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Techniques for binary trees

 In a traversal of a binary tree, each 
element of the binary tree is visited exactly 
once.

 During the visit of an element, all action 
(make a clone, display, evaluate the 
operator, etc.) with respect to this element 
is taken.



Techniques for binary trees.

 L: moving left.

 D: printing the data.

 R: moving right.

 Six possible combination : LDR, LRD, DLR,
DRL, RDL, RLD.

 Left before right : LDR(inorder), 
LRD(postorder), DLR(preordr)



Binary Tree Traversal Methods

 Preorder(root,left,right)

 Inorder(left,root,right)

 Postorder(left,right,root)

 Level order

Techniques for binary trees.



Preorder, Postorder and Inorder Algorithms

Techniques for binary trees.



Preorder Example (visit = print)
a

b c

a b c



Preorder Example (visit = print)
a

b c

d e
f

g h i j

a b d g h e i c f j



Preorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives prefix form of expression!

/ * + a b - c d + e f



Inorder Example (visit = print)
a

b c

b a c



Inorder Example (visit = print)
a

b c

d e f

g h i
j

g d h b e i a f j c



Inorder By Projection (Squishing)

a

b c

d e f

g h i j

g d h b e i a f j c



Inorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives infix form of expression (sans parentheses)!

ea + b * c d / + f-



Postorder Example (visit = print)
a

b c

b c a



Postorder Example (visit = print)

a

b c

d e f

g h i
j

g h d i e b j f c a



Postorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /



Traversal Applications
a

b c

d e f

g h i
j

• Make a clone.

• Determine height.

•Determine number of nodes.



Binary Tree Construction

 Suppose that the elements in a binary 
tree are distinct.

 Can you construct the binary tree from 
which a given traversal sequence 
came?

 When a traversal sequence has more 
than one element, the binary tree is not 
uniquely defined.

 Therefore, the tree from which the 
sequence was obtained cannot be 
reconstructed uniquely.



Some Examples

preorde
r = ab

a

b

a

b

inorder = ab b

a

a

b

postorder = ab b

a

b

a

level order = ab a

b

a

b



Binary Tree Construction

 Can you construct the binary tree, 
given two traversal sequences?

 Depends on which two sequences 
are given.



Preorder And Postorder

preorder = ab a

b

a

bpostorder = ba

• Preorder and postorder do not uniquely define a binary tree.

• Nor do preorder and level order (same example).

• Nor do postorder and level order (same example).



Inorder And Preorder
 inorder = g d h b e i a f j c

 preorder = a b d g h e i c f j

 Scan the preorder left to right using the 
inorder to separate left and right 
subtrees.

 a is the root of the tree; gdhbei are in 
the left subtree; fjc are in the right 
subtree.

a

gdhbei fjc



Inorder And Preorder

 preorder = a b d g h e i c f j

 b is the next root; gdh are in the left 
subtree; ei are in the right subtree.

a

gdhbei fjc

a

gd
h

fjcb

ei



Inorder And Preorder

 preorder = a b d g h e i c f j

 d is the next root; g is in the left 
subtree; h is in the right subtree.

a

gd
h

fjcb

ei

a

g

fjcb

eid

h



Inorder And Postorder

 Scan postorder from right to left using 
inorder to separate left and right 
subtrees.

 inorder = g d h b e i a f j c

 postorder = g h d i e b j f c a

 Tree root is a; gdhbei are in left subtree; 
fjc are in right subtree.



What is a graph?

 A set of vertices and edges
– Directed/Undirected
– Weighted/Unweighted
– Cyclic/Acyclic

vertex

edge
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Some Examples and Terminology

 A graph is a collection of distinct 
vertices and distinct edges

– Edges can be directed or undirected
– When it has directed edges it is called a 

digraph

 Vertices or nodes are connected by 
edges

 A subgraph is a portion of a graph that 
itself is a graph
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Example : Street Maps

A directed graph representing a city's street map. Directed edges
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Graph Paths

 A sequence of edges that connect two vertices in a 
graph

 In a directed graph the direction of the edges must be 
considered

– Called a directed path

 A cycle is a path that begins and ends at same vertex

– Simple path does not pass through any vertex more 
than once

 A graph with no cycles is acyclic
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Weighted Graph

 A weighted graph has values on its edges
– Weights or costs

 A path in a weighted graph also has weight 
or cost
– The sum of the edge weights

 Examples of weights
– Miles between nodes on a map
– Driving time between nodes
– Taxi cost between node locations



Representation of Graphs

 Adjacency Matrix

– A V x V array, with matrix[i][j] storing whether 
there is an edge between the ith vertex and the 
jth vertex

 Adjacency Linked List
– One linked list per vertex, each storing directly 

reachable vertices

 Edge List



Representation of Graphs

Adjacency 
Matrix

Adjacency 
Linked List

Edge List

Memory 
Storage

O(V2) O(V+E) O(V+E)

Check 
whether 
(u,v) is an 
edge

O(1) O(deg(u)) O(deg(u))

Find all 
adjacent 
vertices of a 
vertex u

O(V) O(deg(u)) O(deg(u))

deg(u): the number of edges connecting vertex u



Graph Searching

 Why do we do graph searching? What do 
we search for?

 What information can we find from graph 
searching?

 How do we search the graph? Do we need 
to visit all vertices? In what order?



Depth-First Search (DFS)

 Strategy: Go as far as you can (if you have 
not visit there), otherwise, go back and try 
another way



DFS Implementation

DFS (vertex u) {

mark u as visited

for each vertex v directly reachable from u

if v is unvisited

DFS (v)

}

 Initially all vertices are marked as unvisited



DFS Example-1

1 4

2 3 5

6

Adjacency lists

1: 2, 3, 4
2: 6, 3, 1
3: 1, 2, 6,  5, 4
4: 1, 3, 5
5: 3, 4
6: 2, 3

Depth first traversal: 1, 2, 6, 3, 5, 4

the particular order is dependent on the order of nodes in 
the adjacency lists
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DFS Example-2

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge
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Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E
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Properties of DFS

Property 1

DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2

The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v

DB

A

C

E



39

Analysis of DFS

 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled twice 

– once as UNEXPLORED

– once as VISITED

 Each edge is labeled twice

– once as UNEXPLORED

– once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex

 DFS runs in O(n m) time provided the graph is 
represented by the adjacency list structure

– Recall that v deg(v) 2m
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Depth-First Traversal

A trace of a depth first  
traversal beginning at 
vertex A of the directed 
graph



Breadth-First Search (BFS)

 Instead of going as far as possible, BFS 
tries to search all paths.

 BFS makes use of a queue to store visited 
(but not dead) vertices, expanding the path 
from the earliest visited vertices.



1

4

3

2
5

6

Simulation of BFS

 Queue: 1 4 3 5 2 6



Implementation

while queue Q not empty

dequeue the first vertex u from Q

for each vertex v directly reachable from u

if v is unvisited

enqueue v to Q

mark v as visited

 Initially all vertices except the start vertex 
are marked as unvisited and the queue 
contains the start vertex only



Example-1

1 4

2 3 5

6

Adjacency lists

1: 2, 3, 4
2: 1, 3, 6
3: 1, 2, 4, 5, 6
4: 1, 3, 5
5: 3, 4
6: 2, 3

Breadth-first traversal: 1, 2, 3, 4, 6, 5

1: starting node

2, 3, 4 : adjacent to 1 

(at distance 1 from node 1)

6 : unvisited adjacent to node 2.

5 : unvisited, adjacent to node 3

The order depends on the order of 
the nodes in the adjacency lists
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Example-2 BFS

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
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Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2
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Example (cont.)

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

L0

L1

F

L2
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Properties

Notation
Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts of 
Gs

Property 3
For each vertex v in Li

– The path of  Ts from s to v has i
edges 

– Every path from s to v in Gs has at 
least i edges

CB

A

E

D

L0

L1

F

L2

CB

A

E

D

F
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Breadth-First Traversal

A trace of a breadth-first 
traversal for a directed 
graph, beginning at 
vertex A.



BFS – Complexity

Step 1 : read a node from the queue O(V) times. 

Step 2 : examine all neighbors, i.e. we examine all edges 

of the currently read node.

Not oriented graph: 2*E edges to examine

Hence the complexity of BFS is O(V + 2*E)
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Graph -Traversal Exercise-1

Breadth-First and Depth-First Traversal starting from a
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Some of the possible Answers

 Breadth-first
– a f h e g i d j k c l n b m o

 Depth-first
– a f e d c b g h i j k l m n o 
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Exercise-2 

Write BFS,DFS paths



Exercise-3



Connected Components and Spanning Trees:
Paths in Graphs

• Path p

P is a sequence of vertices v0, v1, …, vk

where for i=1,…k, vi-1 is adjacent to vi

Equivalently, p is a sequence of edges  
e1, …, ek where for  i = 2,…k  edges 
ei-1, ei share a vertex

V1
V2 Vk-1 Vk

eke2e1

Vo



Simple Paths and Cycles

• Simple path
no edge or vertex repeated,
except possibly vo = vk

• Cycle
a path p with vo = vk where k>1

V1
V2 Vk-1Vk = Vo



Example Spanning Tree of a Graph

1

6

2

4

3

5

7

8

root

tree edge
back edge

9

1
0

11

1
2

cross edge



Classification of Edges of G with Spanning Tree T

 An edge (u,v) of T is tree edge

 An edge (u,v) of G-T is back edge if u is 
a descendent or ancestor of v.

 Else (u,v) is a cross edge



Biconnected Undirected Graphs

G is  if    two disjoint paths

        between  each pair of vertices

biconnected

(or G is single edge)



Bi-connected components & DFS

 Biconnected component has 2 components: 

1)A biconnected component of a undirected graph is a 
maximal biconnected subgraph, that is, a bi-nconnected
subgraph not contained in any larger bi-nconnected
subgraph.

2)Articulation point:

Let G=(V,E) be a connected  undirected graph then an 
articulation point of graph ‘G’ is a vertex whose removal 
disconnects the graph ‘G’.



1

4 2

3

5

7

6

Bi-connected components & DFS

1

4 3

5

7

6

Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is 
divided into 2 components.



1

6 2

5

Bi-connected components & DFS

4

3

Bi-Connected Graph:

A graph ‘G’ is said to be Bi-connected if it contains no articulation point. 

If we deleting the vertex  ‘6’ then the graph won’t divide in to 2 components.
If there exists any articulation point , it is an undesirable feature in 
communication network where joint point between two networks failure in 
case of joint node fails.



1

4 2

3

5

8

7

Bi-connected components & DFS

4 3

6

Articulation Point:

Here 2 is the articulation point after deleting vertex 2 then graph is divided into 2 
components.

In the above the articulation points are: 2,3 and 5 



Bi-connected components & DFS

1

4

1

8

6

910



Bi-connected components & DFS

Identification of Bi-Connected components :

Definition: A Bi-Connected graph G=(V,E) be a connected graph which 
has no articulation points. A Bi-Connected component of graph ‘G’ is 
maximal Bi-connected sub graphs.

To construct  Bi-connected components using 3 rules:

1) Two different Bi-components should not have any common edge.

2)   Two different Bi-connected components can have a common vertex.

3)The common vertex which is attaching 2 Bi-connected components 
must be an articulation point of  ‘G’.



Bi-connected components & DFS

1

4 2

3

5 6

8

7

9 10



1

24

3

2

3 3

9 10

5

8 7

5 6

B1
B5

B2 B3

B4

Bi-connected components & DFS



1

24

3

5

8

7

6

Draw Bi-connected Graph for this graph

9 10

DFS spanning tree for the above directed graph in the next slide



1

2

4

3

5

8

7

6

Depth First Search –Spanning Tree -example

910



1

24

3

5

8

7

6

DFS–Spanning Tree –traversing Number

910

DFN[1]=1

DFN[4]=2

DFN[3]=3

DFN[2]=6

DFN[9]=5DFN[10]=4

DFN[8]=7

DFN[7]=8

DFN[5]=9

DFN[6]=10



1

24

3

5

7

6

Exercise-find DFS spanning tree and traversing 
number



Algorithm for constructing Bi-connected Graph

1. For each articulation point ‘a’ do

2. Let B1,B2,B3,…………….Bk are the Bi-connected 
components

3. Containing the articulation point ‘a’

4.Let Vi E Bi, Vi # a i<=i<=k

5. Add(Vi,Vi+1) to Graph G.

Vi-vertex belong Bi

Bi-Bi-connected component

i-vertex number 1 to k

a- articulation point



Bi-connected components

 Some vertices are in more than one component 
(which vertices are these?)


