unit-Ill
Basic traversal & Search Technigques

K. RAGHAVA RAO
Professor in CSE

KL University

Krraocse@gmail.com
http://mcadaa.blog.com

mailto:krraocse@gmail.com

Techniques for binary trees

= |n a traversal of a binary tree, each
element of the binary tree Is visited exactly

once.

= During the visit of an element, all action
(make a clone, display, evaluate the
operator, etc.) with respect to this element
IS taken.

Technigues for binary trees.

L: moving left.
D: printing the data.
R: moving right.

Six possible combination : LDR, LRD, DLR,
DRL, RDL, RLD.

Left before right : LDR(inorder),
LRD(postorder), DLR(preordr)

Technigues for binary trees.

Binary Tree Traversal Methods

Preorder(root,left,right)
Inorder(left,root,right)
Postorder(left,right,root)

| evel order

Technigues for binary trees.

Preorder, Postorder and Inorder Algorithms

Algorithm Preorder(z)
Input: = is the root of a subtree.
if o & NULL
then output key(z):
Preorder(left(z));
Preorder(right(z));

Algorithm Postorder(x) Algorithm Inorder(x)
Input: = is the root of a subtree. Input: = is the root of a subtree.
if %= NULL . ifx% NULL
then Postorder(left(z)); 2. then Inorder(left(x));
Postorder(right(z)); : output key(z);
output key(x); . Inorder(right(z));

Preorder Example (visit = print)
@

o C

a b c

Preorder Example (visit = print)

abdghei cf |

Preorder Of Expression Tree
&

/ * +ab- cd+ e f

Gives prefix form of expression!

Inorder Example (visit = print)
@

o C

Inorder Example (visit = print)

gdhbei afj c

Inorder By Projection (Squishing)

}J{‘\x lll

b e 1 a f] cC

Inorder Of Expression Tree

Gives infix form of expression (sans parentheses)!

Postorder Example (visit = print)
@

o C

Postorder Example (visit = print)
(3,

o C
® ¢ K
o 0 © o

ghdi ebj f ca

Postorder Of Expression Tree
&

ab+cd-*ef + [/

Gives postfix form of expression

Traversal Applications
@

b C
o o i
O 0 o o

Make a clone.

Determine height.
Determine number of nodes.

Binary Tree Construction

= Suppose that the elements Iin a binary
tree are distinct.

= Can you construct the binary tree from
which a given traversal sequence
came?

= \WWhen a traversal seguence has more
than one element, the binary tree Is not
uniguely defined.

= Therefore, the tree from which the
seguence was obtained cannot be
reconstructed uniquely.

preorde
r=ab

inorder = ab

postorder = ab

level order = ab

Some Examples

Binary Tree Construction

= Can you construct the binary tree,
given two traversal seqguences?

= Depends on which two sequences
are given.

Preorder And Postorder

preorder = ab

postorder = ba

Preorder and postorder do not uniquely define a binary tree.
Nor do preorder and level order (same example).
Nor do postorder and level order (same example).

Inorder And Preorder
" jnorder=gdhbeiafjc
= preorder=abdgheicf]

= Scan the preorder left to right using the
Inorder to separate left and right
subtrees.

= a Is the root of the tree; gdhbel are In
the left subtree; fjc are In the right
subtree.

gdhbel fic

Inorder And Preorder

gdhbel fic

" preorder=abdgheicf]

= p Is the next root; gdh are In the left
subtree; el are In the right subtree.

fic

%d el

Inorder And Preorder

fic

d el
-pre%rder:abdgheicfj
= d Is the next root; g Is In the left
subtree; h Is In the right subtree.

1jC

=

Inorder And Postorder

= Scan postorder from right to left using
Inorder to separate left and right
subtrees.

= jnorder=gdhbeiafjc
= postorder=ghdiebjfca

= Tree root Is a; gdhbel are In left subtree;
fjc are In right subtree.

What Is a graph?

= A set of vertices and edges
— Directed/Undirected
— Weighted/Unweighted
— Cyclic/Acyclic

/“ @ - hEEn

|

Some Examples and Terminology

= A graph Is a collection of distinct
vertices and distinct edges

— Edges can be directed or undirected

— When It has directed edges It Is called a
digraph

= \ertices or nodes are connected by
edges

= A subgraph Is a portion of a graph that
itself Is a graph

AS

Example : Street Maps

A directed graph representing a city's street map. Directed edges

27

Graph Paths

= A sequence of edges that connect two vertices in a
graph

= |n a directed graph the direction of the edges must be
considered

— Called a directed path

= A cycle is a path that begins and ends at same vertex

— Simple path does not pass through any vertex more
than once

= A graph with no cycles is acyclic

AS

Weighted Graph

= A weighted graph has values on its edges
— Welghts or costs

= A path in a weighted graph also has weight
Or cost

— The sum of the edge weights

= Examples of weights
— Miles between nodes on a map
— Driving time between nodes
— Taxi cost between node locations

29

Representation of Graphs

= Adjacency Matrix

— AV x V array, with matrix[i][J]] storing whether
there is an edge between the it" vertex and the
jih vertex

= Adjacency Linked List

— One linked list per vertex, each storing directly
reachable vertices

= Edge List

Representation of Graphs

Adjacency
Matrix

Adjacency
Linked List

Edge List

Memory
Storage

O(V?)

O(V+E)

O(V+E)

Check
whether
(u,v) is an
edge

O(1)

O(deg(u))

O(deg(u))

Find all
adjacent
vertices of a
vertex u

O(deg(u))

O(deg(u))

deg(u): the number of edges connecting vertex u

Graph Searching

= Why do we do graph searching? What do
we search for?

= What information can we find from graph
searching?

= How do we search the graph? Do we need
to visit all vertices? In what order?

Depth-First Search (DFS)

= Strategy: Go as far as you can (if you have
not visit there), otherwise, go back and try
another way

/.

o

DFS Implementation

DFS (vertex u) {
mark u as visited
for each vertex v directly reachable from u
If v IS unvisited
DFES (V)
]

= |nitially all vertices are marked as unvisited

DFS Example-1

Depth first traversal: 1, 2, 6, 3, 5, 4

the particular order is dependent on the order of nodes in
the adjacency lists

Adjacency lists
: 2,3,4

6, 5,4

DFS Example-2

unexplored vertex A
unexplored edge .

c

A A
0 E B

36

Example (cont.)

37

Properties of DFS

DFS(G, v) visits all the

vertices and edges In

the connected ‘
component of v

The discovery edges

labeled by DFS(G, V)

form a spanning tree of ‘
the connected

component of v

38

Analysis of DFS

Setting/getting a vertex/edge label takes O(1) time

Each vertex Is labeled twice
— once as UNEXPLORED
— Oonce as

Each edge Is labeled twice
— once as UNEXPLORED
— once as 0]

Method incidentEdges is called once for each vertex

DFES runs in O(n + m) time provided the graph Is
represented by the adjacency list structure

— Recall that 2, deg(v) = 2m

39

Depth-First Traversal

topVertex nextNeighbor Visited vertex vertexStack traversalOrder
(top to bottom) (front to back)

A A

A trace of a depth first i "
traversal beginning at BA

vertex A of the directed o

g raph FEBA
FEBA
CFEBA
FEBA
FEBA
HFEBA ABEFCH
HFEBA
[HFEBA ABEFCHI
HFEBA
FEBA
EBA
BA
A
A
DA ABEFCHID
DA
GDA ABEFCHIDG
DA
A
empty ABEFCHIDG

Breadth-First Search (BFS)

= |[nstead of going as far as possible, BFS
tries to search all paths.

= BFS makes use of a queue to store visited
§but not dead) vertices, expanding the path
rom the earliest visited vertices.

Simulation of BFS

+Queee: RS ERRRE

Implementation

while queue Q not empty
degueue the first vertex u from Q
for each vertex v directly reachable from u
If v IS unvisited
enqueue v to Q
mark v as visited

= |nitially all vertices except the start vertex
are marked as unvisited and the queue
contains the start vertex only

Breadth-first traversal 1, 2, 3,4,6,5

1: starting node Example-1
2, 3,4 : adjacent to 1

(at distance 1 from node 1)
6 : unvisited adjacent to node 2.
5 : unvisited, adjacent to node 3

Adjacency lists

aPa!

/ The order depends on the order of
the nodes in the adjacency lists

Example-2 BFS
unexplored vertex m

visited vertex
Q— QB

/" \

unexplored edge

discovery edge ‘

O~
® Q—O—C
e o

45

Example (cont.)

O~ O~
Q- --O—O N Q- -O- -0

O~

e} o
O~

Q- -O—O B Q- -Q- -0

iej o

O B

Example (cont.)

(O~ (O~
QO O Q --Q---O
k€] o

(O~
Q- --Q -0

O O

O O

Properties

G,: connected component of S

BFS(G, s) visits all the vertices and

edges of G, ‘ ‘

The discovery edges labeled by
BFES(G, s) form a spanning tree T, of
GS

(O
For each vertex v in L; ca:m
— The path of T, fromstovhasi ‘ ‘ ‘

edges —

N
— Every path from s to vin G, has at m

least | edges

48

Breadth-First Traversal

(b} frontVertex nextNeighbor Visited vertex vertexueae traversalOnder

)

A trace of a breadth-first
traversal for a directed
graph, beginning at
vertex A.

ABDEGF
ABDEGFH

ABDEGFHC

ABDEGFHCI

BFS — Complexity

Step 1 : read a node from the queue O(V) times.

Step 2 : examine all neighbors, i.e. we examine all edges
of the currently read node.

Not oriented graph: 2*E edges to examine

Hence the complexity of BFS is O(V + 2*E)

Graph -Traversal Exercise-1

Breadth-First and Depth-First Traversal starting from a

51

Some of the possible Answers

= Breadth-first
—afhegidjkclnbmo

= Depth-first
—afedcbghijkimno

52

Exercise-2

Write BFS,DFS paths

A

Exercise-3

Connected Components and Spanning Trees:
Paths in Graphs

Path p

e e, e,

1
Vo V1 V2 Vk-l Vk

P is a sequence of verfices v,, Vv, ..., Vy
where fori=1,...k, v, ; Is adjacent to v,

Equivalently, p is a sequence of edges
e,e.Where for i =2,...k edges
€., €;share a vertex

Simple Paths and Cycles

e Simple path
no edge or vertex repeated,
except possibly v, = v,

e (Cycle
a path p with v, = v, where k>1

Example Spanning Tree of a Graph

root

1
X
tree edge
2

-
*
*
u L3
. .
.
.
= .
g .
= .
. .
" .
. .
M .
L " .
5 6 - :
» I = .
. 5 .
9 x
o
»
s : .
| Q &
o »
- L
L4 L
K4 L
Q »
4 Ll .
&’ L
4 »
B g]
Q 5
~. ~
RS 0
R
- o
* g
Q
S Q
R K]
* Q
R Q
Imn® ‘0‘
4 .

ey
. e
‘e

‘e S;’
G
03
»
‘e
‘e
»
*
»
£
*
'0‘ ‘e
. ‘o’
. S
i *
. -

cross edge

Classification of Edges of G with Spanning Tree T

= An edge (u,v) of T Is tree edge

= An edge (u,v) of G-T Is back edge If u Is
a descendent or ancestor of v.

= Else (u,v) Is a cross edge

Biconnected Undirected Graphs

(or G is single edge)

o—@

G 1s biconnected If 3 two disjoint paths

between each pair of vertices

Bi-connected components & DFS

= Biconnected component has 2 components:

1)A biconnected component of a undirected graph is a
maximal biconnected subgraph, that is, a bi-nconnected
subgraph not contained in any larger bi-nconnected
subgraph.

2)Articulation point:

Let G=(V,E) be a connected undirected graph then an
articulation point of graph ‘G’ is a vertex whose removal
disconnects the graph ‘G’.

Bi-connected components & DFS
Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is
divided into 2 components.

Bi-connected components & DFS
Bi-Connected Graph:

A graph ‘G’ is said to be Bi-connected if it contains no articulation point.

4

If we deleting the vertex ‘6’ then the graph won't divide in to 2 components.
If there exists any articulation point , it is an undesirable feature in _
communication network where joint point between two networks failure in

case of joint node fails.

Bi-connected components & DFS

Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is divided into 2

components.

In the above the articulation points are: 2,3 and 5

Bi-connected components & DFS

Bi-connected components & DFS

|dentification of Bi-Connected components :

Definition: A Bi-Connected graph G=(V,E) be a connected graph which
has no articulation points. A Bi-Connected component of graph ‘G’ is
maximal Bi-connected sub graphs.

To construct Bi-connected components using 3 rules:
1) Two different Bi-components should not have any common edge.
2) Two different Bi-connected components can have a common vertex.

3)The common vertex which Is attaching 2 Bi-connected components
must be an articulation point of ‘G’.

Bi-connected components & DFS

Bi-connected components & DFS

B2 B3
® ° ® @

Bl ‘ B4

B5

Draw Bi-connected Graph for this graph

DFS spanning tree for the above directed graph in the next slide

Depth First Search —Spanning Tree -example

DFS—Spanning Tree —traversing Number

DFN[6]=10

’ DFN[1]=1 DFN[5]=9

‘ ‘ DFN[2]=6 ’

‘ ’ DFN[7]=8
DFN[3]=3

f | @

‘ ‘ DFNI[8]=7

DFN[10]=4 DEN[9]=5

DFN[4]=2

Exercise-find DFS spanning tree and traversing
number

Algorithm for constructing Bi-connected Graph

1. For each articulation point ‘a’ do

2.LetB1,B2B3,................ Bk are the Bi-connected
components

3. Containing the articulation point ‘a’
4.letV,EB, V #ai<=i<=k

5. Add(V,,V,,,) to Graph G.

Vi-vertex belong Bi

Bi-Bi-connected component

I-vertex number 1 to k

a- articulation point

Bi-connected components

= Some vertices are In more than one component
(which vertices are these?)

