Unit-5 **NP hard and NP Complete problems**

The Cook-Levin theorem

K. RAGHAVA RAO Professor in CSE KL University krraocse@gmail.com http://mcadaa.blog.com

1

Introduction SAT

- Instance: A Boolean formula.
- Problem: To decide if the formula is satisfiable.

A satisfiable Boolean formula:

$$
((F \vee T \vee \neg T_i) \wedge \neg F) \vee \neg (T_i \wedge T)
$$

An unsatisfiable Boolean formula: $\mathsf{x}_1 \wedge \neg \mathsf{x}_1$

To Which Time Complexity Class Does SAT Clearly Belong?

SAT is in NP: Non-Deterministic Algorithm

- Guess an assignment to the variables.
- Check the assignment.

The Cook-Levin Theorem: SAT is NP-Complete

Proof Idea:

For any NP machine M and any input string w, we construct a Boolean formula $\varphi_{M,w}$ which is satisfiable iff M accepts w.

Representing a Computation by a Configurations Table

Tableau: Example

- TM:
	- Q={q⁰ ,qaccept,qreject}
	- $\sum = \{1\}$
	- $\Gamma = \{1, _\}$
	- δ(q₀,1)={(q₀,_,R)}
	- $\delta(q_0,_)$ ={(q_{accept},L)}

Q: what does this machine compute?

• tableau (input 11)

The Variables of the Formula

The Formula φ

Ensuring Unique Cell Content

$$
\varphi_{\text{cell}} = \bigwedge_{1 \leq i,j \leq n^{k}} \left[\left(\bigvee_{s \in C} X_{i,j,s} \right) \wedge \left(\bigwedge_{s \neq t \in C} (\overline{X_{i,j,s}} \vee \overline{X_{i,j,t}}) \right) \right]
$$
\n
$$
\xrightarrow{\text{The (i,j) cell}} \text{It shouldn't contain must contain different symbols.}
$$
\n
$$
\text{some symbol}
$$
\nNote: the length of this formula is polynomial in n.

Ensuring Initial Configuration Corresponds to Input

Observe: we can explicitly state the desired configuration in the first step. Assuming the input string is $w_1w_2...w_n$,

$$
\boxed{\textbf{p}_{start} = \textbf{X}_{1,1,\#} \wedge \textbf{X}_{1,2,q_0} \wedge \textbf{X}_{1,3,w_1} \wedge ... \wedge \textbf{X}_{1,n+3,__} \wedge ... \wedge \textbf{X}_{1,n^k-1,__} \wedge \textbf{X}_{1,n^k,\#}}
$$

Ensuring the Computation Accepts

The accepting state is visited during the computation.

$$
\boxed{\phi_{accept} = \bigvee_{1 \leq i, j \leq n^k} X_{i, j, q_{accept}}}
$$

Ensuring Every Transition is Legal

Which Windows are Legal in the Following Example?

• TM:

- Q={q₀,q_{accept},q_{reject}}
- $\Sigma = \{1\}$
- $\Gamma = \{1, \}$
- δ(q₀,1)={(q₀,_,R)}
- δ(q₀,_)={(q_{accept},L)}

Ensuring Every Transition is Legal

The Bottom Line

$$
\varphi_{M,w} = \varphi_{cell} \wedge \varphi_{start} \wedge \varphi_{move} \wedge \varphi_{accept}
$$

φ , which is of size polynomial in n - Check! - is satisfiable iff the TM accepts the input string.

Conclusion: SAT is NP-Complete

For any language A in NP,

Revisiting the Map

Looking Forward

From now on, in order to show some NP problem is NP-Complete, we merely need to reduce SAT to it.

and Beyond!

Moreover, every NP-Complete problem we discover, provides us with a new way for showing problems to be NP-Complete.

Summary

- We've proved SAT is NP-Complete.
- We've also described a general method for showing other problems are NP-Complete too.