
Unit-III

Basic traversal & Search Techniques

K. RAGHAVA RAO

Professor in CSE

KL University
Krraocse@gmail.com

http://mcadaa.blog.com

mailto:krraocse@gmail.com

Techniques for binary trees

 In a traversal of a binary tree, each
element of the binary tree is visited exactly
once.

 During the visit of an element, all action
(make a clone, display, evaluate the
operator, etc.) with respect to this element
is taken.

Techniques for binary trees.

 L: moving left.

 D: printing the data.

 R: moving right.

 Six possible combination : LDR, LRD, DLR,
DRL, RDL, RLD.

 Left before right : LDR(inorder),
LRD(postorder), DLR(preordr)

Binary Tree Traversal Methods

 Preorder(root,left,right)

 Inorder(left,root,right)

 Postorder(left,right,root)

 Level order

Techniques for binary trees.

Preorder, Postorder and Inorder Algorithms

Techniques for binary trees.

Preorder Example (visit = print)
a

b c

a b c

Preorder Example (visit = print)
a

b c

d e
f

g h i j

a b d g h e i c f j

Preorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives prefix form of expression!

/ * + a b - c d + e f

Inorder Example (visit = print)
a

b c

b a c

Inorder Example (visit = print)
a

b c

d e f

g h i
j

g d h b e i a f j c

Inorder By Projection (Squishing)

a

b c

d e f

g h i j

g d h b e i a f j c

Inorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives infix form of expression (sans parentheses)!

ea + b * c d / + f-

Postorder Example (visit = print)
a

b c

b c a

Postorder Example (visit = print)

a

b c

d e f

g h i
j

g h d i e b j f c a

Postorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /

Traversal Applications
a

b c

d e f

g h i
j

• Make a clone.

• Determine height.

•Determine number of nodes.

Binary Tree Construction

 Suppose that the elements in a binary
tree are distinct.

 Can you construct the binary tree from
which a given traversal sequence
came?

 When a traversal sequence has more
than one element, the binary tree is not
uniquely defined.

 Therefore, the tree from which the
sequence was obtained cannot be
reconstructed uniquely.

Some Examples

preorde
r = ab

a

b

a

b

inorder = ab b

a

a

b

postorder = ab b

a

b

a

level order = ab a

b

a

b

Binary Tree Construction

 Can you construct the binary tree,
given two traversal sequences?

 Depends on which two sequences
are given.

Preorder And Postorder

preorder = ab a

b

a

bpostorder = ba

• Preorder and postorder do not uniquely define a binary tree.

• Nor do preorder and level order (same example).

• Nor do postorder and level order (same example).

Inorder And Preorder
 inorder = g d h b e i a f j c

 preorder = a b d g h e i c f j

 Scan the preorder left to right using the
inorder to separate left and right
subtrees.

 a is the root of the tree; gdhbei are in
the left subtree; fjc are in the right
subtree.

a

gdhbei fjc

Inorder And Preorder

 preorder = a b d g h e i c f j

 b is the next root; gdh are in the left
subtree; ei are in the right subtree.

a

gdhbei fjc

a

gd
h

fjcb

ei

Inorder And Preorder

 preorder = a b d g h e i c f j

 d is the next root; g is in the left
subtree; h is in the right subtree.

a

gd
h

fjcb

ei

a

g

fjcb

eid

h

Inorder And Postorder

 Scan postorder from right to left using
inorder to separate left and right
subtrees.

 inorder = g d h b e i a f j c

 postorder = g h d i e b j f c a

 Tree root is a; gdhbei are in left subtree;
fjc are in right subtree.

What is a graph?

 A set of vertices and edges
– Directed/Undirected
– Weighted/Unweighted
– Cyclic/Acyclic

vertex

edge

26

Some Examples and Terminology

 A graph is a collection of distinct
vertices and distinct edges

– Edges can be directed or undirected
– When it has directed edges it is called a

digraph

 Vertices or nodes are connected by
edges

 A subgraph is a portion of a graph that
itself is a graph

27

Example : Street Maps

A directed graph representing a city's street map. Directed edges

28

Graph Paths

 A sequence of edges that connect two vertices in a
graph

 In a directed graph the direction of the edges must be
considered

– Called a directed path

 A cycle is a path that begins and ends at same vertex

– Simple path does not pass through any vertex more
than once

 A graph with no cycles is acyclic

29

Weighted Graph

 A weighted graph has values on its edges
– Weights or costs

 A path in a weighted graph also has weight
or cost
– The sum of the edge weights

 Examples of weights
– Miles between nodes on a map
– Driving time between nodes
– Taxi cost between node locations

Representation of Graphs

 Adjacency Matrix

– A V x V array, with matrix[i][j] storing whether
there is an edge between the ith vertex and the
jth vertex

 Adjacency Linked List
– One linked list per vertex, each storing directly

reachable vertices

 Edge List

Representation of Graphs

Adjacency
Matrix

Adjacency
Linked List

Edge List

Memory
Storage

O(V2) O(V+E) O(V+E)

Check
whether
(u,v) is an
edge

O(1) O(deg(u)) O(deg(u))

Find all
adjacent
vertices of a
vertex u

O(V) O(deg(u)) O(deg(u))

deg(u): the number of edges connecting vertex u

Graph Searching

 Why do we do graph searching? What do
we search for?

 What information can we find from graph
searching?

 How do we search the graph? Do we need
to visit all vertices? In what order?

Depth-First Search (DFS)

 Strategy: Go as far as you can (if you have
not visit there), otherwise, go back and try
another way

DFS Implementation

DFS (vertex u) {

mark u as visited

for each vertex v directly reachable from u

if v is unvisited

DFS (v)

}

 Initially all vertices are marked as unvisited

DFS Example-1

1 4

2 3 5

6

Adjacency lists

1: 2, 3, 4
2: 6, 3, 1
3: 1, 2, 6, 5, 4
4: 1, 3, 5
5: 3, 4
6: 2, 3

Depth first traversal: 1, 2, 6, 3, 5, 4

the particular order is dependent on the order of nodes in
the adjacency lists

36

DFS Example-2

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

37

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

38

Properties of DFS

Property 1

DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2

The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

DB

A

C

E

39

Analysis of DFS

 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled twice

– once as UNEXPLORED

– once as VISITED

 Each edge is labeled twice

– once as UNEXPLORED

– once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex

 DFS runs in O(n m) time provided the graph is
represented by the adjacency list structure

– Recall that v deg(v) 2m

40

Depth-First Traversal

A trace of a depth first
traversal beginning at
vertex A of the directed
graph

Breadth-First Search (BFS)

 Instead of going as far as possible, BFS
tries to search all paths.

 BFS makes use of a queue to store visited
(but not dead) vertices, expanding the path
from the earliest visited vertices.

1

4

3

2
5

6

Simulation of BFS

 Queue: 1 4 3 5 2 6

Implementation

while queue Q not empty

dequeue the first vertex u from Q

for each vertex v directly reachable from u

if v is unvisited

enqueue v to Q

mark v as visited

 Initially all vertices except the start vertex
are marked as unvisited and the queue
contains the start vertex only

Example-1

1 4

2 3 5

6

Adjacency lists

1: 2, 3, 4
2: 1, 3, 6
3: 1, 2, 4, 5, 6
4: 1, 3, 5
5: 3, 4
6: 2, 3

Breadth-first traversal: 1, 2, 3, 4, 6, 5

1: starting node

2, 3, 4 : adjacent to 1

(at distance 1 from node 1)

6 : unvisited adjacent to node 2.

5 : unvisited, adjacent to node 3

The order depends on the order of
the nodes in the adjacency lists

45

Example-2 BFS

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

46

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2

47

Example (cont.)

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2

48

Properties

Notation
Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and
edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree Ts of
Gs

Property 3
For each vertex v in Li

– The path of Ts from s to v has i
edges

– Every path from s to v in Gs has at
least i edges

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

F

49

Breadth-First Traversal

A trace of a breadth-first
traversal for a directed
graph, beginning at
vertex A.

BFS – Complexity

Step 1 : read a node from the queue O(V) times.

Step 2 : examine all neighbors, i.e. we examine all edges

of the currently read node.

Not oriented graph: 2*E edges to examine

Hence the complexity of BFS is O(V + 2*E)

51

Graph -Traversal Exercise-1

Breadth-First and Depth-First Traversal starting from a

52

Some of the possible Answers

 Breadth-first
– a f h e g i d j k c l n b m o

 Depth-first
– a f e d c b g h i j k l m n o

53

Exercise-2

Write BFS,DFS paths

Exercise-3

Connected Components and Spanning Trees:
Paths in Graphs

• Path p

P is a sequence of vertices v0, v1, …, vk

where for i=1,…k, vi-1 is adjacent to vi

Equivalently, p is a sequence of edges
e1, …, ek where for i = 2,…k edges
ei-1, ei share a vertex

V1
V2 Vk-1 Vk

eke2e1

Vo

Simple Paths and Cycles

• Simple path
no edge or vertex repeated,
except possibly vo = vk

• Cycle
a path p with vo = vk where k>1

V1
V2 Vk-1Vk = Vo

Example Spanning Tree of a Graph

1

6

2

4

3

5

7

8

root

tree edge
back edge

9

1
0

11

1
2

cross edge

Classification of Edges of G with Spanning Tree T

 An edge (u,v) of T is tree edge

 An edge (u,v) of G-T is back edge if u is
a descendent or ancestor of v.

 Else (u,v) is a cross edge

Biconnected Undirected Graphs

G is if two disjoint paths

 between each pair of vertices

biconnected

(or G is single edge)

Bi-connected components & DFS

 Biconnected component has 2 components:

1)A biconnected component of a undirected graph is a
maximal biconnected subgraph, that is, a bi-nconnected
subgraph not contained in any larger bi-nconnected
subgraph.

2)Articulation point:

Let G=(V,E) be a connected undirected graph then an
articulation point of graph ‘G’ is a vertex whose removal
disconnects the graph ‘G’.

1

4 2

3

5

7

6

Bi-connected components & DFS

1

4 3

5

7

6

Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is
divided into 2 components.

1

6 2

5

Bi-connected components & DFS

4

3

Bi-Connected Graph:

A graph ‘G’ is said to be Bi-connected if it contains no articulation point.

If we deleting the vertex ‘6’ then the graph won’t divide in to 2 components.
If there exists any articulation point , it is an undesirable feature in
communication network where joint point between two networks failure in
case of joint node fails.

1

4 2

3

5

8

7

Bi-connected components & DFS

4 3

6

Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is divided into 2
components.

In the above the articulation points are: 2,3 and 5

Bi-connected components & DFS

1

4

1

8

6

910

Bi-connected components & DFS

Identification of Bi-Connected components :

Definition: A Bi-Connected graph G=(V,E) be a connected graph which
has no articulation points. A Bi-Connected component of graph ‘G’ is
maximal Bi-connected sub graphs.

To construct Bi-connected components using 3 rules:

1) Two different Bi-components should not have any common edge.

2) Two different Bi-connected components can have a common vertex.

3)The common vertex which is attaching 2 Bi-connected components
must be an articulation point of ‘G’.

Bi-connected components & DFS

1

4 2

3

5 6

8

7

9 10

1

24

3

2

3 3

9 10

5

8 7

5 6

B1
B5

B2 B3

B4

Bi-connected components & DFS

1

24

3

5

8

7

6

Draw Bi-connected Graph for this graph

9 10

DFS spanning tree for the above directed graph in the next slide

1

2

4

3

5

8

7

6

Depth First Search –Spanning Tree -example

910

1

24

3

5

8

7

6

DFS–Spanning Tree –traversing Number

910

DFN[1]=1

DFN[4]=2

DFN[3]=3

DFN[2]=6

DFN[9]=5DFN[10]=4

DFN[8]=7

DFN[7]=8

DFN[5]=9

DFN[6]=10

1

24

3

5

7

6

Exercise-find DFS spanning tree and traversing
number

Algorithm for constructing Bi-connected Graph

1. For each articulation point ‘a’ do

2. Let B1,B2,B3,…………….Bk are the Bi-connected
components

3. Containing the articulation point ‘a’

4.Let Vi E Bi, Vi # a i<=i<=k

5. Add(Vi,Vi+1) to Graph G.

Vi-vertex belong Bi

Bi-Bi-connected component

i-vertex number 1 to k

a- articulation point

Bi-connected components

 Some vertices are in more than one component
(which vertices are these?)

