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Classification and prediction are two forms of data analysis 

that can be used to extract models describing important data

classes or to predict future data trends.
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• Classification:
– predicts categorical class labels
– classifies data (constructs a model) based on the training set and the 

values (class labels) in a classifying attribute and uses it in classifying 
new data

• Regression or Prediction   
– models continuous-valued functions, i.e., predicts unknown or missing 

values
–

• Typical Applications
– credit approval
– target marketing
– medical diagnosis
– treatment effectiveness analysis
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• Credit approval
– A bank wants to classify its customers based on whether they are 

expected to pay back their approved loans

– The history of past customers is used to train the classifier

– The classifier provides rules, which identify potentially reliable future 
customers

– Classification rule:
• If age = “31...40” and income = high then credit_rating = excellent

– Future customers
• Paul: age = 35, income = high  excellent credit rating
• John: age = 20, income = medium  fair credit rating
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Classification—A Two-Step Process 

• Model construction: describing a set of predetermined classes
– Each tuple/sample is assumed to belong to a predefined class, as determined by the 

class label attribute

– The set of tuples used for model construction: training set

– The model is represented as classification rules, decision trees, or mathematical 
formulae

• Model usage: for classifying future or unknown objects
– Estimate accuracy of the model

• The known label of test samples is compared with the classified result from the model

• Accuracy rate is the percentage of test set samples that are correctly classified by the 
model

• Test set is independent of training set, otherwise over-fitting will occur
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Classification Process (1): Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’ 

Classification
rules
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Classification Process (2): Use the Model in Prediction

Classification
Rules

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Mellisa Associate Prof 7 no
KRRAO Professor 5 yes
Joseph Assistant Prof 7 yes

New Data

(KRRao, Professor, 4)

Tenured?

Accuracy=?
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Supervised vs. Unsupervised Learning

• Supervised learning (classification)

– Supervision: The training data (observations, measurements, etc.) are 

accompanied by labels indicating the class of the observations

– New data is classified based on the training set

• Unsupervised learning (clustering)

– The class labels of training data is unknown

– Given a set of measurements, observations, etc. with the aim of establishing 

the existence of classes or clusters in the data
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Issues regarding classification and prediction

• Data cleaning
– Preprocess data in order to reduce noise and handle missing values

• Relevance analysis (feature selection)
– Remove the irrelevant or redundant attributes

• Data transformation
– Generalize and/or normalize data

• numerical attribute income  categorical {low,medium,high}

• normalize all numerical attributes to [0,1)

Preparing the Data for Classification and Prediction 
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Comparing Classification and Prediction Methods

• Predictive accuracy
• Speed

– time to construct the model
– time to use the model

• Robustness
– handling noise and missing values

• Scalability
– efficiency in disk-resident databases 

• Interpretability: 
– understanding and insight provided by the model

• Goodness of rules (quality)
– decision tree size
– compactness of classification rules

Issues regarding classification and prediction
Classification and Prediction



• Decision tree 

– A flow-chart-like tree structure

– Internal node denotes a test on an attribute

– Branch represents an outcome of the test

– Leaf nodes represent class labels or class distribution

• Decision tree generation consists of two phases

– Tree construction

• At start, all the training examples are at the root

• Partition examples recursively based on selected attributes

– Tree pruning

• Identify and remove branches that reflect noise or outliers

• Use of decision tree: Classifying an unknown sample

– Test the attribute values of the sample against the decision tree

Classification by Decision Tree Induction
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Training Dataset
age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

An example from Ross Quinlan’s ID3
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Algorithm for Decision Tree Induction

• Basic algorithm (a greedy algorithm)
– Tree is constructed in a top-down recursive divide-and-conquer manner
– At start, all the training examples are at the root
– Attributes are categorical (if continuous-valued, they are discretized in advance)
– Samples are partitioned recursively based on selected attributes
– Test attributes are selected on the basis of a heuristic or statistical measure (e.g., 

information gain)

• Conditions for stopping partitioning
– All samples for a given node belong to the same class
– There are no remaining attributes for further partitioning – majority voting is employed 

for classifying the leaf
– There are no samples left

Classification by Decision Tree Induction
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Algorithm GenDecTree(Sample S, Attlist A)

Input: Data partition S- which is set of training tuples with class labels
attribute_list- set of candidate attributes
attribute_selection_method-a procedure to determine splitting criterion that “best”  
partition the data tuples into individual classes..

1. create a node N
2. If all samples are of the same class C then label N with C; terminate;
3. If A is empty then label N with the most common class C in S (majority voting); 

terminate;
4. Select aA, with the highest information gain; Label N with a;
5. For each value v of a:

a. Grow a branch from N with condition a=v;
b. Let Sv be the subset of samples in S with a=v;
c. If Sv is empty then attach a leaf labeled with the most common class in S;
d. Else attach the node generated by GenDecTree(Sv, A-a)

Decision Tree Induction

Classification by Decision Tree Induction
Classification and Prediction



Attribute Selection Measures

• Information gain (ID3/C4.5)
– All attributes are assumed to be categorical

– Can be modified for continuous-valued attributes

• Gini index (IBM IntelligentMiner)
– All attributes are assumed continuous-valued

– Assume there exist several possible split values for each attribute

– May need other tools, such as clustering, to get the possible split values

– Can be modified for categorical attributes
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Information Gain (ID3/C4.5)

• Select the attribute with the highest information gain

• Assume there are two classes, P and N

– Let the set of examples S contain p elements of class P and n elements of class 

N

– The amount of information, needed to decide if an arbitrary example in S

belongs to P or N is defined as
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Information Gain in Decision Tree Induction

• Assume that using attribute A a set S will be partitioned into sets {S1, 
S2 , …, Sv}  

– If Si contains pi examples of P and ni examples of N, the entropy, or the 
expected information needed to classify objects in all subtrees Si is

• The encoding information that would be gained by branching on A
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Training Dataset
age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

an  example from Quinlan’s ID3

Attribute Selection Measures
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Attribute Selection by Information Gain Computation

 Class P: buys_computer = “yes”

 Class N: buys_computer = “no”

 I(p, n) = I(9, 5) =0.940

 Compute the entropy for age:
Hence

Similarly

age pi ni I(pi, ni)
<=30 2 3 0.971
30…40 4 0 0
>40 3 2 0.971
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 means “age <=30” has 5 
out of 14 samples, with 2 yes’s  
and 3 no’s.

 I(2,3) = -2/5 * log(2/5) – 3/5 * 
log(3/5) 
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Splitting the samples using age

income student credit_rating buys_computer
high no fair no
high no excellent no
medium no fair no
low yes fair yes
medium yes excellent yes

income student credit_rating buys_computer
high no fair yes
low yes excellent yes
medium no excellent yes
high yes fair yes

income student credit_rating buys_computer
medium no fair yes
low yes fair yes
low yes excellent no
medium yes fair yes
medium no excellent no

age?
<=30

30...40

>40

labeled yes

Attribute Selection Measures
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Output:A Decision Tree for “buys_computer”
age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40
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Represent the knowledge in the form of IF-THEN rules

One rule is created for each path from the root to a leaf

Each attribute-value pair along a path forms a conjunction

The leaf node holds the class prediction
Rules are easier for humans to understand
Example

IF age = “<=30” AND student = “no”   THEN buys_computer = “no”
IF age = “<=30” AND student = “yes”  THEN buys_computer = “yes”
IF age = “31…40” THEN buys_computer = “yes”
IF age = “>40”   AND credit_rating = “excellent”   THEN buys_computer = 
“yes”
IF age = “>40” AND credit_rating = “fair”  THEN buys_computer = “no”

Extracting Classification Rules from Trees



23

Gain Ratio
• Information gain measure is biased towards attributes with a large number 

of values

• C4.5 (a successor of ID3) uses gain ratio to overcome the problem  of bias  
od ID3 (it applies normalization to information gain)

-This value represents  the potential information generated by splitting the 
training data set, D, into V partitions, corresponding to v outcomes of 
test on attribute A.

-GainRatio(A) = Gain(A)/SplitInfo(A)
• Ex.-gain_ratio(income) = 0.029/0.926= 0.0231

• The attribute with the maximum gain ratio is selected as the splitting attribute
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Gini Index (IBM IntelligentMiner)

Attribute Selection Measures

• Gini index considers a binary split  for each attribute .

• To determine best binary split on A, we examine all of possible subsets that  can be found 
using known values of A.

•If A has v possible values, the there are 2v possible subsets.  

Example: if income has three possible values namely {low,medium,high} possible subsets : 
{low,medium,high},{low,medium},{low,high},{medium,high},{low},{medium}, {high}, and {}.

We exclude power set , {low,medium,high}, empty set because they do not represent a split. 
Therefore 2v -2 possible ways to form two partition of data, T,based on binbary split  on A.

-When considering a binary split we comput weighted sum of impurity of each resulting 
partition . If binary split on A partitions T into T1 and T2  the giniindex of T is given in next slide.



Gini Index (IBM IntelligentMiner)

• Giniindex measures impurity of D, a data partition  or set  of training 
samples as

• If a data set T contains examples from n classes, gini index, gini(T) is defined 
as where pj is the relative frequency of class j in T.

• If a data set T is split into two subsets T1 and T2 with sizes N1 and N2
respectively, the gini index of the split data contains examples from n
classes, the gini index gini(T) is defined as

• The attribute which provides the smallest ginisplit(T) is chosen to split the 
node (we need to enumerate all possible splitting points for each attribute).
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• Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no”

• Suppose the attribute income partitions D into 10 in D1: {low, medium} and 4 in D2

but gini{medium,high} is 0.30 and thus the best since it is the lowest

• All attributes are assumed continuous-valued

• May need other tools, e.g., clustering, to get the possible split values

• Can be modified for categorical attributes
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Gini Index Example problem
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Comparing Attribute Selection Measures
• The three measures, in general, return good results but

– Information gain: 

• biased towards multivalued attributes

– Gain ratio: 

• tends to prefer unbalanced splits in which one partition is much smaller 
than the others

– Gini index: 

• biased to multivalued attributes

• has difficulty when # of classes is large

• tends to favor tests that result in equal-sized partitions and purity in 
both partitions

Attribute Selection Measures
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Other Attribute Selection Measures
• CHAID: a popular decision tree algorithm, measure based on χ2 test for independence

• C-SEP: performs better than info. gain and gini index in certain cases

• G-statistics: has a close approximation to χ2 distribution 

• MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred): 

– The best tree as the one that requires the fewest # of bits to both (1) encode the tree, 

and (2) encode the exceptions to the tree

• Multivariate splits (partition based on multiple variable combinations)

– CART: finds multivariate splits based on a linear comb. of attrs.

• Which attribute selection measure is the best?

– Most give good results, none is significantly superior than others

Attribute Selection Measures
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Two approaches to avoid Overfitting 
• Prepruning: 

– Halt tree construction early—do not split a node if this would result in the 
goodness measure falling below a threshold

– Difficult to choose an appropriate threshold

Postpruning: 

– Remove branches from a “fully grown” tree—get a sequence of progressively 
pruned trees

– Use a set of data different from the training data to decide which is the 
“best pruned tree”

Classification and Prediction
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Tree Pruning
Overfitting:  An induced tree may overfit the training data 

Too many branches, some may reflect anomalies due to noise or outliers
Poor accuracy for unseen samples



Scalability and Decision Tree Induction

• ID3, C4.5, and CART are not efficient when the training set doesn’t fit the 
available memory. Instead the following algorithms are used

– SLIQ
• Builds an index for each attribute and only class list and the current 

attribute list reside in memory
– SPRINT

• Constructs an attribute list data structure 
– RainForest 

• Builds an AVC-list (attribute, value, class label)
– BOAT

• Uses bootstrapping to create several small samples
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