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Apriori Algorithm: Finding Frequent itemsets Using 
Candidate Generation

 The Apriori Algorithm (Mining single 
dimensional boolean association rules)

 Proposed by R.Agarwal & Srikanth in 1994 for 
mining frequent itemsets for boolean assoication 
rules.
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The Apriori Algorithm: Basics

The Apriori Algorithm is an influential algorithm for 
mining frequent itemsets for boolean association rules.

Key Concepts :
• Frequent Itemsets: The sets of item which has minimum 

support (denoted by Li for ith-Itemset).
• Apriori Property: Any subset of frequent itemset must 

be frequent.
• Join Operation: To find Lk , a set of candidate k-itemsets 

is generated by joining Lk-1 with itself. 
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The Apriori Algorithm in a Nutshell

 Find the frequent itemsets: the sets of items that have minimum 
support

 Apriori property:

All nonempty subsets of a frequent itemset must also be 
frequent. 

i.e., if {AB} is a frequent itemset, both {A} and {B} 
should be a frequent itemset

Iteratively find frequent itemsets with cardinality from 1 to k 
(k-itemset)

 Use the frequent itemsets to generate association rules.
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The Apriori Algorithm : Pseudo code

 Join Step: Ck is generated by joining Lk-1with itself
 Prune Step:  Any (k-1)-itemset that is not frequent cannot be a 

subset of a frequent k-itemset
 Pseudo-code:

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return k Lk;
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The Apriori Algorithm: Example

 Consider a database, D , consisting 
of 9 transactions.

 Suppose min. support count 
required is 2 (i.e. min_sup = 2/9 = 
22 % )

 Let minimum confidence required 
is 70%.

 We have to first find out the 
frequent itemset using Apriori
algorithm.

 Then, Association rules will be 
generated using min. support & 
min. confidence.

TID List of Items
T100 I1, I2, I5

T100 I2, I4

T100 I2, I3

T100 I1, I2, I4

T100 I1, I3

T100 I2, I3

T100 I1, I3

T100 I1, I2 ,I3, I5

T100 I1, I2, I3
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Step 1: Generating 1-itemset Frequent Pattern

Itemset Sup.Count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

Itemset Sup.Count

{I1} 6

{I2} 7

{I3} 6

{I4} 2

{I5} 2

• In the first iteration of the algorithm, each item is a member of the set 
of candidate.

• The set of frequent 1-itemsets, L1 , consists of the candidate 1-
itemsets satisfying minimum support.

Scan D for 
count of each 
candidate

Compare candidate 
support count with 
minimum support 
count

C1 L1
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Step 2: Generating 2-itemset Frequent Pattern

Itemset

{I1, I2}
{I1, I3}
{I1, I4}
{I1, I5}
{I2, I3}
{I2, I4}
{I2, I5}
{I3, I4}
{I3, I5}
{I4, I5}

Itemset Sup.
Count

{I1, I2} 4

{I1, I3} 4

{I1, I4} 1

{I1, I5} 2

{I2, I3} 4

{I2, I4} 2

{I2, I5} 2

{I3, I4} 0

{I3, I5} 1

{I4, I5} 0

Itemset Sup
Count

{I1, I2} 4
{I1, I3} 4
{I1, I5} 2
{I2, I3} 4
{I2, I4} 2
{I2, I5} 2

Generate 
C2 
candidates 
from L1

C2

C2

L2

Scan D for 
count of 
each 
candidate

Compare 
candidate 
support count 
with 
minimum 
support count
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Step 2: Generating 2-itemset Frequent Pattern [Cont.]

 To discover the set of frequent 2-itemsets, L2 , the 
algorithm uses L1 Join L1 to generate a candidate set of 2-
itemsets, C2.

 Next, the transactions in D are scanned and the support 
count for each candidate itemset in C2 is accumulated (as 
shown in the middle table).

 The set of frequent 2-itemsets, L2 , is then determined, 
consisting of those candidate 2-itemsets in C2 having 
minimum support.

 Note: We haven’t used Apriori Property yet.
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Step 3: Generating 3-itemset Frequent Pattern

Itemset

{I1, I2, I3}
{I1, I2, I5}

Itemset Sup.
Count

{I1, I2, I3} 2

{I1, I2, I5} 2

Itemset Sup
Count

{I1, I2, I3} 2
{I1, I2, I5} 2

C3 C3
L3

Scan D for 
count of 
each 
candidate

Compare 
candidate 
support count 
with min 
support count

Scan D for 
count of 
each 
candidate

• The generation of the set of candidate 3-itemsets, C3 , involves use of 
the Apriori Property.

• In order to find C3, we compute L2 Join L2.

• C3 = L2 Join L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, 
{I2, I4, I5}}.

• Now, Join step is complete and Prune step will be used to reduce the 
size of C3. Prune step helps to avoid heavy computation due to large Ck.
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Step 3: Generating 3-itemset Frequent Pattern [Cont.]

 Based on the Apriori property that all subsets of a frequent itemset must 
also be frequent, we can determine that four latter candidates cannot 
possibly be frequent. How ?

 For example , lets take {I1, I2, I3}. The 2-item subsets of it are {I1, I2}, {I1, I3} 
& {I2, I3}. Since all 2-item subsets of {I1, I2, I3} are members of L2, We will 
keep {I1, I2, I3} in C3.

 Lets take another example of {I2, I3, I5} which shows how the pruning is 
performed. The 2-item subsets are {I2, I3}, {I2, I5} & {I3,I5}. 

 BUT, {I3, I5} is not a member of L2 and hence it is not frequent violating 
Apriori Property. Thus We will have to remove {I2, I3, I5} from C3.

 Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after checking for all members  of 
result of Join operation for Pruning.

 Now, the transactions in D are scanned in order to determine L3, consisting 
of those candidates 3-itemsets in C3 having minimum support.
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Step 4: Generating 4-itemset Frequent Pattern

 The algorithm uses L3 Join L3 to generate a candidate set 
of 4-itemsets, C4. Although the join results in {{I1, I2, I3, 
I5}}, this itemset is pruned since its subset {{I2, I3, I5}} is 
not frequent. 

 Thus, C4 = φ , and algorithm terminates, having found 
all of the frequent items. This completes our Apriori 
Algorithm.

 What’s Next ? 
These frequent itemsets will be used to generate strong 
association rules ( where strong association rules satisfy 
both minimum support & minimum confidence).
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Step 5: Generating Association Rules from Frequent 
Itemsets

 Procedure:
• For each frequent itemset “l”, generate all nonempty subsets of l.
• For every nonempty subset s of l, output the rule “s  (l-s)” if 

support_count(l) / support_count(s) >= min_conf where 
min_conf is minimum confidence threshold.

 Back To Example:
We had L = {{I1}, {I2}, {I3}, {I4}, {I5}, {I1,I2}, {I1,I3}, {I1,I5}, {I2,I3}, {I2,I4}, 
{I2,I5}, {I1,I2,I3}, {I1,I2,I5}}.
 Lets take l = {I1,I2,I5}. 
 Its all nonempty subsets are {I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, {I5}.
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Step 5: Generating Association Rules from Frequent 
Itemsets [Cont.]

 Let minimum confidence threshold is , say 70%.
 The resulting association rules are shown below, 

each listed with its confidence.
R1: I1 ^ I2  I5

• Confidence = sc{I1,I2,I5}/sc{I1,I2} = 2/4 = 50%
• R1 is Rejected.

R2: I1 ^ I5  I2 
• Confidence = sc{I1,I2,I5}/sc{I1,I5} = 2/2 = 100%
• R2 is Selected.

R3: I2 ^ I5  I1
• Confidence = sc{I1,I2,I5}/sc{I2,I5} = 2/2 = 100%
• R3 is Selected.
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Step 5: Generating Association Rules from 
Frequent Itemsets [Cont.]

 R4: I1  I2 ^ I5
• Confidence = sc{I1,I2,I5}/sc{I1} = 2/6 = 33%
• R4 is Rejected.

 R5: I2  I1 ^ I5
• Confidence = sc{I1,I2,I5}/{I2} = 2/7 = 29%
• R5 is Rejected.

 R6: I5  I1 ^ I2
• Confidence = sc{I1,I2,I5}/ {I5} = 2/2 = 100%
• R6 is Selected.

In this way, We have found three strong 
association rules.
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Methods to Improve Apriori’s Efficiency
 Hash-based itemset counting: A k-itemset whose corresponding 

hashing bucket count is below the threshold cannot be frequent.

 Transaction reduction: A transaction that does not contain any 

frequent k-itemset is useless in subsequent scans.

 Partitioning: Any itemset that is potentially frequent in DB must be 

frequent in at least one of the partitions of DB.

 Sampling: mining on a subset of given data, lower support 

threshold + a method to determine the completeness.

 Dynamic itemset counting: add new candidate itemsets only when 

all of their subsets are estimated to be frequent.

For more details go to slides unit-II part-2.2 later com back to 
here.
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Mining Frequent Itemsets without Candidate Generation.

 >-Compress a large database into a compact,  Frequent-Pattern 
tree (FP-tree) structure
-highly condensed, but complete for frequent pattern mining
-avoid costly database scans

 >-Develop an efficient, FP-tree-based frequent pattern mining 
method
-A divide-and-conquer methodology: decompose mining 

tasks into smaller ones
-Avoid candidate generation: sub-database test only!
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FP-Growth Method : An Example

 Consider the same previous 
example of a database, D , 
consisting of 9 transactions.

 Suppose min. support count 
required is 2 (i.e. min_sup = 
2/9 = 22 % )

 The first scan of database is 
same as Apriori, which derives 
the set of 1-itemsets & their 
support counts.

 The set of frequent items is 
sorted in the order of 
descending support count.

 The resulting set is denoted as 
L = {I2:7, I1:6, I3:6, I4:2, I5:2}

TID List of Items

T100 I1, I2, I5

T100 I2, I4

T100 I2, I3

T100 I1, I2, I4

T100 I1, I3

T100 I2, I3

T100 I1, I3

T100 I1, I2 ,I3, I5

T100 I1, I2, I3
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FP-Growth Method: Construction of FP-Tree

 -First, create the root of the tree, labeled with “null”.
 -Scan the database D a second time. (First time we scanned it to create 1-

itemset and then L).

 -The items in each transaction are processed in L order (i.e. sorted order).
 -A branch is created for each transaction with items having their support 

count separated by colon.

 -Whenever the same node is encountered in another transaction, we just 
increment the support count of the common node or Prefix.

 -To facilitate tree traversal, an item header table is built so that each item 
points to its occurrences in the tree via a chain of node-links.

 -Now, The problem of mining frequent patterns in database is transformed 
to that of mining the FP-Tree.
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FP-Growth Method: Construction of FP-Tree

An FP-Tree that registers compressed, frequent pattern information

Item 
Id

Sup 
Count

Node-
link

I2 7
I1 6
I3 6
I4 2
I5 2

I2:7

null{}

I1:2

I1:4
I3:2 I4:1

I3:2

I5:1
I5:1

I3:2 I4:1
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Mining the FP-Tree by Creating Conditional (sub) 
pattern bases

Steps:
1. Start from each frequent length-1 pattern (as an initial suffix 

pattern).

2. Construct its conditional pattern base which consists of the set of 
prefix paths in the FP-Tree co-occurring  with suffix pattern.

3. Then, Construct its conditional FP-Tree & perform mining on such 
a tree.

4. The pattern growth is achieved by concatenation of the suffix 
pattern with the frequent patterns generated from a conditional FP-
Tree.

5. The union of all frequent patterns (generated by step 4) gives the 
required frequent itemset. 
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FP-Tree Example Continued

Now, Following the above mentioned steps:

• Lets start from I5. The I5 is involved in 2 branches namely {I2 I1 I5: 1} and {I2 
I1 I3 I5: 1}.

• Therefore considering I5 as suffix, its 2 corresponding prefix paths would be 
{I2 I1: 1} and {I2 I1 I3: 1}, which forms its conditional pattern base.

Item Conditional pattern 
base

Conditional 
FP-Tree

Frequent pattern 
generated

I5 {(I2 I1: 1),(I2 I1 I3: 1)} <I2:2 , I1:2> I2 I5:2, I1 I5:2, I2 I1 I5: 2

I4 {(I2 I1: 1),(I2: 1)} <I2: 2> I2 I4: 2

I3 {(I2 I1: 1),(I2: 2), (I1: 2)} <I2: 4, I1: 2>,<I1:2> I2 I3:4, I1, I3: 2 , I2 I1 I3: 2

I2 {(I2: 4)} <I2: 4> I2 I1: 4

Mining the FP-Tree by creating conditional (sub) pattern bases
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FP-Tree Example Continued
 -Out of these, Only I1 & I2 is selected in the conditional FP-Tree because I3 is 

not satisfying the minimum support count.

-For I1 , support count in conditional pattern base = 1 + 1 = 2 
-For I2 , support count in conditional pattern base = 1 + 1 = 2 
-For I3, support count in conditional pattern base = 1 
-Thus support count for I3 is less than required min_sup which is 2 here. 

 -Now , We have conditional FP-Tree with us.

 -All frequent pattern corresponding to suffix I5 are generated by considering 
all possible combinations of I5 and conditional FP-Tree.

 -The same procedure is applied to suffixes I4, I3 and I1.
 Note: I2 is not taken into consideration for suffix because it doesn’t have any 

prefix at all.



FP-Tree algorithm 
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Why Frequent Pattern Growth Fast ?

 >-Performance study shows

 -FP-growth is an order of magnitude faster than Apriori, 
and is also faster than tree-projection

 >-Reasoning

 -No candidate generation, no candidate test

 -Use compact data structure

 -Eliminate repeated database scan

 -Basic operation is counting and FP-tree building



Mining Frequent Itemsets Using Vertical Data Format

 Vertical format: t(AB) = {T11, T25, …}

 tid-list: list of trans.-ids containing an itemset 

 Deriving frequent patterns based on vertical intersections

 t(X) = t(Y): X and Y always happen together

 t(X)  t(Y): transaction having X always has Y

 Using diffset to accelerate mining

 Only keep track of differences of tids

 t(X) = {T1, T2, T3},  t(XY) = {T1, T3} 

 Diffset (XY, X) = {T2}

 Eclat (Zaki et al. @KDD’97) Mining Closed patterns using vertical format:  
CHARM (Zaki & Hsiao@SDM’02)
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Mining Frequent Itemsets Using Vertical Data Format
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Table 5.3 



Mining Frequent Itemsets Using Vertical Data Format
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Table 5.3
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Mining Frequent Itemsets Using Vertical Data Format

Table 5.5



>-To mine closed frequent itemsets, first mine complete set of frequent 
itemsets and then remove every frequent itemsets that is a proper 
subset of , and carries the same support  as, an existing frequent 
itemset.

>-above method is prohibitively expansive .

>-a recommended methodology search for closed frequent itemsets 
directly during the mining process.

>-this requires to prune the search space as soon as identified case of 
close itemsets during mining.

>-Pruning strategies are given in next slide. 30

Mining Closed frequent Itemsets



Mining Closed frequent Itemsets

 Pruning strategies include the following:

 >-Item merging: If every transaction containing a frequent itemset X 
also contains an itemset Y but not any proper superset of Y , then X 
∪Y forms a frequent closed itemset and there is no need to search 
for any itemset containing X but no Y . 

Example:

--In FP-Tree example prefix itemset {I5:2} is {{I2,I1},{I2,I1,I3}}, from which we can 
see  that each its transaction contains itemset {I2,I1} but no proper superset  of 
{I2,I1}. 

--Itemset  {I2,I1}  can be merged  with {I5} to form the closed itemset, {I5,I2,I1:2} , 

and we do not need to mine for closed itemsets that contain I5 but not {I2,I1}.



Mining Closed frequent Itemsets
 Pruning strategies include the following:
 >-Sub-itemset pruning: If a frequent itemset X is a proper subset of an already found 

frequent closed itemset Y and support count(X) = support count(Y ), then X and all of X’s 
descendants in the set enumeration tree cannot be frequent closed itemsets and thus 
can be pruned.

 Example:
 -- A transaction  database  has only two transactions: {<a1,a2…,a100>,<a1,a2,….a50>}  

 and minimum support count=2. The projection on fist item a1,derived frequent    

 itemset, {a1,a2,..,a50:2},based itemset merging optimization.

 --Because support (a2)=support({a1,a2,…a50})=2 and a2 is a proper subset of 

 {a1,a2,…a50}, there is no to examine a2 and its projected database.

 Similar pruning can be done for a3..a50 as well.

 --This mining closed frequent itemsets in this data set terminates after mining a1’s 

 project database.



Mining Closed frequent Itemsets
 Pruning strategies include the following:

 >-Item skipping: In the depth-first mining of closed itemsets, at each level, there 
will be a prefix itemset X associated with a header table and a projected database. 
If a local frequent item p has the same support in several header tables at different 
levels, we can safely prune p from the header tables at higher levels.  



 Example:
--transaction database having only two transactions:    

{<a1,a2,…,a100>,<a1,a2,…a50>}, where min_sup=2. 

--Because a2 in a1’s projected database has same support as a2 in global header 
table, a2 can be pruned from global header table.

--Similar pruning can be done for a3,…,a50.

--There is no need to mine anything more after mining a1’s projected database.                              

 Next slide you may  skip, not in syllabus.



Mining Closed frequent Itemsets
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 Flist: list of all frequent items in support ascending order

Flist: d-a-f-e-c

 Divide search space

Patterns having d

Patterns having d but no a, etc.

 Find frequent closed pattern recursively

Every transaction having d also has cfa cfad is a 
frequent closed pattern

 J. Pei, J. Han & R. Mao. “CLOSET: An Efficient Algorithm for 
Mining Frequent Closed Itemsets", DMKD'00.

TID Items
10 a, c, d, e, f
20 a, b, e
30 c, e, f
40 a, c, d, f
50 c, e, f
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Summary
-Association Rule Mining
 -Finding interesting association or correlation relationships.

-Association rules are generated from frequent itemsets.
-Frequent itemsets are mined using Apriori algorithm or Frequent-Pattern 

Growth method.
-Apriori property states that all the subsets of frequent itemsets must also be 

frequent.
-Apriori algorithm uses frequent itemsets, join & prune methods and Apriori 

property to derive strong association rules.
-Frequent-Pattern Growth method avoids repeated database scanning of 

Apriori algorithm.
-FP-Growth method is faster than Apriori algorithm.
-Correlation concepts & rules can be used to further support our derived 

association rules.

Go to  Unit-2 part 2.4 slides


