Unit-5 NP hard and NP Complete problems

The Cook-Levin theorem

K. RAGHAVA RAO Professor in CSE KL University <u>krraocse@gmail.com</u> http://mcadaa.blog.com

1

Introduction SAT

- Instance: A Boolean formula.
- <u>Problem</u>: To decide if the formula is satisfiable.

A satisfiable Boolean formula:

$$((\mathbf{F} \vee \mathbf{T} \vee \neg \mathbf{T}) \land \neg \mathbf{F}) \vee \neg (\mathbf{T} \land \mathbf{T})$$

An unsatisfiable Boolean formula: $X_1 \land \neg X_1$

To Which Time Complexity Class Does SAT Clearly Belong?

SAT is in NP: Non-Deterministic Algorithm

- Guess an assignment to the variables.
- Check the assignment.

The Cook-Levin Theorem: SAT is NP-Complete

Proof Idea:

For any NP machine M and any input string w, we construct a Boolean formula $\phi_{\text{M},\text{w}}$ which is satisfiable iff M accepts w.

Representing a Computation by a Configurations Table

Tableau: Example

- <u>TM</u>:
 - Q={q₀,q_{accept},q_{reject}}
 - **-** Σ**={1**}
 - Γ={1,__}
 - $\delta(q_0, 1) = \{(q_0, R)\}$
 - δ(q₀,_)={(q_{accept},L)}

Q: what does this
machine compute?

• tableau (input 11)

#	90	1	1	_	#
#	_	qo	1	_	#
#	_	_	qo	_	#
#	_	gace	_	_	#

The Variables of the Formula

The Formula ϕ

Ensuring Unique Cell Content

$$\Phi_{cell} = \bigwedge_{1 \le i,j \le n^{k}} \left[\left(\bigvee_{s \in C} X_{i,j,s} \right) \land \left(\bigwedge_{s \neq t \in C} (\overline{X_{i,j,s}} \lor \overline{X_{i,j,t}}) \right) \right]$$
The (i,j) cell must contain different symbols.
Some symbol different symbols.
Note: the length of this formula is polynomial in

n.

Ensuring Initial Configuration Corresponds to Input

<u>Observe</u>: we can explicitly state the desired configuration in the first step. Assuming the input string is w₁w₂...w_n,

$$\boldsymbol{\phi}_{\texttt{start}} = \boldsymbol{X}_{1,1,\#} \land \boldsymbol{X}_{1,2,q_0} \land \boldsymbol{X}_{1,3,w_1} \land ... \land \boldsymbol{X}_{1,n+3,_} \land ... \land \boldsymbol{X}_{1,n^k-1,_} \land \boldsymbol{X}_{1,n^k,\#}$$

Ensuring the Computation Accepts

The accepting state is visited during the computation.

$$\boldsymbol{\phi}_{accept} = \bigvee_{1 \leq i, j \leq n^k} \mathbf{X}_{i, j, q_{accept}}$$

Ensuring Every Transition is Legal

Which Windows are Legal in the Following Example?

• TM:

- $Q = \{q_0, q_{accept}, q_{reject}\}$
- $\Sigma = \{1\}$
- Γ={1,_}
- $\delta(q_0, 1) = \{(q_0, R)\}$
- $\delta(q_0,)=\{(q_{accept}, L)\}$

1	q _o	1	_	qo	1
9 _{ecc}	_	—	_	_	q _o
1	q₀	1	#	q _D	1
1	_	q _D	#	_	q _D
1	q _o	1	1	q _p	_
1	1	$q_{\rm D}$	gaa		_

Ensuring Every Transition is Legal

The Bottom Line

$$\varphi_{M,w} = \phi_{cell} \wedge \phi_{start} \wedge \phi_{move} \wedge \phi_{accept}$$

φ, which is of size polynomial in n - Check! - is satisfiable iff the TM accepts the input string.

Conclusion: SAT is NP-Complete

For any language A in NP,

Revisiting the Map

Looking Forward

From now on, in order to show some NP problem is NP-Complete, we merely need to reduce SAT to it.

and Beyond!

Moreover, every NP-Complete problem we discover, provides us with a new way for showing problems to be NP-Complete.

Summary

- We've proved SAT is NP-Complete.
- We've also described a general method for showing other problems are NP-Complete too.