
Unit-II
Association
FP-growth

Dr. K. Raghava Rao

Professor of CSE

Dept. of MCA

KL University
krraocse@gmail.com

http://datamining.blog.com

Improving the efficiency of
Apriori

 Challenges
 Multiple scans of transaction database
 Huge number of candidates
 Tedious workload of support counting for

candidates
 Improving Apriori: general ideas
 Reduce passes of transaction database scans
 Shrink number of candidates
 Facilitate support counting of candidates

Association Rule Mining
 Find all frequent itemsets
 Generate strong association rules from

the frequent itemsets

 Apriori algorithm is mining frequent
itemsets for Boolean associations rules

Improving Apriori
 Reduce passes of transaction database

scans
 Shrink number of candidates
 Facilitate support counting of candidates
 Use constraints

Hash-based technique
 The basic idea in hash coding is to determine

the address of the stored item as some simple
arithmetic function content

 Map onto a subspace of allocated addresses
using a hash function

 Assume the allocated address range from b to
n+b-1, the hashing function may take
h=(a mod n)+b

 In order to create a good pseudorandom
number, n ought to be prime

 Two different keywords may have equal
hash addresses

 Partition the memory into buckets, and to
address each bucket
 One address is mapped into one bucket

 When scanning each transaction in the
database to generate frequent 1-itemsets,
we can generate all the 2-itemsets for
each transaction and hash them into
different buckets of the hash table

 We use h=a mod n, a address, n < the
size of C2

 A 2-itemset whose bucket count in the hash table is below the
support threshold cannot be frequent, and should be removed
from the candidate set

Transaction reduction

 A transaction which does not contain
frequent k-itemsets should be removed
from the database for further scans

Partitioning
 First scan:

• Subdivide the transactions of database D into n non
overlapping partitions

• If the minimum support in D is min_sup, then the minimum
support for a partition is min_sup * number of transactions in
that partition

• Local frequent items are determined
• A local frequent item my not by a frequent item in D

 Second scan:
• Frequent items are determined from the local frequent items

Sampling
 Pick a random sample S of D
 Search for local frequent items in S

 Use a lower support threshold
 Determine frequent items from the local frequent

items
 Frequent items of D may be missed

 For completeness a second scan is done

Is Apriori fast enough?

 Basics of Apriori algorithm

 Use frequent (k-1)-itemsets to generate k-
itemsets candidates

 Scan the databases to determine frequent k-
itemsets

 It is costly to handle a huge number of
candidate sets

 If there are 104 frequent 1-itemsts, the
Apriori algorithm will need to generate
more than 107 2-itemsets and test their
frequencies

 To discover a 100-itemset

 2100-1 candidates have to be generated

2100-1=1.27*1030

(Do you know how big this number is?)
....

• 7* 1027 number of atoms of a person
• 6 *1049 number of atoms of the earth
• 1078 number of the atom of the universe

Bottleneck of Apriori
 Mining long patterns needs many passes of

scanning and generates lots of candidates
 Bottleneck: candidate-generation-and-test

 Can we avoid candidate generation?
 May some new data structure help?

Go back to slides unit-II-part-2.1

