO
mapping is described in the PDO mapping parameters.

pin assignment Definition of the use of connector pins.

523

Appendix K: CANopen Glossary

pre-defined
connection set

The pre-defined connection set is a default assignment of CAN
message identifiers to CANopen communication objects. Some
CANopen communication objects are distributed in broadcast
(NMT message, Sync message, Time message) and others are
transmitted between NMT Master device and dedicated NMT
slave devices (PDO, SDO, Emergency, and Error Control). This
default assignment guarantees that the CAN message identifi-
ers are uniquely assigned in the network, if the node-ID has
been assigned uniquely.

pre-operational state
In the NMT pre-operational state no CANopen PDO communi-
cation is allowed.

Process Data Object
(PDO)

Communication object defined by the PDO communication
parameter and PDO mapping parameter objects. It is an
unconfirmed communication service without protocol overhead.

producer
In CAN networks a transmitter of messages is called a pro-
ducer.

protocol

Formal set of conventions and rules for the exchange of infor-
mation between nodes, including the specification of frame
administration, frame transfer and physical layer.

R

receiver
A CAN node is called receiver or consumer, if it is not transmit-
ter and the bus is not idle.

redundant
networks

In some safety-critical applications (e.g. maritime systems),
redundant networks may be required that provide swapping
capability in case of detected communication failures.

remote frame

With a remote frame another node is requested to transmit the
corresponding data frame identified by the very same identifier.
The remote frame's DLC has the value of the corresponding
data frame DLC. The data field of the remote frame has a
length of 0 byte.

remote
transmission request
(RTR)

Bit in the arbitration field indicating if the frame is a remote
frame (recessive value) or a data frame (dominant value).

repeater

Passive component that refreshes CAN bus signals. It is used
to increase the maximum number of nodes, or to achieve lon-
ger networks (>1 km), or to implement tree or meshed topolo-
gies.

reset application
This NMT command resets all objects in CANopen devices to
the default values or the permanently stored configured values.

Embedded Networking with CAN and CANopen

524

reset
communication

This NMT command resets only the communication objects in
CANopen devices to the default values or the permanently
stored configured values.

RPDO
The Receive Process Data Object (RPDO) is a communication
object that is received by a CANopen device.

S

SDO block
transfer

SDO block transfer is an CANopen communication services for
increasing downloading In SDO block transfer, the confirmation
is send after the reception of a number of SDO segments.

SDO Manager

The SDO Manager handles the dynamic establishment of SDO
connections. It resides on the very same node as the NMT
Master.

segmented SDO

If objects longer than 4 byte are transmitted by means of SDO
services, a segmented transfer is used. The number of seg-
ments is theoretically not limited.

Server SDO

The Server SDO receives the SDO messages from the corre-
sponding SDO Client and responses each SDO message or a
block of SDO messages (SDO block transfer).

Service Data Object
(SDO)

SDOs provide the access to entries in the CANopen Object
Dictionary. An SDO is made up of at least two CAN messages
with different identifiers. SDOs are always confirmed point-to-
point communication services.

SI unit
International system of units for physical values as specified in
ISO 1000:1983.

stopped state
NMT state in which only NMT messages are performed and
under some conditions error control messages are transmitted.

sub-index

8-bit sub-address to access the sub-objects of arrays and
records. Note: In this book Subindex is used instead of sub-
index and Subentry instead of sub-object.

suspend
transmission

CAN controllers in error passive mode have to wait additional 8
bit-times before the next data or remote frame may be transmit-
ted.

SYNC message

Dedicated CANopen message forcing the receiving nodes to
sample the inputs mapped into synchronous TPDOs. Receiving
this message causes the node to set the outputs to values
received in the previous synchronous RPDO.

525

Appendix K: CANopen Glossary

T
termination
resistor

In CAN high-speed networks with bus topology, both ends are
terminated with resistors in order to suppress reflections.

TIME message

Standardized message in CANopen containing the time as a 6-
byte value given as ms after midnight and days after 1st Janu-
ary 1984.

TPDO
The Transmit Process Data Object (TPDO) is a communication
object that is transmitted by a CANopen device.

transmission type CANopen object defining the scheduling of a PDO.

V
value definition Detailed description of the value range in CANopen profiles.

value range
Object attribute in CANopen defining the allowed values that
this object supports.

Embedded Networking with CAN and CANopen

526

527

Index

Symbols
#define 283
#define statements 23

Numerics
11-bit identifiers 320
29-bit identifiers 320
7-Layer network model 18

A
Abort Messages (SDO) 501
aborting an SDO transmission 100
Access Attributes 55
ACK delimiter 220
acknowledgement (ACK) 220, 225
application layer 21, 513
application objects 513
application profile 514
Application Profiles, specifications

115
arbitration 8, 221
arbitration process 221, 222
ASCII editor 59
asynchronous PDO 514
automation 6
Automation Pyramid 5

B
bandwidth calculation 248
bandwidth usage, estimate 177
Base Frame Format 204
Basic CAN 232, 323
Basic CAN interfaces 232
Bit Coding 210

Bit Stuffing 210
Bit Timing 327
Bit timing 254, 325
block transfer 63, 94, 104, 284
Boolean 329
bootloader 294
BootTime (NMT) 130
Boot-up 259
Boot-up message 514
Boot-up Process 148
buffer, controller 233
bus 514
bus analyzer 514
bus arbitration 514
bus length 515
bus length, calculating maximum

218
Bus Off 228, 515
Byte order 254
Byte ordering 93

C
Cabling 211
CAN 515
CAN 2.0A 320, 323
CAN 2.0B 320, 323
CAN Data Frame 220
CAN ID 40, 61
CAN protocol controller 516
CAN transceiver 516
CAN_H 212
CAN_L 212
CANopen 515
CANopen application layer 515
CANopen compliant bootloader

294
CANopen Conformance Test 59

528

CANopen conformance test 289
CANopen Loader 307
CANopen Manager 119, 147, 515
CANopen node, developing 279
CANopen Safety 516
CANopen, implementing 319
Carrier Sense Multiple Access with

Collision Detection 8, 221
Certification 516
Change-of-State 13
change-of-state transmission 68
change-of-state, see also COS 38
CiA DR 303 516
CiA DS 102 516
CiA DS 301 516
CiA DS 401 517
CiA DS 404 517
CiA DS 406 517
CiA DSP 302 516
CiA DSP 304 516
CiA DSP 305 516
CiA DSP 306 517
CiA DSP 308 517
CiA DSP 309 517
CiA DSP 402 517
CiA DSP 405 517
CiA DSP 407 517
CiA DSP 408 517
CiA DSP 410 517
CiA DSP 412 517
CiA DSP 413 518
CiA DSP 414 518
CiA DSP 415 518
CiA DSP 416 518
CiA DSP 417 518
CiA DSP 418 518
CiA DSP 419 518
CiA DSP 420 518
CiA DSP 421 518
CiA DSP 422 518
CiA TR 308 518
Client 12
Client (SDO) 61, 519
Client/server communication 519
Clients and Servers, SDO 285
COB ID 36, 40, 41, 493, 519

defined 36
COB-ID (SYNC) 73
Code memory 23
collision 221

collision avoidance 9
collisions 221
Command Parameter Record 338
Communication Cycle Period 73
communication entries 50
communication object (COB) 519
Communication Parameters

(RPDO) 76
Communication Parameters

(TPDO) 78
communication profile 519
communication requirements 246
Configuration Date 146
Configuration Manager 142, 519
configuration tool, using 183
confirmed communication 519
Conformance Test 59, 289, 317
conformance test plan 519
conformance test tool 519
Connection Object Identifier, see

also COB ID 36
connections, establishing 185
Connectors 212
connectors 212

9-Pin D-Sub 213
Dual Header Row 214
RJ10 4-pin 215
RJ45 8-pin 216

consumer 13, 519
co-processor mode 280
COS, see also change-of-state 13,

37, 38
CPU performance 237
CPU/MCU Performance 22
CRC 225
CSMA/CD 8
CSMA/CD, see also Carrier Sense

Multiple Access with
Collision Detection 9, 221

CSMA/CD,see also Carrier Sense
Multiple Access with
Collision Detection 8

Cyclic Redundancy Checksum
(CRC) 205, 225

D
DAM-MPDO 421
data bandwidth 321
Data Frame 219

529

Data Length Code (DLC) 220
Data Link Layer 18, 19, 520
Data memory 24
Data Memory Space 24
Data Types 45
data types 29, 45, 519
data types, CANopen 329
data types, complex 45, 48
data types, standard 45
DCF Storage 143
DCF, see also Device Configuration

Files 56
Debugger Parameter Record 338
default value 520
Design Cycle example 309
Destination Addressing Mode

Multiplexed PDO 421
development tools 240
Device Configuration File 60
device profile 30, 53, 520
device profile, manufacturer 308
device profile, specifications 114
Device Profiles, and Electronic

Data Sheets 32
Device Type 52
DeviceNet 8
differential signal 207
distributed control 10
Domain 335
dominant signal state 207
Download (SDO) 64
Draft Recommendation (DR), see

also headings under CiA
for specs 520

Draft Recommendations 117
Draft Specification 117
Draft Standard (DS), see also

headings under CiA for
specs 520

Draft Standard Proposal (DSP), see
also headings under CiA
for specs 520

Draft Standard Proposals 117
driver, CANopen hardware 260
drops 217
D-Sub 213
D-sub connector 520
Dummy Entries 82
Dynamic Mapping 81

Dynamic SDO Connection State
137

Dynamic SDO Request 131

E
EDS 56
EDS checker 520
EDS generation 181
EDS generator 520
EDS, see Electronic Data Sheets

31, 520
EEPROM 24
Electro Magnetic Interference

(EMI) 17
Electromagnetic Interference (EMI)

209
Electronic Data Sheet 31, 57
Electronic Data Sheet (EDS) 520
Electronic Data Sheets

defined 31
embedded networking

defined 4
Embedded Systems 21
Emergency message 520
Emergency Objects 497
EMI 209
EN 50325-4 521
Endianess 93
entries, Object Dictionary 343
Entry category 521
Error Active 227
Error code 521
Error Codes, Emergency 497
Error control message 521
Error Counter 227
Error Detection 224
Error Frame 219, 226
Error Passive 227
Error Register 52
error statistics 228
Event 14
Event driven 13, 14, 37, 67, 521
Event driven (PDO) 68
Event timer 259, 521
expedited SDO 521
expedited SDO transfer 284
expedited transfer 63, 94
Extended Frame Format 204
extended frame format 204

530

extended IDs 204

F
Fieldbuses 8
FIFO 234
filters

mask 231
match only 231

firmware 307
Floating Point (Real) 331
flying master 12, 119, 521
form error 522
Foundation Fieldbus 8
Frame 219
Frameworks, specifications 116
Full CAN 233, 323, 324
Full CAN controllers 233
function code 522

G
galvanic isolation 522
gateway 522
Generic I/O 153
group polling 67
Guard Time 52

H
Hamming Distance 229
heartbeat 52, 522
heartbeat consumer time 522
heartbeat producer time 522
higher-layer protocols 18, 24
high-speed transceivers 203

I
I 16
I/O Cycle 16, 321
I/O cycle, speed 321
I/O panels 198
I2C 26
ID, node 524
identifier 40, 522
Identity 53
Identity Object 53
Identity Record 338

Idling 210
Implementation Example 299
index 41, 523
Individual polling 67
industrial automation 5
Inhibit time 14, 260
Inhibit Timer 68, 523
Initialization state 523
Input 9
Input filter/debounce 16
Input-scan cycle 16
InstructionsPerBitTime 238
Inter Frame Space 210
Interbus 8
interface profile 523
Inter-Frame Space 227
is 12
ISO 11898 206
ISO 11898 vs. ISO 11898-X 204
ISO 11898-1 523
ISO 11898-2 523
ISO 7-Layer Reference Model 18
ISO network model 18
ISO11898 203

J
junctions 217

L
Latency 15
Layout 217
Life guarding 523
Life Time Factor 52
line drivers 206
line topology 523
Linking (PDO) 74
Little Endian 93

M
M/O 55
main trunk 217
mandatory entries 30, 50
Mapping

Dynamic vs Static 81
Mapping Parameters (PDO) 79
Master 11, 523

531

master-driven communication 11
master-less communication 12
match only filter 231
memory requirements, CANopen

319
message delay times 321
message identifiers 61
Message Triggering 13, 259
MicroCANopen 252

Bit Rate / Bit Timing 254
Byte Ordering 254
Network Management Master

(NMT) 254
Node ID 254
Process Variables 254

MicroCANopen and CANopen,
comparison 253

Minimal Object Dictionaries 487
Modbus 8
Multicast 13
multi-controller 5
Multi-master 8
Multiple Device Modules 45
Multiplexed PDO (MPDO) 523
multiplexor 63

N
network configuration, storing

196
network integration cycle, example

175
Network latency 16
Network Layer 19
Network Layout 17
network length 524
Network List 126
Network Management 38, 83, 254,

524
Network Management Master 38
network simulation 189
Network transmit 16
Network variable 254
network variables 11, 524
NMT 524
NMT Master 119, 524
NMT Master Message 101
NMT Startup 120
NMT state machine 524
NMT states 85

NMT, see also Network
Management 38, 83

NMTZeroMsg 192
node guarding 524
Node ID 40, 41, 254, 315, 524
Node ID claiming 318
Node ID, auto-assigned 318
node simulation, advanced 197
Node States 505
Non-Volatile 24
Non-volatile Data Storage 24

O
Object Dictionary 28, 42, 525

access via Service Data Objects 61
accessing 32
Index 41
Subindex 41

Object Dictionary, example 43
Objects 40
objects 40
Octet String 332
OD, see Object Dictionary 28
Off-the-shelf 27
operational state 84, 525
Output 9

P
PDO 34, 65

Linking 36
mapping 34
Triggering 37

PDO Communication Parameter
Record 336

PDO linking 36, 74
PDO mapping 259, 525
PDO Mapping Parameter Record

337
PDO mapping parameters 288
PDO Triggering 37

Event driven 37
Individual Polling 37
Synchronized 38
Time driven 37

PDO, see also Process Data Object
34, 525

PeliCAN 324
physical 217

532

Physical Layer 18, 19, 206
physical layer requirements 327
Physical Layout 217
pin assignment 525
Plug-and-play 27
Point-to-point 13
point-to-point 13
point-to-point communication 62
Polling 13, 37, 67
Polling (PDO) 70
Pre-defined connection 36
Pre-defined Connection Set 74,

130
Pre-defined connection set 525
prefixes 187
Pre-Operational 84
Pre-Operational state 84, 525
Presentation Layer 20
Process Data Object (PDO) 34, 41,

525
process data variables 11
Producer 13
producer 525
Producer (SYNC) 73
Producer Heartbeat Time 52
Profibus 8
Programmable Logic Controller

(PLC) 175
proprietary setup tools 180
protocol 525

R
Real-time 15, 23
Receive Process Data Object, see

also RPDO 526
Receive Process Data Objects, see

also RPDO 65
receiver 526
recessive signal state 207
redundant networks 526
remote frame 526
remote transmission request (RTR)

526
repeater 526
Request and Release SDO Channel

135
Request NMT 124
reset application 526
reset communication 526

RJ10 215
RJ45 216
RPDO 526
RPDO, see also Receive Process

Data Object 65
RTR, see also remote transmission

request 526

S
Safeguard Cycle Time (SCT) 171
Safety 168
Safety-Relevant Data Object

(SRDO) 171
Safety-Relevant Validation Time

(SRVT) 172
SAM-MPDO 421
Scan-Cycle 16
SDO 61, 141

message identifiers 61
segmented transfer 33
specifier 63
transfers 33

SDO Abort Messages 501
SDO Block Transfer 104
SDO block transfer 526
SDO Clients, multiple 131
SDO communication 94
SDO communication, default 33
SDO Connections 141
SDO Download 64
SDO Manager 63, 527
SDO Manager COB IDs 139
SDO Parameter Record 337
SDO Read Access 64
SDO transfer modes 284
SDO Upload 64
SDO Write Access 64
SDO, see also Service Data Object

32, 527
segmented SDO 527
segmented transfer 33, 94, 284
Serial 8
Serial Bus 8
Server 12
Server (SDO) 61, 527
Service Data Object (SDO) 33, 41,

61, 527
Service Data Objects (SDO)

defined 33

533

Session Layer 20
setup tools 180
SI unit 527
Signal levels 208
Signed Integer 331
simulation, network 189
Slave 11
Slave Assignment 122
slope control 208
Source Addressing Mode

Multiplexed PDO 421
source code 282
Special Function Registers (SFRs)

236
specifier 63
SRDO, OD entries 173
Static Mapping 81
Stopped state 84, 527
Store Parameters 197
Subindex 41, 527
suspend transmission 527
SYNC 70
SYNC message 527
SYNC signal 70
SYNC Terminology 73
synchronization, quality 72
Synchronized 38
Synchronized (PDO) 70
Synchronized polling 67
Synchronous Window Length 73

T
TCP/IP 25
Technical Report 117
termination resistor 528
Time Difference 335
Time driven 13, 37, 69
Time Driven (PDO) 69
Time driven 67
TIME message 528
Time of Day 334
Time Stamp 146
Time triggered 13, 14
timers

global 13
local 13

Token-ring 8
TPDO, see also Transmit Process

Data Object 36, 65, 528

Transceiver 207
Transfer Format 339
transmission type 409, 417, 528
Transmit Process Data Object, see

also TPDO 36, 65, 528
transmit trigger methods 67
Transport Layer 20
Trigger Options (PDO) 67
Triggering messages 259

U
UART 26
Unicode String 333
Unsigned Integer 330
Upload (SDO) 64
User interface 264

V
value definition 528
value range 528
Visible Character 332
Visible String 333
Void 330

W
Wiring 211
Wiring/Cabling 211
Working Draft 117

X-Z
XDATA 236
XML 31

535

About Copperhill Technologies Corporation

Copperhill Technologies was founded in 1993 as a software engineering company.
Soon thereafter the focus became the development of motor sizing programs un-
der DOS followed by the various Windows operating systems. We sell single user
licenses of our generic product, VisualSizer-Professional, since 1997, but our main
business was the customization of the software for some of the most reputable
manufacturers in the motion control industry. We are now exploring new oppor-
tunities by publishing technical literature. For additional information please visit
http://www.copperhillmedia.com.

.

	Embedded Networking with CAN and CANopen
	Embedded Networking with CAN and CANopen
	Preface xiii
	History of CAN and CANopen xv
	1 Understanding Embedded Networking Requirements 3
	2 The CANopen Standard 39
	3 CANopen Beyond DS301 113
	4 CANopen Configuration Example 175
	5 Underlying Technology: CAN 203
	6 Implementing CANopen 245
	A Frequently Asked Questions 315
	B Physical Layer 327
	C Data Types 329
	D The Object Dictionary 343
	E Minimal Object Dictionaries 487
	F Communication Object Identifiers (COB IDs) 493
	G Emergency Objects 497
	H SDO Abort Messages 501
	I Node States 505
	J References 507
	K CANopen Glossary 513

	1 Understanding Embedded Networking Requirements
	1.1 Embedded Networking for Beginners
	1.1.1 What is “Embedded Networking”?
	1.1.2 Communication in the Automation Pyramid
	1.1.3 Terminology used in Embedded Networking
	1. Physical Layer:

	1.2 Code Requirements for Embedded Systems
	1.2.1 CPU/MCU Performance
	1.2.2 Real-Time Requirements
	1.2.3 Code Memory Space
	1.2.4 Data Memory Space
	1.2.5 Non-volatile Data Storage
	1.3 Communication Requirements for Embedded Networking
	1.3.1 Higher-Layer Protocol
	1.3.2 Price, Performance, Resources
	1.3.3 Definition of Data Types and Process Variables
	1.3.4 Exchanging Process Variables
	1.3.5 Configuration of Network Devices
	1.3.6 Off-the-Shelf, Plug-and-Play
	1.4 Introduction to CANopen from the Application Level
	1.4.1 The Object Dictionary Concept
	1.4.2 Device Profiles
	1.4.3 Electronic Data Sheets
	1.4.4 Accessing the Object Dictionary: SDOs
	1. Master sends SDO read request to input node.

	1.4.5 Increased Performance with PDOs
	1. Event driven: If the input device recognizes a change-of-state (COS) on any of its inputs, it updates the data in the Object Dictionary and the PDO and then transmits the PDO. This mode allows for some of the fastest response times.

	1.4.6 Network Management (NMT)
	Part One: Using CANopen

	2 The CANopen Standard
	2.1 Using Identifiers and Objects
	2.2 The CANopen Object Dictionary
	2.2.1 What is the Object Dictionary?
	2.2.2 Object Dictionary Organization and Contents
	2.2.3 Data Types
	2.2.4 Communication Entries
	2.2.5 Mandatory Entries
	2.2.6 Manufacturer Specific Entries
	2.2.7 Device Profile Parameters
	2.2.8 Reading the CANopen Specification
	2.3 The Electronic Data Sheets (EDS) and Device Configuration Files (DCF)
	2.3.1 EDS Format and Editing
	2.3.2 EDS Usage
	2.3.3 DCF Format and Usage
	2.4 Accessing the CANopen Object Dictionary (OD) with Service Data Objects (SDO)
	2.4.1 Client and Server
	2.4.2 Message Identifiers Used for SDOs
	2.4.3 SDO Message Contents
	2.4.4 SDO Download vs. Upload
	2.4.5 SDO Usage Limitation
	2.5 Handling Process Data with Process Data Objects (PDO)
	2.5.1 TPDO Transmit Trigger Options
	2.5.2 SYNC Terminology
	2.5.3 Combining Transmit Trigger Options
	2.5.4 PDO Linking and Pre-defined Connection Set
	2.5.5 RPDO Communication Parameters
	2.5.6 TPDO Communication Parameters
	2.5.7 PDO Mapping Parameters
	2.6 Network Management (NMT)
	2.6.1 NMT Slave State Diagram
	2.6.2 Heartbeat or Node Guarding
	2.6.3 Emergencies (EMCY)
	2.7 CANopen Example Configurations and Exercises
	2.7.1 Heartbeat Producer and Consumer Configuration Example
	1. produce a heartbeat of 250ms and
	1. Write the value 250d into OD entry [1017h,00h] of node 5.

	2.7.2 PDO Linking Example
	1. Node 5 needs to be configured to directly listen for the default TPDO1 transmitted by node number 6. RPDO1 of node 5 should be used to receive TPDO1 of node 6 (for illustration see Figure 2.10).
	1. The default CAN identifier used by node 6 for TPDO1 is 186h (180h base address plus 6 for Node ID 6).

	2.7.3 PDO Linking and Mapping Example
	1. Node 1Fh should be configured to receive in its RPDO2 the TPDO2 from node 2Ah and in RPDO3 the TPDO3 of node 2Dh.
	1. The default CAN identifier used for TPDO2 of node 2Ah is 2AAh. The default CAN identifier used for TPDO3 of node 2Dh is 3ADh.

	2.8 Contents of CANopen Messages
	2.8.1 Endianess
	2.8.2 SDO Communication
	2.8.3 Network Management (NMT) Communication
	2.8.4 Emergency Communication
	2.8.5 SDO Block Transfer

	3 CANopen Beyond DS301
	3.1 Frameworks and Profiles Overview
	3.2 About Masters and Managers (DS302)
	3.2.1 The NMT Master
	3.2.2 The SDO Manager and Dynamic SDO Connections
	3.2.3 The Configuration Manager
	3.2.4 The CANopen Manager
	3.2.5 The Boot-up Process
	3.3 Device Profile for Encoder (DS406)
	3.3.1 Introduction
	3.3.2 Object Dictionary Entries
	3.3.3 Encoder Object Dictionary Example
	3.4 Device Profile for Generic I/O (DS401)
	3.4.1 Introduction to Generic I/O
	3.4.2 Object Dictionary Entries
	3.4.3 Illustrations
	3.4.4 Generic I/O Object Dictionary Example
	3.5 Safety-Relevant Communication (DSP304, DSP307)
	3.5.1 Introduction and Terminology
	3.5.2 Defects Happen
	3.5.3 Adding Safety to CANopen
	3.5.4 CANopen SRDO – Safety-Relevant Data Object
	3.5.5 Object Dictionary Entries for SRDOs

	4 CANopen Configuration Example
	4.1 Evaluating the System Requirements
	4.1.1 Defining the System
	4.1.2 Estimated Bandwidth Usage
	4.2 Choosing the Devices and Tools
	4.2.1 Choices to Make
	4.2.2 Modular, Generic I/O
	4.2.3 Tools
	4.3 Configuring Single Devices
	4.3.1 Advantys STB Configuration
	4.3.2 CANopenIA Configuration
	4.4 Overall Network Configuration
	4.4.1 Getting Started: Select Nodes
	4.4.2 Establishing Connections
	4.5 Network Simulation
	4.6 Network Commissioning
	4.6.1 Finalize the Configuration
	4.6.2 Downloading Configuration to Nodes
	4.6.3 Storing the Current Network Configuration
	4.6.4 Alternatives with Store Parameters
	4.7 Advanced Features and Testing
	4.7.1 Advanced Node Simulation
	4.7.2 Migration from Simulation to Physical Node
	4.7.3 Advanced Panel Design
	Part Two: CANopen Engineering

	5 Underlying Technology: CAN
	5.1 CAN Overview
	5.2 An Introduction to CAN
	5.2.1 The Physical Layer based on ISO 11898
	5.2.2 Signal States: Recessive versus Dominant
	5.2.3 Signal Levels
	5.2.4 Wiring/Cabling
	5.2.5 Connectors
	5.2.6 Physical Layout
	5.2.7 The CAN Base Frame Format
	5.2.8 Collisions and Arbitration
	5.2.9 Error Detection Mechanisms
	5.2.10 The Safety of CAN: Error Statistics
	5.3 Selecting a CAN Controller
	5.3.1 Required Performance
	5.3.2 Hardware Filtering with Match and/or Mask
	5.3.3 Different CAN Implementations
	5.3.4 Physical Interfaces of CAN Controllers
	5.3.5 Code, Data Memory and CPU Performance Requirements
	5.3.6 Controller Selection Summary
	5.4 CAN Development Tools
	5.4.1 Functions Expected of a CAN Interface
	5.4.2 Functions Expected of a CAN Monitor or Analyzer
	5.4.3 Functions Expected of a CANopen Configuration Tool and Monitor

	6 Implementing CANopen
	6.1 Communication Layout and Requirements
	6.2 Comparison of Implementation Methods
	6.2.1 Develop Hardware and Software from Scratch
	6.2.2 Using Commercial CANopen Software
	6.2.3 Using CANopen Processors or Modules
	6.3 Simple Do-It-Yourself Implementation: MicroCANopen
	6.3.1 Basic Concepts of MicroCANopen
	6.3.2 Functionality of a Single MicroCANopen Node
	6.3.3 Assigning CAN Message Identifiers
	6.3.4 Message Contents
	6.3.5 Message Triggering
	6.3.6 Implementing MicroCANopen
	6.3.7 Summary: What Does it Do?
	6.3.8 Flow Charts for the Main Function Blocks
	Flow Chart 6.1 Process Stack (Continued)
	Flow Chart 6.4 Handle SDO Request (Continued)
	Flow Chart 6.5 Handle TPDO Transmit (Continued)

	6.4 Using CANopen Hardware Modules or Chips
	6.4.1 Stand-Alone Operation
	6.4.2 Co-Processor Operation
	6.4.3 Setup and Configuration
	6.5 Using CANopen Source Code
	6.5.1 Code Configuration through Conditional Compilation
	6.5.2 The Object Dictionary
	6.5.3 PDO Mapping
	6.6 CANopen Conformance Test
	6.6.1 What Does it Do?
	6.6.2 Who Should Use It?
	6.6.3 Other Test Options
	6.7 Choosing an Implementation Path
	6.8 Implementing CANopen Compliant Bootloaders
	6.8.1 Minimal Functionality Required
	6.8.2 Object Dictionary Entries Suggested for a Bootloader
	6.8.3 Bootloader Flow Chart
	6.8.4 Handling the Bootloader
	6.9 CANopen Implementation Example
	6.9.1 Background
	6.9.2 Lab Instrumentation Requirements vs. CAN Physical Layer Specification
	6.9.3 Lab Instrumentation Requirements vs. CANopen Specification
	6.9.4 Optimizing the Default Connection Set
	6.9.5 Enhancing the Role of the CANopen Emergency Object
	6.9.6 Providing for Application Firmware Update via CANopen
	6.9.7 Creating a Manufacturer’s Device Profile
	6.9.8 Conclusions
	6.10 Example of an Entire Design Cycle
	6.10.1 Defining Nodes and Process Variables
	6.10.2 Define Process Data Objects
	6.10.3 Electronic Data Sheets, Device Configuration Files and Development Tools

	A Frequently Asked Questions
	A.1 General
	A.1.1 What is the identifier of a node, message and/or variable?
	A.1.2 When and why would I need a higher-layer protocol such as CANopen instead of plain CAN?
	A.1.3 Do I need to have my node CANopen conformance tested?
	A.1.4 Is 127 "really" the maximum number of nodes in a CANopen network?
	A.1.5 Can the Node IDs in a CANopen network be auto-assigned?
	A.2 Implementation Issues
	A.2.1 How do I implement CANopen?
	A.2.2 What are the memory requirements for a CANopen communication protocol stack?
	A.2.3 Why do most CANopen applications use CAN 2.0A (base frames with 11-bit identifiers) and not CAN 2.0B (extended frames with 29- bit identifiers)?
	A.3 Performance
	A.3.1 How do I calculate worst-case message delay times and data bandwidth?
	A.3.2 How fast is a CAN/CANopen I/O cycle? (read INPUT, trasmit via CANopen, write OUTPUT)
	A.3.3 How can the data bandwidth of a CAN/CANopen network be increased?
	A.4 Physical Layer
	A.4.1 What is the difference between base frame format (CAN 2.0A) and extended frame format (CAN2.0B)?
	A.4.2 What is the difference between “Basic CAN” and “Full CAN”?
	A.4.3 What is PeliCAN?
	A.4.4 How do I connect a CAN controller to the bus?
	A.4.5 How do I calculate the CAN bit timing of my CAN controller?

	B Physical Layer
	B.1 Recommended Bit Timings

	C Data Types
	C.1 Basic Data Types
	C.1.1 Boolean
	C.1.2 Void
	C.1.3 Unsigned Integer
	C.1.4 Signed Integer
	C.1.5 Floating Point (Real)
	C.1.6 Visible Character
	C.2 Extended Data Types
	C.2.1 Octet String
	C.2.2 Visible String
	C.2.3 Unicode String
	C.2.4 Time of Day
	C.2.5 Time Difference
	C.2.6 Domain
	C.3 Complex Data Types
	C.3.1 PDO Communication Parameter Record
	C.3.2 PDO Mapping Parameter Record
	C.3.3 SDO Parameter Record
	C.3.4 Identity Record
	C.3.5 Debugger Parameter Record
	C.3.6 Command Parameter Record
	C.4 Transfer Format
	C.4.1 Basic Data Types
	C.4.2 Extended Data Types

	D The Object Dictionary
	D.1 Object Dictionary Organization
	D.2 Data Type Definitions
	D.2.1 Object Dictionary Sections
	D.2.2 Object Dictionary Implementation
	D.3 Communication Profile
	D.3.1 Object Dictionary Entries
	D.3.2 Device Type (1000h)
	D.3.3 Error Register (1001h)
	D.3.4 Manufacturer Status Register (1002h)
	D.3.5 Pre-Defined Error Field (1003h)
	D.3.6 SYNC COB ID (1005h)
	D.3.7 Communication Cycle Period (1006h)
	D.3.8 Synchronous Window Length (1007h)
	D.3.9 Manufacturer Device Name (1008h)
	D.3.10 Manufacturer Hardware Version (1009h)
	D.3.11 Manufacturer Software Version (100Ah)
	D.3.12 Guard Time (100Ch)
	D.3.13 Life Time Factor (100Dh)
	D.3.14 Store Parameters (1010h)
	D.3.15 Restore Default Parameters (1011h)
	D.3.16 TIME COB ID (1012h)
	D.3.17 High Resolution Timestamp (1013h)
	D.3.18 Emergency COB ID (1014h)
	D.3.19 Inhibit Time Emergency (1015h)
	D.3.20 Consumer Heartbeat Time (1016h)
	D.3.21 Producer Heartbeat Time (1017h)
	D.3.22 Identity (1018h)
	D.3.23 Verify Configuration (1020h)
	D.3.24 Store EDS (1021h)
	D.3.25 Storage Format (1022h)
	D.3.26 OS Command (1023h)
	D.3.27 OS Command Mode (1024h)
	D.3.28 OS Debugger Interface (1025h)
	D.3.29 OS Prompt (1026h)
	D.3.30 Module List (1027h)
	D.3.31 Emergency Consumer (1028h)
	D.3.32 Error Behavior (1029h)
	D.3.33 Server SDO Parameters (1200h)
	D.3.34 Server SDO Parameters (1201h – 127Fh)
	D.3.35 Client SDO Parameters (1280h – 12FFh)
	D.3.36 Receive PDO Parameters (1400h – 15FFh)
	D.3.37 Receive PDO Mapping (1600h – 17FFh)
	D.3.38 Transmit PDO Parameters (1800h – 19FFh)
	D.3.39 Transmit PDO Mapping (1A00h – 1BFFh)
	D.3.40 Object Scanner List (1FA0h – 1FCFh)
	D.3.41 Object Dispatching List (1FD0h – 1FFFh)
	D.4 CANopen Managers and Programmable CANopen Devices
	D.4.1 Object Dictionary Entries
	D.4.2 Request SDO (1F00h)
	D.4.3 Release SDO (1F01h)
	D.4.4 SDO Manager COB IDs (1F02h)
	D.4.5 SDO Connections Part 1 (1F03h)
	D.4.6 SDO Connections Part 2 (1F04h)
	D.4.7 SDO Connections Part 3 (1F05h)
	D.4.8 SDO Connections Part 4 (1F06h)
	D.4.9 Dynamic SDO Connection State (1F10h)
	D.4.10 Slave Failed (1F11h)
	D.4.11 Store DCF (1F20h)
	D.4.12 Storage Format (1F21h)
	D.4.13 Concise DCF (1F22h)
	D.4.14 Store Slave EDS (1F23h)
	D.4.15 Slave EDS Storage Format (1F24h)
	D.4.16 Configure Slave (1F25h)
	D.4.17 Expected Configuration Date (1F26h)
	D.4.18 Expected Configuration Time (1F27h)
	D.4.19 Download Program Data (1F50h)
	D.4.20 Program Control (1F51h)
	D.4.21 Verify Application Software (1F52h)
	D.4.22 Expected Application SW Date (1F53h)
	D.4.23 Expected Application SW Time (1F54h)
	D.4.24 Process Picture / Process Image (1F70h)
	D.4.25 NMT Startup (1F80h)
	D.4.26 Slave Assignment (1F81h)
	D.4.27 Request NMT (1F82h)
	D.4.28 Request Guarding (1F83h)
	D.4.29 Device Type Identification (1F84h)
	D.4.30 Vendor Identification (1F85h)
	D.4.31 Product Code (1F86h)
	D.4.32 Revision Number (1F87h)
	D.4.33 Serial Number (1F88h)
	D.4.34 Boot Time (1F89h)
	D.4.35 Flying Master Timing Parameters (1F90h)
	D.4.36 Startup-capable Device Timing (1F91h)
	D.5 Object Dictionary Access Sequences
	D.5.1 PDO Communication Parameters
	D.5.2 PDO Mapping Parameters
	D.5.3 Dynamic SDO Channel Request – All Channels
	D.5.4 Dynamic SDO Channel Request – Single Channel

	E Minimal Object Dictionaries
	E.1 Standard Object Dictionary Entries
	E.2 Digital Input Entries
	E.3 Digital Output Entries
	E.4 Analog Input Entries
	E.5 Analog Output Entries
	E.6 Encoder Input Entries
	E.7 Support of Code Download

	F Communication Object Identifiers (COB IDs)
	F.1 Pre-defined Connection Set
	F.2 Reserved COB IDs

	G Emergency Objects
	G.1 Emergency Object Error Codes

	H SDO Abort Messages
	H.1 SDO Abort Codes

	I Node States
	I.1 Node State Functionality

	J References
	K CANopen Glossary
	About Copperhill Technologies Corporation

