Unit-III Basic traversal & Search Techniques

K. RAGHAVA RAO Professor in CSE KL University <u>Krraocse@gmail.com</u> http://mcadaa.blog.com

Techniques for binary trees

- In a traversal of a binary tree, each element of the binary tree is visited exactly once.
- During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.

Techniques for binary trees.

- L: moving left.
- D: printing the data.
- R: moving right.
- Six possible combination : LDR, LRD, DLR, DRL, RDL, RLD.
- Left before right : LDR(inorder), LRD(postorder), DLR(preordr)

Techniques for binary trees.

- **Binary Tree Traversal Methods**
- Preorder(root,left,right)
- Inorder(left,root,right)
- Postorder(left,right,root)
- Level order

Techniques for binary trees.

Preorder, Postorder and Inorder Algorithms

Algorithm Preorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq$ NULL
- 2. **then** output key(x);
- Preorder(left(x));

```
4. Preorder(right(x));
```

Algorithm Postorder(x)

Input: x is the root of a subtree.

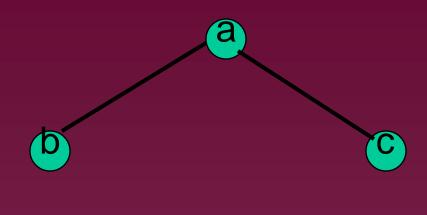
- 1. if $x \neq$ NULL
- then Postorder(left(x));
- Postorder(right(x));
- 4. output key(x);

Algorithm Inorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq \text{NULL}$
- then Inorder(left(x));
- 3. output key(x);
- Inorder(right(x));

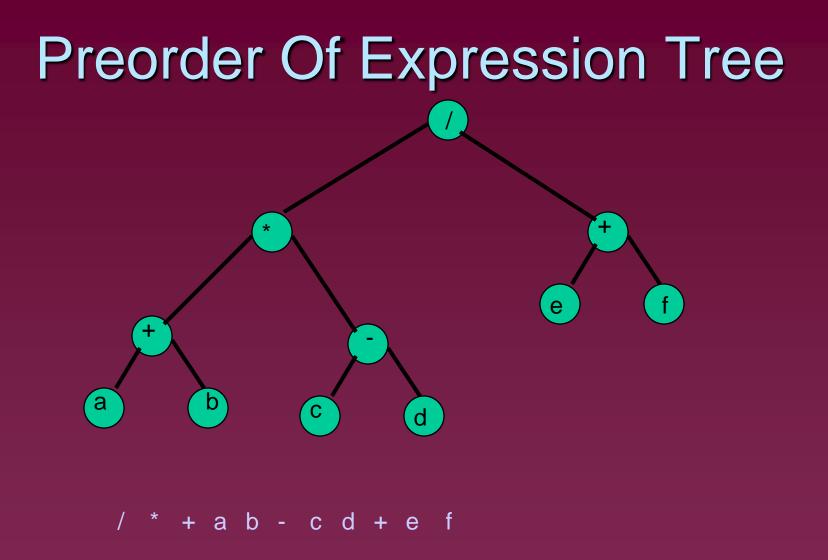
Preorder Example (visit = print)



a b c

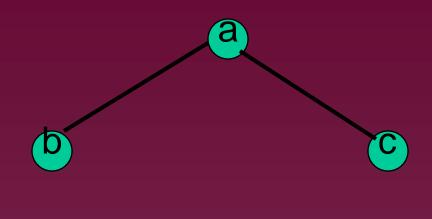
Preorder Example (visit = print) a D С e d

abdghe<u>i</u>cfj

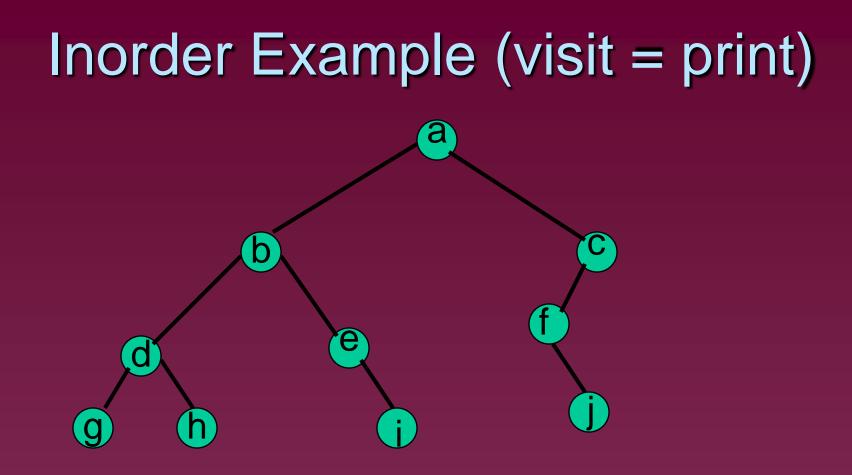


Gives prefix form of expression!

Inorder Example (visit = print)



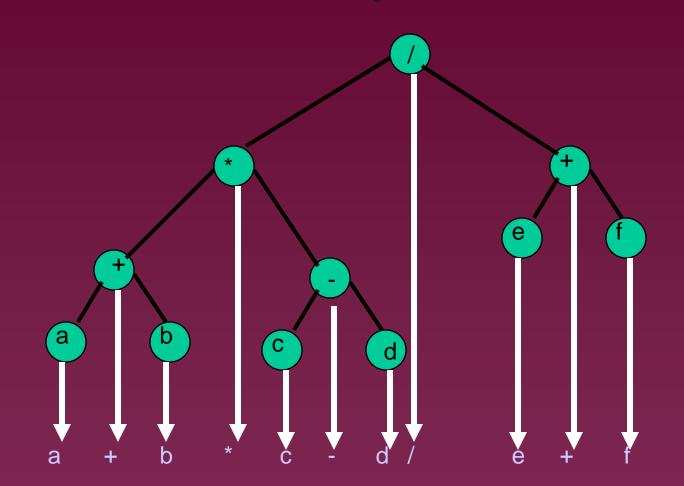
b a c



g d h b e i a f j c

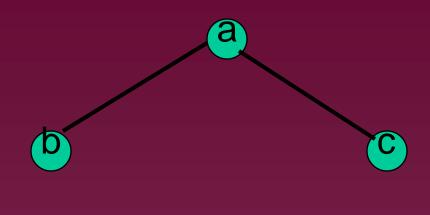
Inorder By Projection (Squishing) a e C d h b i е g а С

Inorder Of Expression Tree



Gives infix form of expression (sans parentheses)!

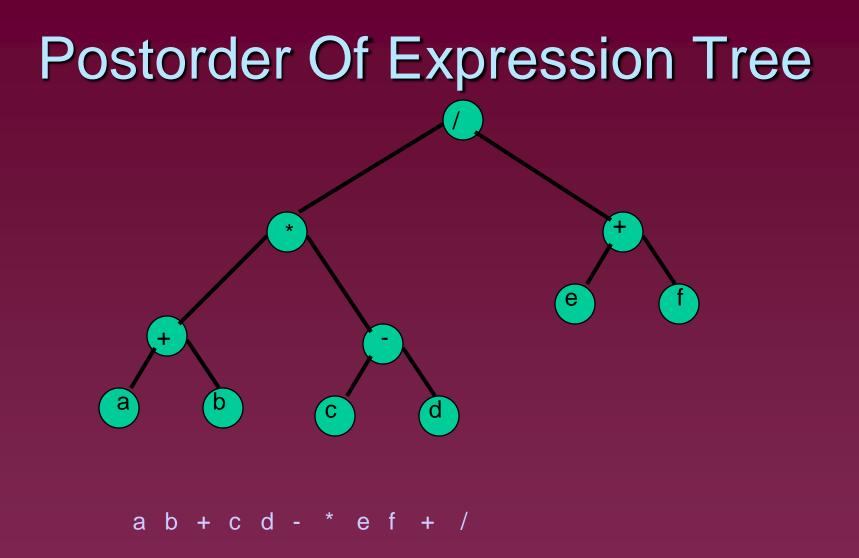
Postorder Example (visit = print)



b c a

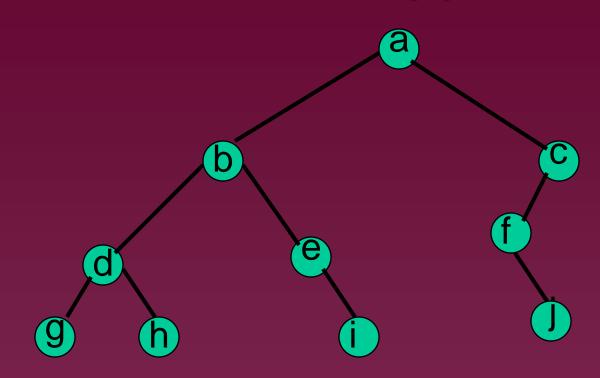
Postorder Example (visit = print) aС b f e d

g h d i e b j f c a



Gives postfix form of expression

Traversal Applications

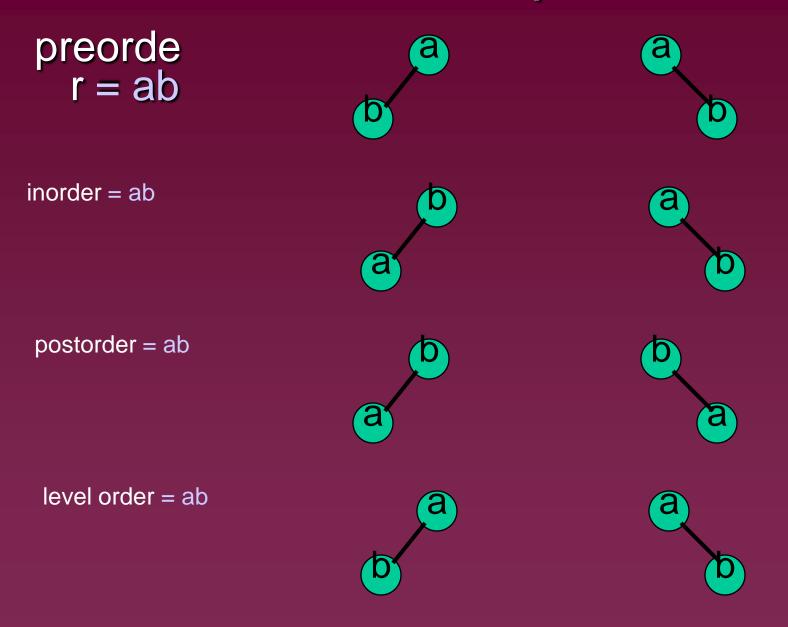


- Make a clone.
- Determine height.
- Determine number of nodes.

Binary Tree Construction

- Suppose that the elements in a binary tree are distinct.
- Can you construct the binary tree from which a given traversal sequence came?
- When a traversal sequence has more than one element, the binary tree is not uniquely defined.
- Therefore, the tree from which the sequence was obtained cannot be reconstructed uniquely.

Some Examples



Binary Tree Construction

Can you construct the binary tree, given two traversal sequences?

 Depends on which two sequences are given.

Preorder And Postorder

preorder = ab

postorder = ba

- Preorder and postorder do not uniquely define a binary tree.

- Nor do preorder and level order (same example).
- Nor do postorder and level order (same example).

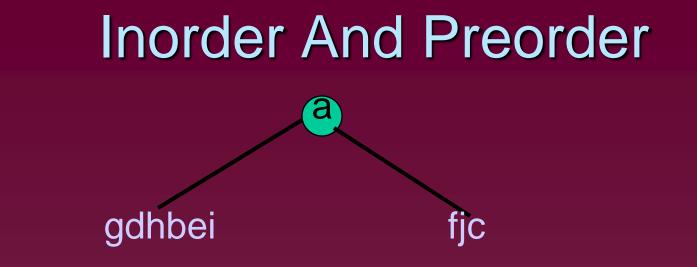
Inorder And Preorder

inorder = g d h b e i a f j c

adhbei

- preorder = a b d g h e i c f j
- Scan the preorder left to right using the inorder to separate left and right subtrees.
- a is the root of the tree; gdhbei are in the left subtree; fjc are in the right subtree.

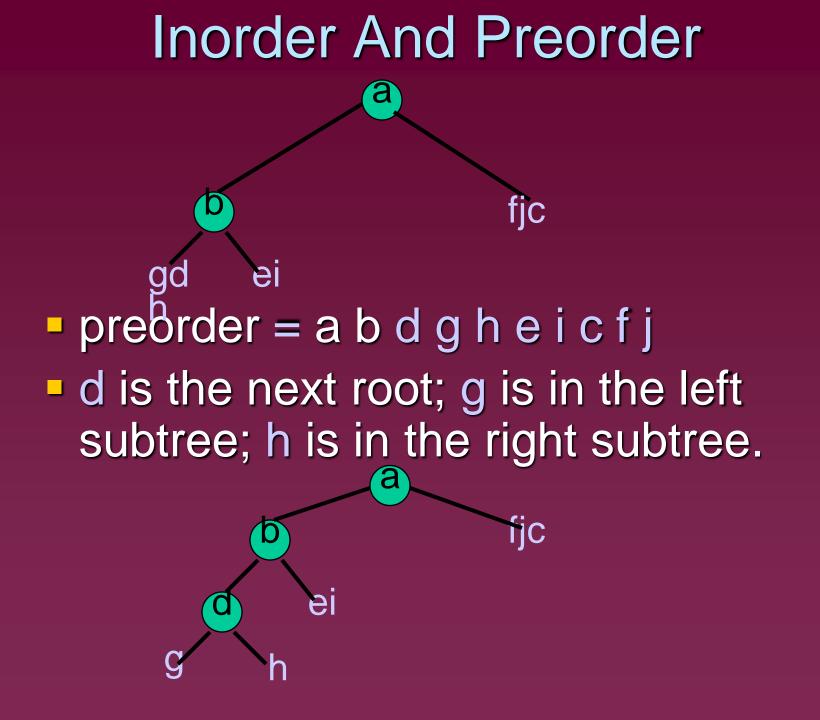
fic



preorder = a b d g h e i c f j

a

b is the next root; gdh are in the left subtree; ei are in the right subtree.



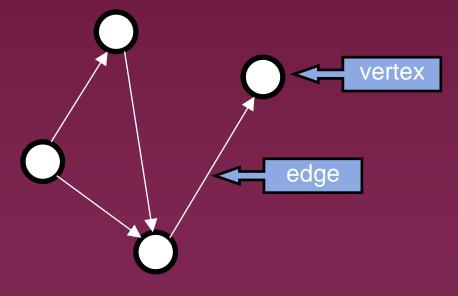
Inorder And Postorder

- Scan postorder from right to left using inorder to separate left and right subtrees.
- inorder = g d h b e i a f j c
- postorder = g h d i e b j f c a
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.

What is a graph?

A set of vertices and edges

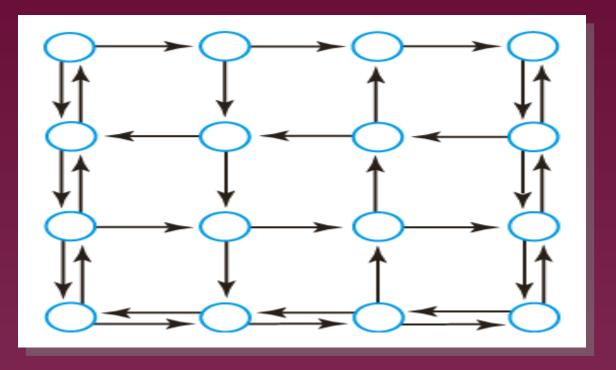
 Directed/Undirected
 Weighted/Unweighted
 Cyclic/Acyclic



Some Examples and Terminology

- A graph is a collection of distinct vertices and distinct edges
 - Edges can be directed or undirected
 When it has directed edges it is called a digraph
- Vertices or nodes are connected by edges
- A subgraph is a portion of a graph that itself is a graph

Example : Street Maps



A directed graph representing a city's street map. Directed edges

Graph Paths

- A sequence of edges that connect two vertices in a graph
- In a directed graph the direction of the edges must be considered

 Called a directed path
- A cycle is a path that begins and ends at same vertex
 Simple path does not pass through any vertex more than once
- A graph with no cycles is acyclic

Weighted Graph

 A weighted graph has values on its edges – Weights or costs

A path in a weighted graph also has weight or cost

- The sum of the edge weights

Examples of weights

- Miles between nodes on a map
- Driving time between nodes
- Taxi cost between node locations

Representation of Graphs

- Adjacency Matrix
 - A V x V array, with matrix[*i*][*j*] storing whether there is an edge between the *ith* vertex and the *jth* vertex
- Adjacency Linked List
 - One linked list per vertex, each storing directly reachable vertices

Edge List

Representation of Graphs

	Adjacency Matrix	Adjacency Linked List	Edge List
Memory Storage	O(V ²)	O(V+E)	O(V+E)
Check whether (<i>u</i> , <i>v</i>) is an edge	O(1)	O(deg(u))	O(deg(u))
Find all adjacent vertices of a vertex u	O(V)	O(deg(u))	O(deg(u))

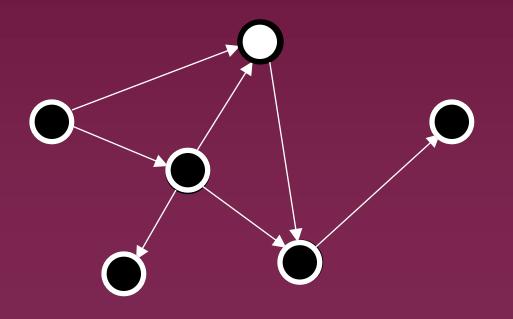
deg(u): the number of edges connecting vertex u

Graph Searching

- Why do we do graph searching? What do we search for?
- What information can we find from graph searching?
- How do we search the graph? Do we need to visit all vertices? In what order?

Depth-First Search (DFS)

Strategy: Go as far as you can (if you have not visit there), otherwise, go back and try another way



DFS Implementation

DFS (vertex u) { mark u as visited for each vertex v directly reachable from u if v is unvisited DFS (v)

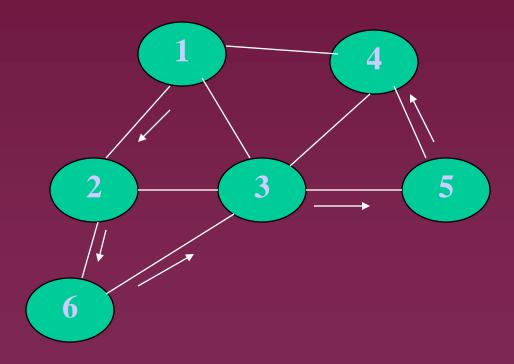
}

Initially all vertices are marked as unvisited

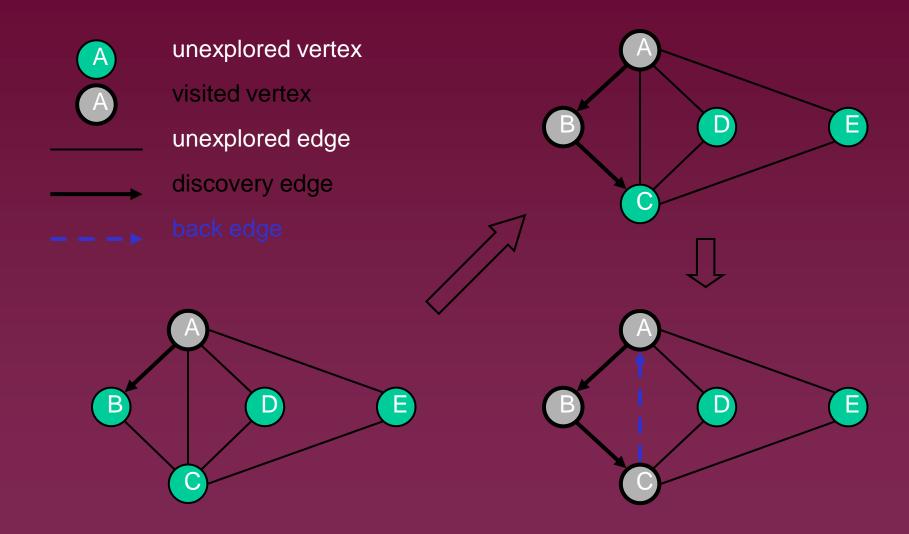
DFS Example-1 Depth first traversal: 1, 2, 6, 3, 5, 4

the particular order is dependent on the order of nodes in the adjacency lists

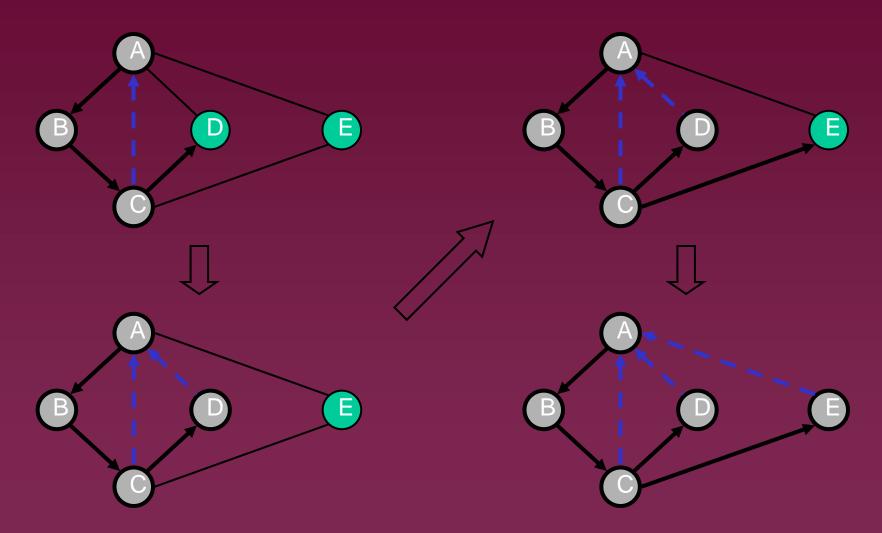
Adjacency lists 1: 2, 3, 4 2: 6, 3, 1 3: 1, 2, 6, 5, 4 4: 1, 3, 5 5: 3, 4 6: 2, 3



DFS Example-2



Example (cont.)



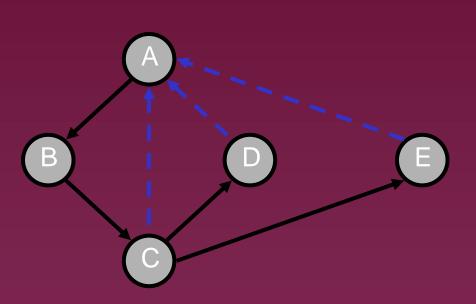
Properties of DFS

Property 1

DFS(G, v) visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by DFS(G, v)form a spanning tree of the connected component of v



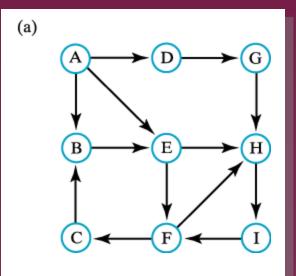
Analysis of DFS

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure

- Recall that $\Sigma_{v} \operatorname{deg}(v) = 2m$

Depth-First Traversal

A trace of a depth first traversal beginning at vertex A of the directed graph

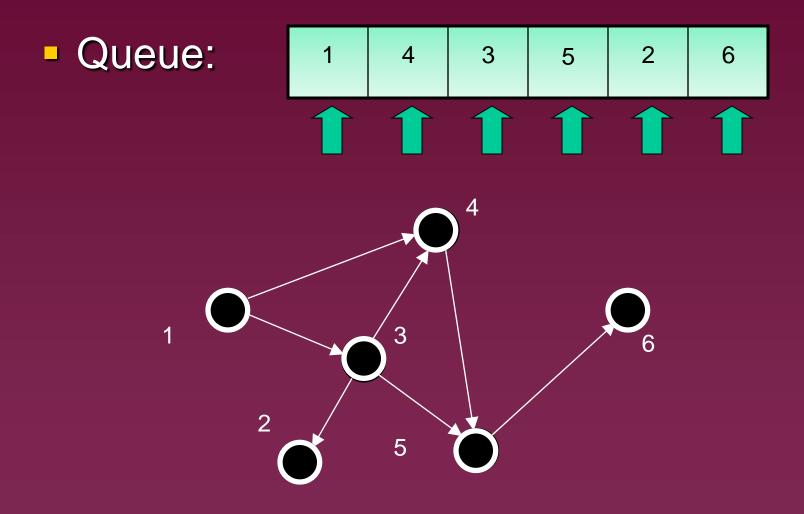


topVertex	nextNeighbor	Visited vertex	vertexStack (top to bottom)	traversalOrder (front to back)
		А	А	А
А			А	
	В	В	BA	AB
В			BA	
	Е	Е	EBA	ABE
Е			EBA	
	F	F	FEBA	ABEF
F			FEBA	
	С	С	CFEBA	ABEFC
С			FEBA	
F			FEBA	
	Н	Н	HFEBA	ABEFCH
Н			HFEBA	
	Ι	Ι	IHFEBA	ABEFCHI
Ι			HFEBA	
Н			FEBA	
F			EBA	
E			BA	
В			А	
А			А	
	D	D	DA	ABEFCHID
D			DA	
	G		GDA	ABEFCHIDG
G			DA	
D			А	
А			empty	ABEFCHIDG

Breadth-First Search (BFS)

- Instead of going as far as possible, BFS tries to search all paths.
- BFS makes use of a queue to store visited (but not dead) vertices, expanding the path from the earliest visited vertices.

Simulation of BFS



Implementation

while queue Q not empty
dequeue the first vertex u from Q
for each vertex v directly reachable from u
if v is unvisited
enqueue v to Q
mark v as visited

Initially all vertices except the start vertex are marked as *unvisited* and the queue contains the start vertex only **Breadth-first traversal** 1, 2, 3, 4, 6, 5

- 1: starting node
- 2, 3, 4 : adjacent to 1

(at distance 1 from node 1)

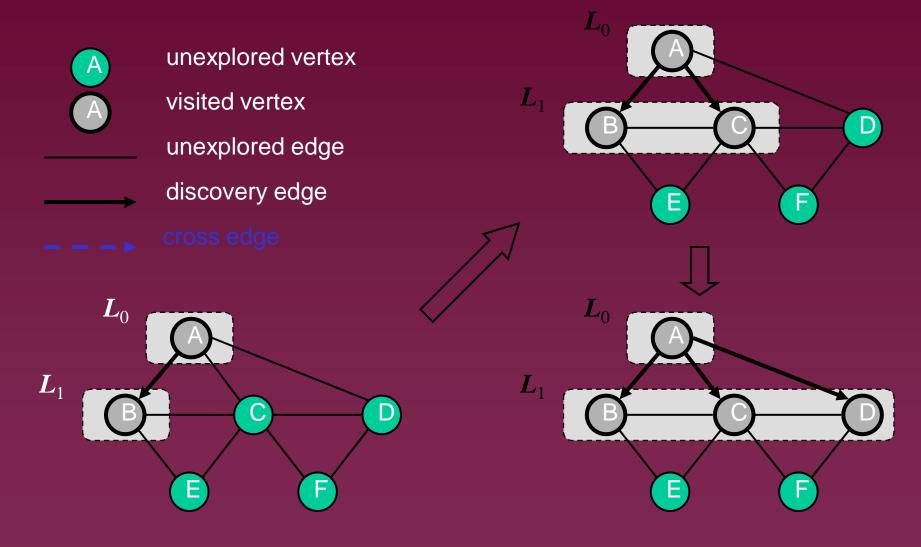
- 6 : unvisited adjacent to node 2.
- 5 : unvisited, adjacent to node 3

Example-1

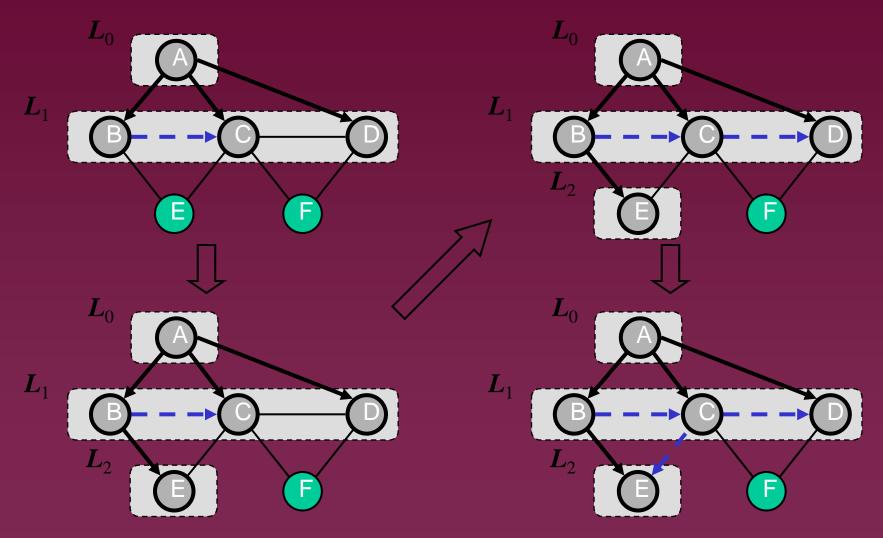
Adjacency lists 1: 2, 3, 4 2: 1, 3, 6 3: 1, 2, 4, 5, 6 4: 1, 3, 5 5: 3, 4 6: 2, 3

2 3 5 The order depends on the order of the nodes in the adjacency lists

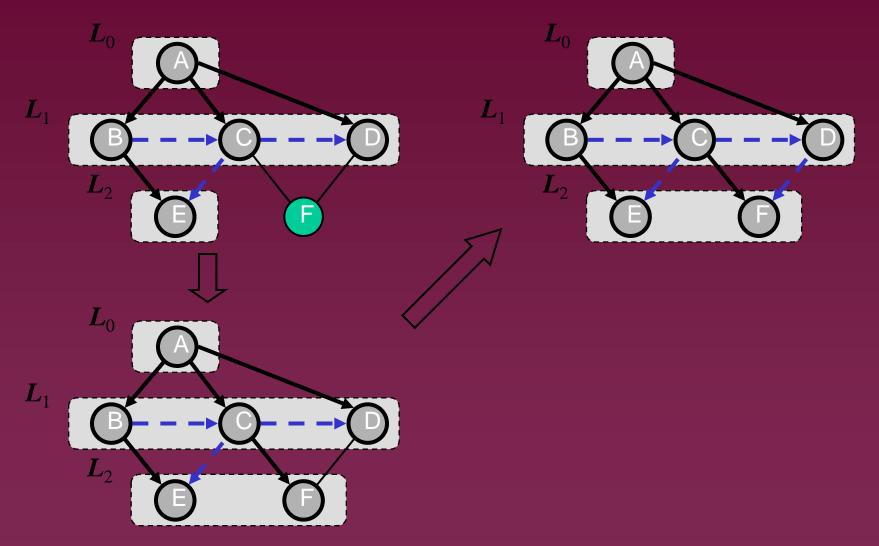
Example-2 BFS



Example (cont.)



Example (cont.)



Properties

 \mathbf{L}_{1}

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

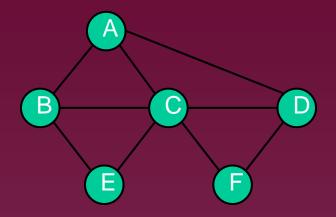
Property 2

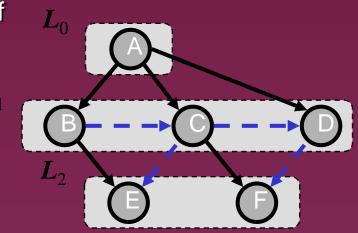
The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

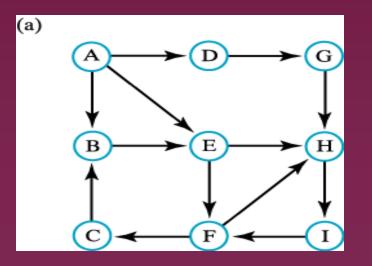
- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least *i* edges





Breadth-First Traversal

A trace of a breadth-first traversal for a directed graph, beginning at vertex A.



(b)	frontVertex	nextNeighbor	Visited vertex	vertexQueue	traversal0rder
			A	A	A
	А			empty	
		В	В	В	A B
		D	D	B D	A B D
		Е	Е	B D E	A B D E
	В			D E	
	D			Е	
		G	G	E G	A B D E G
	E			G	
		F	F	G F	ABDEGF
		Н	Н	GFH	ABDEGFH
	G			FΗ	
	F			Н	
		С	С	НC	ABDEGFHC
	Н			С	
		Ι	Ι	CI	ABDEGFHCI
	С			Ι	
	Ι			empty	

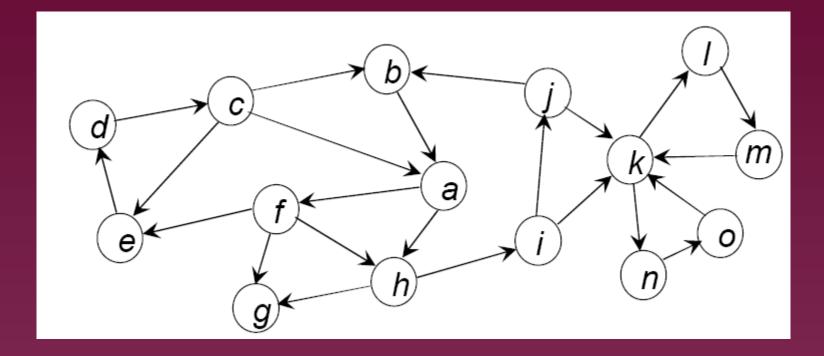
BFS – Complexity

Step 1 : read a node from the queue O(V) times.

Step 2 : examine all neighbors, i.e. we examine all edges of the currently read node. Not oriented graph: 2*E edges to examine

Hence the complexity of BFS is O(V + 2*E)

Graph - Traversal Exercise-1



Breadth-First and Depth-First Traversal starting from a

Some of the possible Answers

Breadth-first

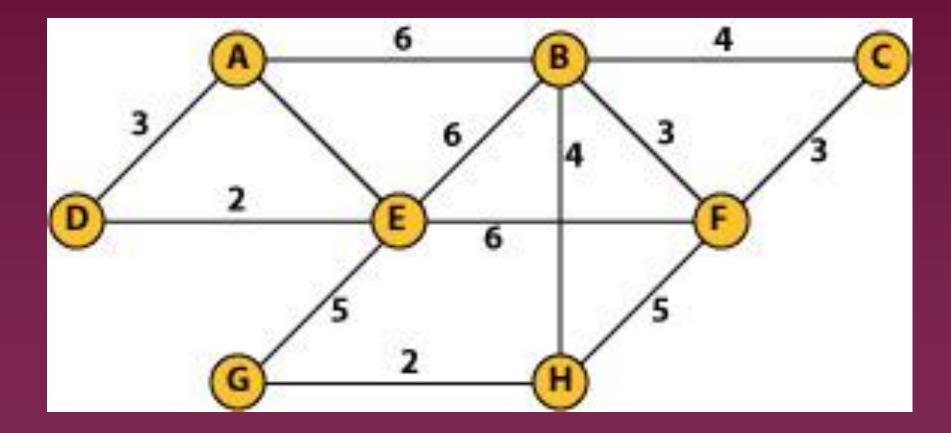
 afhegidjkclnbmo

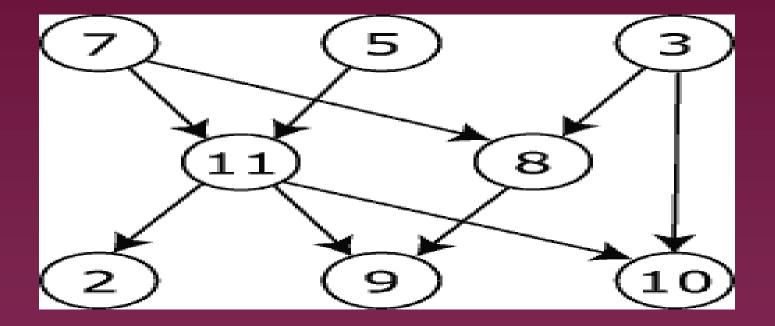
 Depth-first

 afedcbghijklmno

Exercise-2

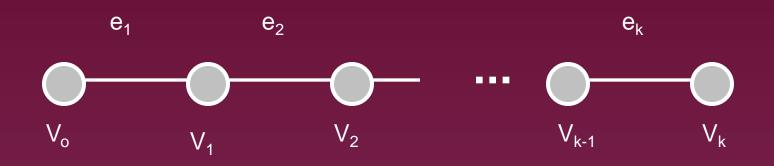
Write BFS, DFS paths





Connected Components and Spanning Trees: Paths in Graphs

• Path p

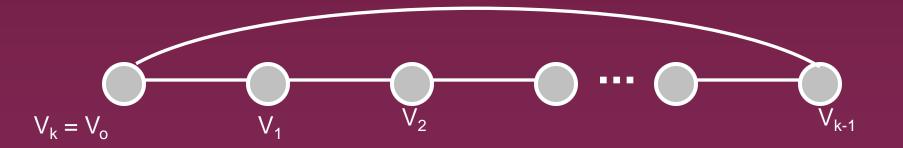


P is a sequence of vertices $v_0, v_1, ..., v_k$ where for i=1,...k, v_{i-1} is adjacent to v_i

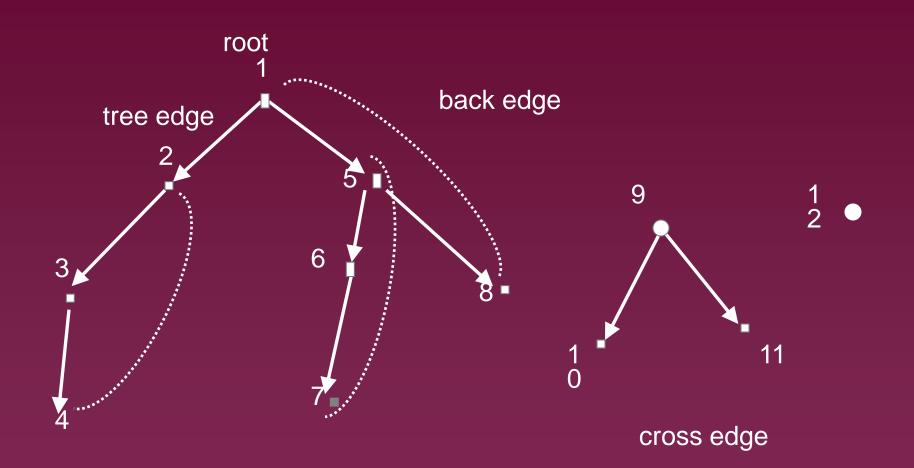
Equivalently, p is a sequence of edges $e_1, ..., e_k$ where for i = 2,...k edges e_{i-1}, e_i share a vertex

Simple Paths and Cycles

- Simple path no edge or vertex repeated, except possibly v_o = v_k
- Cycle
 a path p with v_o = v_k where k>1



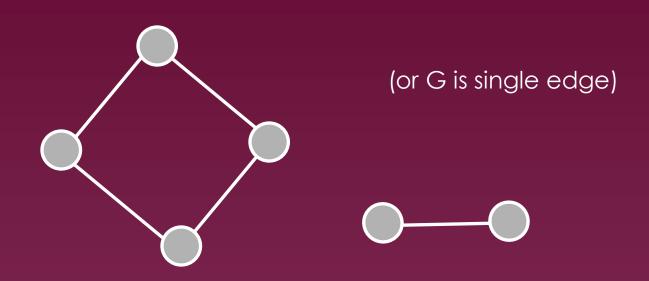
Example Spanning Tree of a Graph



Classification of Edges of G with Spanning Tree T

- An edge (u,v) of T is tree edge
- An edge (u,v) of G-T is back edge if u is a descendent or ancestor of v.
- Else (u,v) is a cross edge

Biconnected Undirected Graphs



G is *biconnected* if \exists two disjoint paths between each pair of vertices

Biconnected component has 2 components:

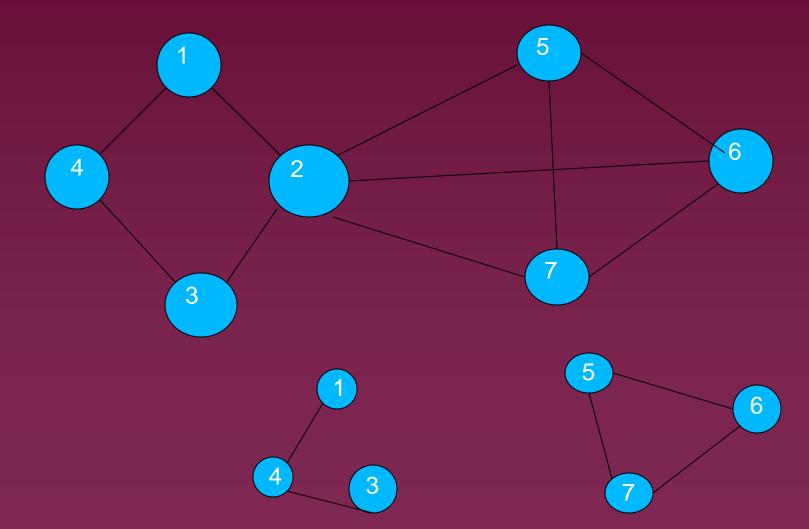
1)A biconnected component of a undirected graph is a maximal biconnected subgraph, that is, a bi-nconnected subgraph not contained in any larger bi-nconnected subgraph.

2)Articulation point:

Let G=(V,E) be a connected undirected graph then an articulation point of graph 'G' is a vertex whose removal disconnects the graph 'G'.

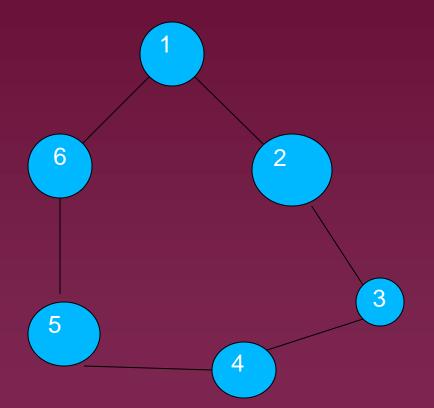
Bi-connected components & DFS Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is divided into 2 components.



Bi-connected components & DFS Bi-Connected Graph:

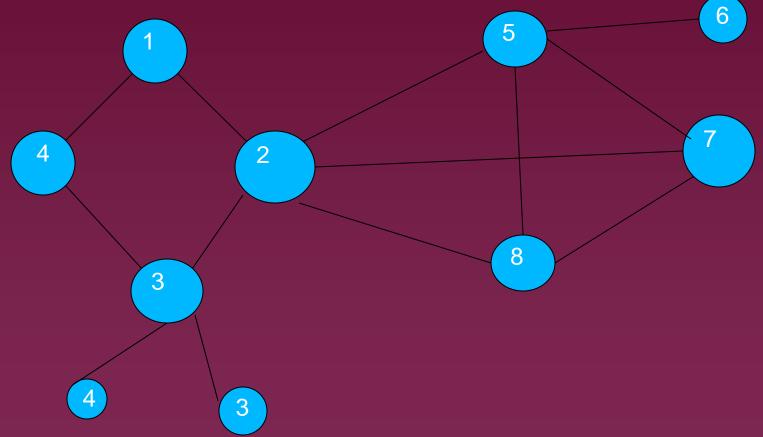
A graph 'G' is said to be Bi-connected if it contains no articulation point.



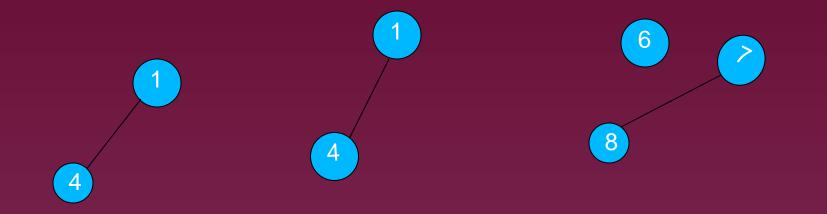
If we deleting the vertex '6' then the graph won't divide in to 2 components. If there exists any articulation point, it is an undesirable feature in communication network where joint point between two networks failure in case of joint node fails.

Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is divided into 2 components.

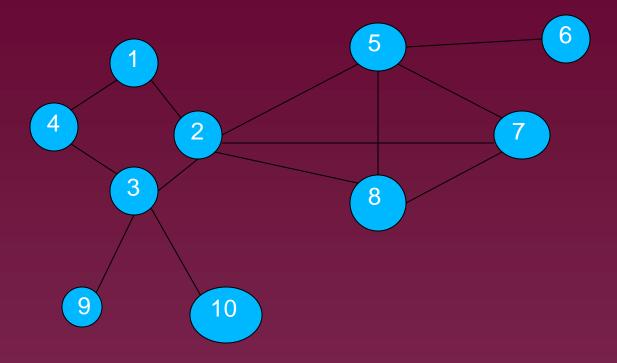


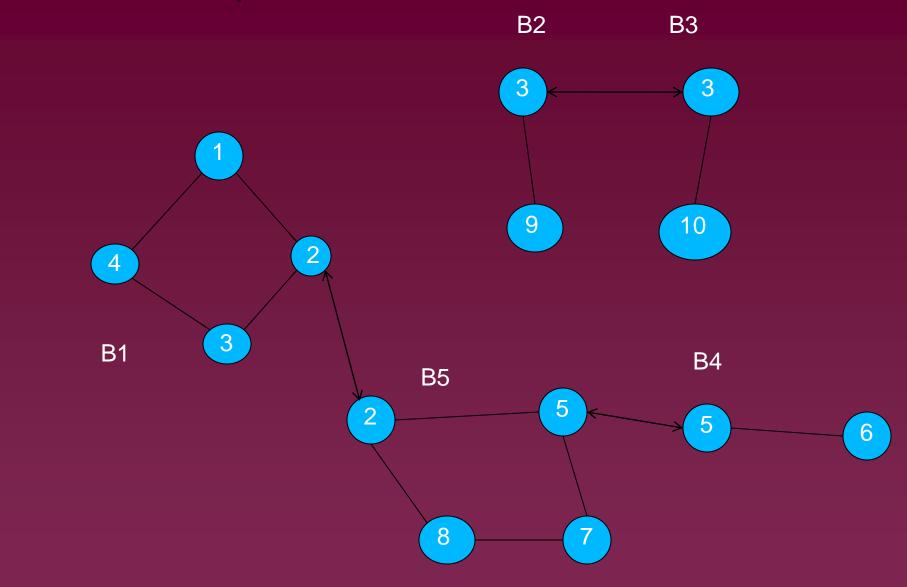
In the above the articulation points are: 2,3 and 5



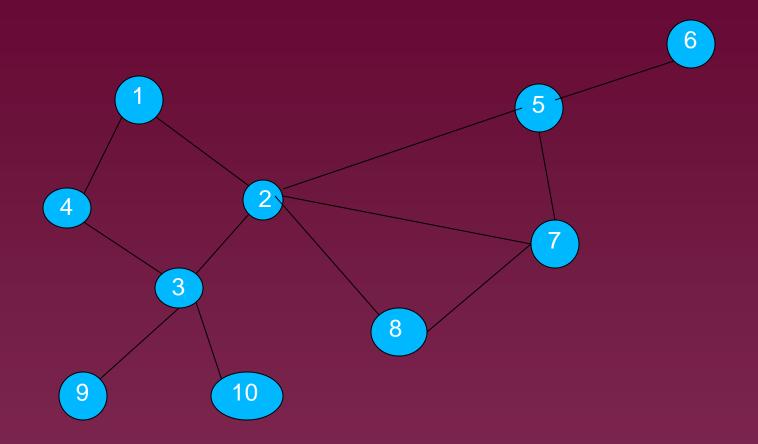
Identification of Bi-Connected components :

- Definition: A Bi-Connected graph G=(V,E) be a connected graph which has no articulation points. A Bi-Connected component of graph 'G' is maximal Bi-connected sub graphs.
- To construct Bi-connected components using 3 rules:
- 1) Two different Bi-components should not have any common edge.
- 2) Two different Bi-connected components can have a common vertex.
- 3)The common vertex which is attaching 2 Bi-connected components must be an articulation point of 'G'.



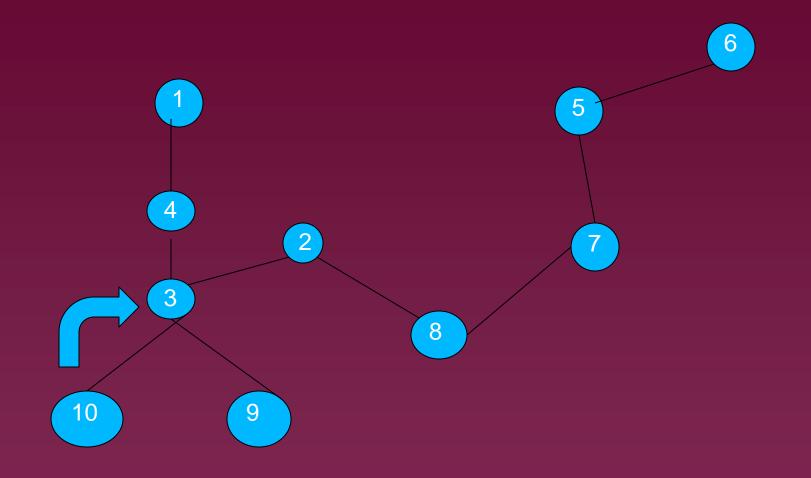


Draw Bi-connected Graph for this graph

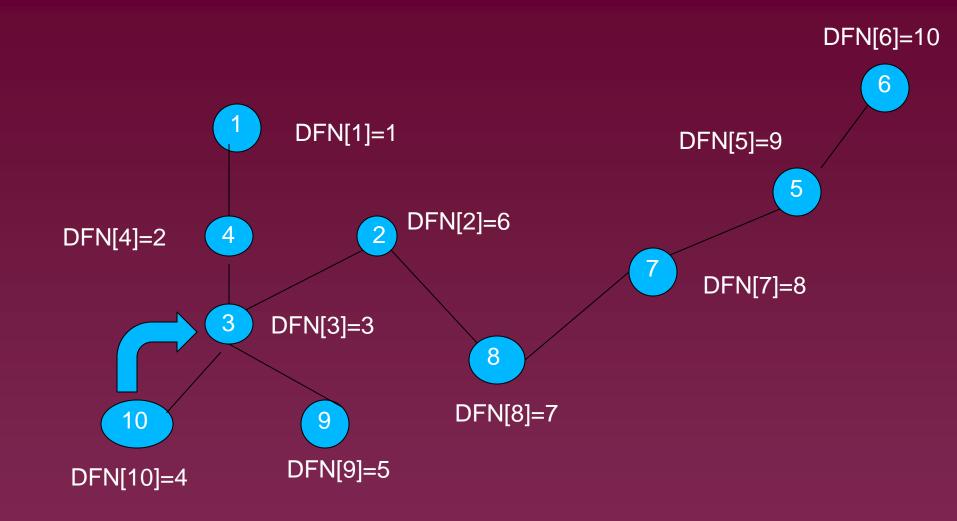


DFS spanning tree for the above directed graph in the next slide

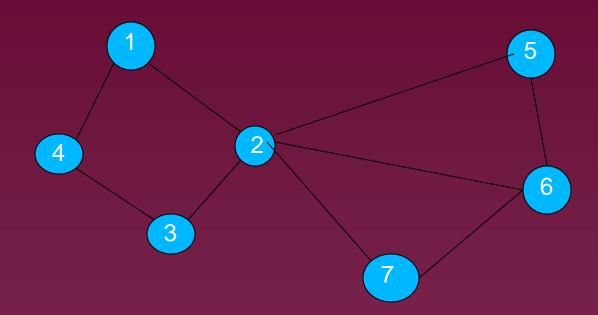
Depth First Search – Spanning Tree - example



DFS–Spanning Tree –traversing Number



Exercise-find DFS spanning tree and traversing number



Algorithm for constructing Bi-connected Graph

- 1. For each articulation point 'a' do
- 2. Let B1,B2,B3,.....Bk are the Bi-connected components
- 3. Containing the articulation point 'a'
- 4.Let $V_i \in B_i$, $V_i \# a i \le i \le k$
- 5. Add(V_i, V_{i+1}) to Graph G.
- Vi-vertex belong Bi
- **Bi-Bi-connected component**
- i-vertex number 1 to k
- a- articulation point

Bi-connected components

 Some vertices are in more than one component (which vertices are these?)

