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Techniques for binary trees

 In a traversal of a binary tree, each 
element of the binary tree is visited exactly 
once.

 During the visit of an element, all action 
(make a clone, display, evaluate the 
operator, etc.) with respect to this element 
is taken.



Techniques for binary trees.

 L: moving left.

 D: printing the data.

 R: moving right.

 Six possible combination : LDR, LRD, DLR,
DRL, RDL, RLD.

 Left before right : LDR(inorder), 
LRD(postorder), DLR(preordr)



Binary Tree Traversal Methods

 Preorder(root,left,right)

 Inorder(left,root,right)

 Postorder(left,right,root)

 Level order

Techniques for binary trees.



Preorder, Postorder and Inorder Algorithms

Techniques for binary trees.



Preorder Example (visit = print)
a

b c

a b c



Preorder Example (visit = print)
a

b c

d e
f

g h i j

a b d g h e i c f j



Preorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives prefix form of expression!

/ * + a b - c d + e f



Inorder Example (visit = print)
a

b c

b a c



Inorder Example (visit = print)
a

b c

d e f

g h i
j

g d h b e i a f j c



Inorder By Projection (Squishing)

a

b c

d e f

g h i j

g d h b e i a f j c



Inorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives infix form of expression (sans parentheses)!

ea + b * c d / + f-



Postorder Example (visit = print)
a

b c

b c a



Postorder Example (visit = print)

a

b c

d e f

g h i
j

g h d i e b j f c a



Postorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /



Traversal Applications
a

b c

d e f

g h i
j

• Make a clone.

• Determine height.

•Determine number of nodes.



Binary Tree Construction

 Suppose that the elements in a binary 
tree are distinct.

 Can you construct the binary tree from 
which a given traversal sequence 
came?

 When a traversal sequence has more 
than one element, the binary tree is not 
uniquely defined.

 Therefore, the tree from which the 
sequence was obtained cannot be 
reconstructed uniquely.



Some Examples

preorde
r = ab

a

b

a

b

inorder = ab b

a

a

b

postorder = ab b

a

b

a

level order = ab a

b

a

b



Binary Tree Construction

 Can you construct the binary tree, 
given two traversal sequences?

 Depends on which two sequences 
are given.



Preorder And Postorder

preorder = ab a

b

a

bpostorder = ba

• Preorder and postorder do not uniquely define a binary tree.

• Nor do preorder and level order (same example).

• Nor do postorder and level order (same example).



Inorder And Preorder
 inorder = g d h b e i a f j c

 preorder = a b d g h e i c f j

 Scan the preorder left to right using the 
inorder to separate left and right 
subtrees.

 a is the root of the tree; gdhbei are in 
the left subtree; fjc are in the right 
subtree.

a

gdhbei fjc



Inorder And Preorder

 preorder = a b d g h e i c f j

 b is the next root; gdh are in the left 
subtree; ei are in the right subtree.

a

gdhbei fjc

a

gd
h

fjcb

ei



Inorder And Preorder

 preorder = a b d g h e i c f j

 d is the next root; g is in the left 
subtree; h is in the right subtree.

a

gd
h

fjcb

ei

a

g

fjcb

eid

h



Inorder And Postorder

 Scan postorder from right to left using 
inorder to separate left and right 
subtrees.

 inorder = g d h b e i a f j c

 postorder = g h d i e b j f c a

 Tree root is a; gdhbei are in left subtree; 
fjc are in right subtree.



What is a graph?

 A set of vertices and edges
– Directed/Undirected
– Weighted/Unweighted
– Cyclic/Acyclic

vertex

edge
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Some Examples and Terminology

 A graph is a collection of distinct 
vertices and distinct edges

– Edges can be directed or undirected
– When it has directed edges it is called a 

digraph

 Vertices or nodes are connected by 
edges

 A subgraph is a portion of a graph that 
itself is a graph
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Example : Street Maps

A directed graph representing a city's street map. Directed edges
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Graph Paths

 A sequence of edges that connect two vertices in a 
graph

 In a directed graph the direction of the edges must be 
considered

– Called a directed path

 A cycle is a path that begins and ends at same vertex

– Simple path does not pass through any vertex more 
than once

 A graph with no cycles is acyclic
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Weighted Graph

 A weighted graph has values on its edges
– Weights or costs

 A path in a weighted graph also has weight 
or cost
– The sum of the edge weights

 Examples of weights
– Miles between nodes on a map
– Driving time between nodes
– Taxi cost between node locations



Representation of Graphs

 Adjacency Matrix

– A V x V array, with matrix[i][j] storing whether 
there is an edge between the ith vertex and the 
jth vertex

 Adjacency Linked List
– One linked list per vertex, each storing directly 

reachable vertices

 Edge List



Representation of Graphs

Adjacency 
Matrix

Adjacency 
Linked List

Edge List

Memory 
Storage

O(V2) O(V+E) O(V+E)

Check 
whether 
(u,v) is an 
edge

O(1) O(deg(u)) O(deg(u))

Find all 
adjacent 
vertices of a 
vertex u

O(V) O(deg(u)) O(deg(u))

deg(u): the number of edges connecting vertex u



Graph Searching

 Why do we do graph searching? What do 
we search for?

 What information can we find from graph 
searching?

 How do we search the graph? Do we need 
to visit all vertices? In what order?



Depth-First Search (DFS)

 Strategy: Go as far as you can (if you have 
not visit there), otherwise, go back and try 
another way



DFS Implementation

DFS (vertex u) {

mark u as visited

for each vertex v directly reachable from u

if v is unvisited

DFS (v)

}

 Initially all vertices are marked as unvisited



DFS Example-1

1 4

2 3 5

6

Adjacency lists

1: 2, 3, 4
2: 6, 3, 1
3: 1, 2, 6,  5, 4
4: 1, 3, 5
5: 3, 4
6: 2, 3

Depth first traversal: 1, 2, 6, 3, 5, 4

the particular order is dependent on the order of nodes in 
the adjacency lists



36

DFS Example-2

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge
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Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E
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Properties of DFS

Property 1

DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2

The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v

DB

A

C

E
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Analysis of DFS

 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled twice 

– once as UNEXPLORED

– once as VISITED

 Each edge is labeled twice

– once as UNEXPLORED

– once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex

 DFS runs in O(n m) time provided the graph is 
represented by the adjacency list structure

– Recall that v deg(v) 2m
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Depth-First Traversal

A trace of a depth first  
traversal beginning at 
vertex A of the directed 
graph



Breadth-First Search (BFS)

 Instead of going as far as possible, BFS 
tries to search all paths.

 BFS makes use of a queue to store visited 
(but not dead) vertices, expanding the path 
from the earliest visited vertices.



1

4

3

2
5

6

Simulation of BFS

 Queue: 1 4 3 5 2 6



Implementation

while queue Q not empty

dequeue the first vertex u from Q

for each vertex v directly reachable from u

if v is unvisited

enqueue v to Q

mark v as visited

 Initially all vertices except the start vertex 
are marked as unvisited and the queue 
contains the start vertex only



Example-1

1 4

2 3 5

6

Adjacency lists

1: 2, 3, 4
2: 1, 3, 6
3: 1, 2, 4, 5, 6
4: 1, 3, 5
5: 3, 4
6: 2, 3

Breadth-first traversal: 1, 2, 3, 4, 6, 5

1: starting node

2, 3, 4 : adjacent to 1 

(at distance 1 from node 1)

6 : unvisited adjacent to node 2.

5 : unvisited, adjacent to node 3

The order depends on the order of 
the nodes in the adjacency lists
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Example-2 BFS

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
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Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2
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Example (cont.)

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2
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Properties

Notation
Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts of 
Gs

Property 3
For each vertex v in Li

– The path of  Ts from s to v has i
edges 

– Every path from s to v in Gs has at 
least i edges

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

F
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Breadth-First Traversal

A trace of a breadth-first 
traversal for a directed 
graph, beginning at 
vertex A.



BFS – Complexity

Step 1 : read a node from the queue O(V) times. 

Step 2 : examine all neighbors, i.e. we examine all edges 

of the currently read node.

Not oriented graph: 2*E edges to examine

Hence the complexity of BFS is O(V + 2*E)
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Graph -Traversal Exercise-1

Breadth-First and Depth-First Traversal starting from a
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Some of the possible Answers

 Breadth-first
– a f h e g i d j k c l n b m o

 Depth-first
– a f e d c b g h i j k l m n o 
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Exercise-2 

Write BFS,DFS paths



Exercise-3



Connected Components and Spanning Trees:
Paths in Graphs

• Path p

P is a sequence of vertices v0, v1, …, vk

where for i=1,…k, vi-1 is adjacent to vi

Equivalently, p is a sequence of edges  
e1, …, ek where for  i = 2,…k  edges 
ei-1, ei share a vertex

V1
V2 Vk-1 Vk

eke2e1

Vo



Simple Paths and Cycles

• Simple path
no edge or vertex repeated,
except possibly vo = vk

• Cycle
a path p with vo = vk where k>1

V1
V2 Vk-1Vk = Vo



Example Spanning Tree of a Graph

1

6

2

4

3

5

7

8

root

tree edge
back edge

9

1
0

11

1
2

cross edge



Classification of Edges of G with Spanning Tree T

 An edge (u,v) of T is tree edge

 An edge (u,v) of G-T is back edge if u is 
a descendent or ancestor of v.

 Else (u,v) is a cross edge



Biconnected Undirected Graphs

G is  if    two disjoint paths

        between  each pair of vertices

biconnected

(or G is single edge)



Bi-connected components & DFS

 Biconnected component has 2 components: 

1)A biconnected component of a undirected graph is a 
maximal biconnected subgraph, that is, a bi-nconnected
subgraph not contained in any larger bi-nconnected
subgraph.

2)Articulation point:

Let G=(V,E) be a connected  undirected graph then an 
articulation point of graph ‘G’ is a vertex whose removal 
disconnects the graph ‘G’.



1

4 2

3

5

7

6

Bi-connected components & DFS

1

4 3

5

7

6

Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is 
divided into 2 components.



1

6 2

5

Bi-connected components & DFS

4

3

Bi-Connected Graph:

A graph ‘G’ is said to be Bi-connected if it contains no articulation point. 

If we deleting the vertex  ‘6’ then the graph won’t divide in to 2 components.
If there exists any articulation point , it is an undesirable feature in 
communication network where joint point between two networks failure in 
case of joint node fails.



1

4 2

3

5

8

7

Bi-connected components & DFS

4 3

6

Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is divided into 2 
components.

In the above the articulation points are: 2,3 and 5 



Bi-connected components & DFS

1

4

1

8

6

910



Bi-connected components & DFS

Identification of Bi-Connected components :

Definition: A Bi-Connected graph G=(V,E) be a connected graph which 
has no articulation points. A Bi-Connected component of graph ‘G’ is 
maximal Bi-connected sub graphs.

To construct  Bi-connected components using 3 rules:

1) Two different Bi-components should not have any common edge.

2)   Two different Bi-connected components can have a common vertex.

3)The common vertex which is attaching 2 Bi-connected components 
must be an articulation point of  ‘G’.



Bi-connected components & DFS

1

4 2

3

5 6

8

7

9 10



1

24

3

2

3 3

9 10

5

8 7

5 6

B1
B5

B2 B3

B4

Bi-connected components & DFS



1

24

3

5

8

7

6

Draw Bi-connected Graph for this graph

9 10

DFS spanning tree for the above directed graph in the next slide



1

2

4

3

5

8

7

6

Depth First Search –Spanning Tree -example

910



1

24

3

5

8

7

6

DFS–Spanning Tree –traversing Number

910

DFN[1]=1

DFN[4]=2

DFN[3]=3

DFN[2]=6

DFN[9]=5DFN[10]=4

DFN[8]=7

DFN[7]=8

DFN[5]=9

DFN[6]=10



1

24

3

5

7

6

Exercise-find DFS spanning tree and traversing 
number



Algorithm for constructing Bi-connected Graph

1. For each articulation point ‘a’ do

2. Let B1,B2,B3,…………….Bk are the Bi-connected 
components

3. Containing the articulation point ‘a’

4.Let Vi E Bi, Vi # a i<=i<=k

5. Add(Vi,Vi+1) to Graph G.

Vi-vertex belong Bi

Bi-Bi-connected component

i-vertex number 1 to k

a- articulation point



Bi-connected components

 Some vertices are in more than one component 
(which vertices are these?)


