

CS 3251- Computer Networks 1: Routing Algorithms

Professor Patrick Traynor 10/1/13 Lecture 13

Georgia Tech Information Security Center (GTISC)

Reminders

- The due date for Homework 2 was moved to Thursday.
 - Reason: Allow you to attend today's lecture.
- Project 2 is still due in one week.
 - Absolutely no extensions will be given.

- Subnets provide granularity for address assignment and ease management.
 - What is 192.168.8.0? 192.168.32.0?

- What is NAT? DHCP?
- What are some security issues associated with ICMP messages?

PINGGOLF.COM

Chapter 4: Network Layer

- 4. I Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - ▸ IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - ► RIP
 - ► OSPF
 - ► BGP
- 4.7 Broadcast and multicast routing

Interplay between routing and forwarding

Graph abstraction

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Aside: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

• c(x,x') = cost of link (x,x')

$$- e.g., c(w,z) = 5$$

• cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

Question: What's the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

What are the costs?

- We will speak very generally about the idea of "link cost". Some potential examples include:
 - Bandwidth/Speed
 - Physical Length
 - Monetary Cost
 - Policy Configurations

Routing Algorithm classification

Global or decentralized information?

Global:

- all routers have complete topology, link cost info
- "link state" algorithms

Decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Static or dynamic?

Static:

 routes change slowly over time

Dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Load Sensitive or Insensitive

•Respond to traffic conditions

Chapter 4: Network Layer

- 4. I Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ▸ ICMP
 - → IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - ► RIP
 - ► OSPF
 - ► BGP
- 4.7 Broadcast and multicast routing

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source'') to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

Notation:

- c(x,y): link cost from node
 x to y; = ∞ if not direct
 neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

1 Initialization:

- 2 N' = {u}
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)

```
6 else D(v) = \infty
```

7 8 **L**

- 8 *Loop*9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N' :
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */
- 15 until all nodes in N'

Notation:

•

- c(x,y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor
 node along path from
 source to v
- N': set of nodes whose least cost path definitively known

Dijkstra's algorithm: example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1						
2						-
3						
4						
5						

Dijkstra's algorithm: example (2)

<u>Resulting shortest-path tree from u:</u>

<u>Resulting forwarding table in u:</u>

link		
(u,v)		
(u,x)		

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)

Oscillations possible:

• e.g., link cost = amount of carried traffic

Chapter 4: Network Layer

- 4. I Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - → IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - ► RIP
 - ► OSPF
 - ► BGP
- 4.7 Broadcast and multicast routing

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then:

```
d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y) \}
cost from neighbor v to destination y
cost to neighbor v
```

min taken over all neighbors v of x

Bellman-Ford example

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \} \\ = \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

Node that achieves minimum is next hop in shortest path \rightarrow forwarding table

Distance Vector Algorithm

- $D_x(y)$ = estimate of least cost from x to y
- Node x knows cost to each neighbor v: c(x,v)
- Node x maintains distance vector
 D_x = [D_x(y): y ∈ N]
- Node x also maintains its neighbors' distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$

Distance vector algorithm (4)

Basic idea:

- Each node periodically sends its own distance vector estimate to neighbors
- When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$

• Under natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

Distance Vector Algorithm (5)

Iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

Distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

Each node:

Georgia Tech Information Security Center (GTISC)

Georgia Tech Information Security Center (GTISC)

Distance Vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

At time t_0 , y detects the link-cost change, updates its DV, and informs its neighbors.

"good news travels fast"

At time t_1 , z receives the update from y and updates its table. It computes a new least cost to x and sends its neighbors its DV.

At time t₂, y receives z's update and updates its distance table. y's least costs do not change and hence y does not send any message to z.

Distance Vector: link cost changes

Link cost changes:

- good news travels fast
- bad news travels slowly -"count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text

Poisoned reverse:

- If Z routes through Y to get to X :
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

The DV Convergence Problem

- Before the link cost changes, costs are:
 - Dy(x)=4, Dy(z)=1, Dz(y)=1, Dz(x)=5
- What does y see as the shortest route to x when c(y,x)=60?
 - $Dy(x) = min\{c(y,x) + Dx(x), c(y,z) + Dz(x)\}$ = $min\{60+0, 1+5\} = 6$
- What happens at node z after this?
 - Dy(z) = min{c(z,x) + Dx(x), c(z,y) + Dy(x)} = min{50+0, 1+6} = 7
- Round and round it goes (44 times, to be exact)

Comparison of LS and DV algorithms

Message complexity

- <u>LS</u>: with n nodes, E links, O(nE) msgs sent
- <u>DV:</u> exchange between neighbors only
 - convergence time varies

Speed of Convergence

- <u>LS</u>: O(n²) algorithm requires O(nE) msgs
 - may have oscillations
- <u>DV</u>: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

- node can advertise incorrect link cost
- each node computes only its own table

<u>DV:</u>

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

Chapter 4: Network Layer

- 4. I Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - ▸ IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - ► RIP
 - ► OSPF
 - ► BGP
- 4.7 Broadcast and multicast routing

Hierarchical Routing

Our routing study thus far - idealization

- all routers identical
- network "flat"
- ... not true in practice

scale: with 600 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- Internet = network of networks
- each network admin may want to control routing in its own network

Hierarchical Routing

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
 - "intra-AS" routing protocol
 - routers in different AS can run different intra-AS routing protocol

Gateway router

• Direct link to router in another AS

Interconnected ASes

- Forwarding table is configured by both intraand inter-AS routing algorithm
 - Intra-AS sets entries for internal dests
 - Inter-AS & Intra-As sets entries for external dests

Inter-AS tasks

- Suppose router in ASI receives datagram for which the dest is outside of ASI
 - Router should forward packet towards one of the gateway routers, but which one?

ASI needs:

- to learn which dests are reachable through AS2 and which through AS3
- 2. to propagate this reachability info to all routers in ASI
- Job of inter-AS routing!

Example: Setting forwarding table in router Id

- Suppose AS1 learns (via inter-AS protocol) that subnet x is reachable via AS3 (gateway 1c) but not via AS2.
 - Inter-AS protocol propagates reachability info to all internal routers.
- Router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c.
 - Puts in forwarding table entry (x, I).

Example: Choosing among multiple ASes

- Now suppose AS1 learns from the inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- To configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.
- This is also the job on inter-AS routing protocol!

Example: Choosing among multiple ASes

- Now suppose AS1 learns from the inter-AS protocol that subnet × is reachable from AS3 and from AS2.
- To configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.
- This is also the job on inter-AS routing protocol!
- Hot potato routing: send packet towards closest of two routers.

Next Time

- Read Sections 4.6 and 4.7
 - Internet Routing and Multicast
- Project 2 Due next Tuesday

