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Characteristics of Data Streams

 Data Streams
 Data streams—continuous, ordered, changing, fast, huge amount

 Traditional DBMS—data stored in finite, persistent data setsdata sets

 Characteristics
 Huge volumes of continuous data, possibly infinite

 Fast changing and requires fast, real-time response

 Data stream captures nicely our data processing needs of today

 Random access is expensive—single scan algorithm (can only have 
one look)

 Store only the summary of the data seen thus far

 Most stream data are at pretty low-level or multi-dimensional in 
nature, needs multi-level and multi-dimensional processing
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Stream Data Applications

 Telecommunication calling records

 Business: credit card transaction flows

 Network monitoring and traffic engineering

 Financial market: stock exchange

 Engineering & industrial processes: power supply & 
manufacturing

 Sensor, monitoring & surveillance: video streams, RFIDs

 Security monitoring

 Web logs and Web page click streams

 Massive data sets (even saved but random access is too 
expensive)
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Methodologies for Stream Data Processing

 Major challenges
 Keep track of a large universe, e.g., pairs of IP address, not ages

 Methodology
 Synopses (trade-off between accuracy and storage)
 Use synopsis data structure, much smaller (O(logk N) space) than 

their base data set (O(N) space)
 Compute an approximate answer within a small error range

(factor ε of the actual answer)
 Major methods 

 Random sampling
 Histograms
 Sliding windows
 Multi-resolution model
 Sketches
 Radomized algorithms



5

Stream Data Processing Methods

 Random sampling (but without knowing the total length in advance)

 Reservoir sampling: maintain a set of s candidates in the reservoir, 
which form a true random sample of the element seen so far in the 
stream.  As the data stream flow, every new element has a certain 
probability (s/N) of replacing an old element in the reservoir.

 Sliding windows

 Make decisions based only on recent data of sliding window size w

 An element arriving at time t expires at time t + w

 Histograms

 Approximate the frequency distribution of element values in a stream

 Partition data into a set of contiguous buckets

 Equal-width (equal value range for buckets) vs. V-optimal (minimizing 
frequency variance within each bucket)

 Multi-resolution models

 Popular models: balanced binary trees, micro-clusters, and wavelets
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Stream Data Mining vs. Stream Querying

 Stream mining—A more challenging task in many cases
 It shares most of the difficulties with stream querying

 But often requires less “precision”, e.g., no join, 
grouping, sorting

 Patterns are hidden and more general than querying
 It may require exploratory analysis

 Not necessarily continuous queries
 Stream data mining tasks

 Multi-dimensional on-line analysis of streams
 Mining outliers and unusual patterns in stream data
 Clustering data streams 
 Classification of stream data
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Challenges for Mining Dynamics in Data 
Streams

 Most stream data are at pretty low-level or multi-

dimensional in nature: needs ML/MD processing

 Analysis requirements

 Multi-dimensional trends and unusual patterns

 Capturing important changes at multi-dimensions/levels 

 Fast, real-time detection and response

 Comparing with data cube: Similarity and differences

 Stream (data) cube or stream OLAP: Is this feasible?

 Can we implement it efficiently?
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Multi-Dimensional Stream Analysis: 
Examples

 Analysis of Web click streams
 Raw data at low levels: seconds, web page addresses, user IP 

addresses, …

 Analysts want: changes, trends, unusual patterns, at reasonable 
levels of details

 E.g., Average clicking traffic in North America on sports in the last 
15 minutes is 40% higher than that in the last 24 hours.”

 Analysis of power consumption streams
 Raw data: power consumption flow for every household, every 

minute 

 Patterns one may find: average hourly power consumption surges 
up 30% for manufacturing companies in Chicago in the last 2 
hours today than that of the same day a week ago



9

A Stream Cube Architecture

 A tilted time frame
 Different time granularities

 second, minute, quarter, hour, day, week, …

 Critical layers
 Minimum interest layer (m-layer)

 Observation layer (o-layer)

 User: watches at o-layer and occasionally needs to drill-down down 
to m-layer

 Partial materialization of stream cubes
 Full materialization: too space and time consuming

 No materialization:  slow response at query time

 Partial materialization: what do we mean “partial”?
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A Titled Time Model

 Natural tilted time frame:
 Example: Minimal: quarter, then 4 quarters  1 hour, 24 hours 

day, …

 Logarithmic tilted time frame:
 Example: Minimal: 1 minute, then 1, 2, 4, 8, 16, 32, …

Time
t8t 4t 2t t16t32t64t

4 qtrs24 hours31 days12 months
time
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A Titled Time Model (2)

 Pyramidal tilted time frame:
 Example: Suppose there are 5 frames and each takes 

maximal 3 snapshots
 Given a snapshot number N, if N mod 2d = 0, insert 

into the frame number d.  If there are more than 3 
snapshots, “kick out” the oldest one. 

Frame no. Snapshots (by clock time)

0 69 67 65

1 70 66 62

2 68 60 52

3 56 40 24

4 48 16

5 64 32
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Two Critical Layers in the Stream Cube

(*, theme, quarter)

(user-group, URL-group, minute)

m-layer (minimal interest)

(individual-user, URL, second)
(primitive) stream data layer

o-layer (observation)

Fig. Two critical layers in “power supply station” stream data cube.
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On-Line Partial Materialization vs. 
OLAP Processing

 On-line materialization 

 Materialization takes precious space and time

 Only incremental materialization (with tilted time frame) 

 Only materialize “cuboids” of the critical layers?

 Online computation may take too much time

 Preferred solution:

 popular-path approach: Materializing those along the popular 
drilling paths

 H-tree structure:  Such cuboids can be computed and stored 
efficiently using the H-tree structure

 Online aggregation vs. query-based computation

 Online computing while streaming: aggregating stream cubes

 Query-based computation: using computed cuboids
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Frequent Patterns for Stream Data

 Frequent pattern mining is valuable in stream applications

 e.g., network intrusion mining (Dokas, et al’02)

 Mining precise freq. patterns in stream data: unrealistic

 Even store them in a compressed form, such as FPtree

 How to mine frequent patterns with good approximation?

 Approximate frequent patterns (Manku & Motwani VLDB’02)

 Keep only current frequent patterns?  No changes can be detected

 Mining evolution freq. patterns (C. Giannella, J. Han, X. Yan, P.S. Yu, 2003)

 Use tilted time window frame 

 Mining evolution and dramatic changes of frequent patterns

 Space-saving computation of frequent and top-k elements (Metwally, Agrawal, 

and El Abbadi, ICDT'05)
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Mining Approximate Frequent Patterns

 Mining precise freq. patterns in stream data: unrealistic

 Even store them in a compressed form, such as FPtree

 Approximate answers are often sufficient (e.g., trend/pattern analysis)

 Example: a router is interested in all flows:

 whose frequency is at least 1% (σ) of the entire traffic stream 
seen so far 

 and feels that 1/10 of σ (ε = 0.1%) error is comfortable 

 How to mine frequent patterns with good approximation?

 Lossy Counting Algorithm (Manku & Motwani, VLDB’02)

 Major ideas: not tracing items until it becomes frequent

 Adv: guaranteed error bound

 Disadv: keep a large set of traces
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Lossy Counting for Frequent Items

Bucket 1 Bucket 2 Bucket 3

Divide Stream into ‘Buckets’ (bucket size is 1/ ε = 1000) 
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First Bucket of Stream

Empty
(summary) +

At bucket boundary, decrease all counters by 1
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Next Bucket of Stream

+

At bucket boundary, decrease all counters by 1



19

Approximation Guarantee

 Given: (1) support threshold: σ, (2) error threshold: ε, and 
(3) stream length N 

 Output: items with frequency counts exceeding (σ – ε) N

 How much do we undercount?

If             stream length seen so far        = N               

and                bucket-size                      = 1/ε

then       frequency count error  #buckets  = εN

 Approximation guarantee

 No false negatives

 False positives have true frequency count at least (σ–ε)N

 Frequency count underestimated by at most εN
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Lossy Counting For Frequent Itemsets

Divide Stream into ‘Buckets’ as for frequent items
But fill as many buckets as possible in main memory one time

Bucket 1 Bucket 2 Bucket 3

If we put 3 buckets of data into main memory one time,
Then decrease each frequency count by 3
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Update of Summary Data Structure

2

2

1

2

1
1

1

summary data 3 bucket data
in memory

4

4

10

2
2

0

+

3

3

9

summary data

Itemset (    ) is deleted.
That’s why we choose a large number of buckets 
– delete more



22

Pruning Itemsets – Apriori Rule

If we find itemset (      ) is not frequent itemset,
Then we needn’t consider its superset

3 bucket data
in memory

1

+

summary data

2
2

1

1
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Summary of Lossy Counting

 Strength
 A simple idea
 Can be extended to frequent itemsets

 Weakness:
 Space Bound is not good
 For frequent itemsets, they do scan each record many 

times
 The output is based on all previous data. But 

sometimes, we are only interested in recent data
 A space-saving method for stream frequent item mining

 Metwally, Agrawal and El Abbadi, ICDT'05
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Classification for Dynamic Data Streams

 Decision tree induction for stream data classification

 VFDT (Very Fast Decision Tree)/CVFDT  (Domingos, Hulten, 
Spencer, KDD00/KDD01)

 Is decision-tree good for modeling fast changing data, e.g., stock 
market analysis?

 Other stream classification methods

 Instead of decision-trees, consider other models 

 Naïve Bayesian

 Ensemble (Wang, Fan, Yu, Han. KDD’03)

 K-nearest neighbors (Aggarwal, Han, Wang, Yu. KDD’04)

 Tilted time framework, incremental updating, dynamic 
maintenance, and model construction

 Comparing of models to find changes
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Hoeffding Tree

 With high probability, classifies tuples the same
 Only uses small sample

 Based on Hoeffding Bound principle
 Hoeffding Bound (Additive Chernoff Bound)

r: random variable
R: range of r
n: # independent observations
Mean of r is at least ravg – ε, with probability 1 – d

n
R

2
)/1ln(2  
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Hoeffding Tree Algorithm

 Hoeffding Tree Input
S: sequence of examples
X: attributes
G( ): evaluation function
d: desired accuracy

 Hoeffding Tree Algorithm
for each example in S

retrieve G(Xa) and G(Xb)   //two highest G(Xi)
if ( G(Xa) – G(Xb) > ε )

split on Xa

recurse to next node
break
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Hoeffding Tree: Strengths and Weaknesses

 Strengths 
 Scales better than traditional methods

 Sublinear with sampling
 Very small memory utilization

 Incremental
 Make class predictions in parallel
 New examples are added as they come

 Weakness
 Could spend a lot of time with ties
 Memory used with tree expansion
 Number of candidate attributes
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VFDT (Very Fast Decision Tree)

 Modifications to Hoeffding Tree
 Near-ties broken more aggressively
 G computed every nmin

 Deactivates certain leaves to save memory
 Poor attributes dropped
 Initialize with traditional learner (helps learning curve)

 Compare to Hoeffding Tree: Better time and memory
 Compare to traditional decision tree

 Similar accuracy
 Better runtime with 1.61 million examples

 21 minutes for VFDT
 24 hours for C4.5

 Still does not handle concept drift
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CVFDT (Concept-adapting VFDT)

 Concept Drift 
 Time-changing data streams
 Incorporate new and eliminate old

 CVFDT
 Increments count with new example
 Decrement old example

 Sliding window
 Grows alternate subtrees
 When alternate more accurate => replace old
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Ensemble of Classifiers Algorithm

 H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-
Drifting Data Streams using Ensemble Classifiers”, 
KDD'03.

 Method (derived from the ensemble idea in classification)

 train K classifiers from K chunks

 for each subsequent chunk

train a new classifier

test other classifiers against the chunk

assign weight to each classifier

select top K classifiers
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Clustering Data Streams [GMMO01]

 Base on the k-median method
 Data stream points from metric space
 Find k clusters in the stream s.t. the sum of distances 

from data points to their closest center is minimized
 Constant factor approximation algorithm

 In small space, a simple two step algorithm:
1. For each set of M records, Si, find O(k) centers in  

S1, …, Sl
 Local clustering: Assign each point in Si to its 

closest center
2. Let S’ be centers for S1, …, Sl with each center 

weighted by number of points assigned to it
 Cluster S’ to find k centers
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Clustering for Mining Stream Dynamics

 Network intrusion detection: one example 

 Detect bursts of activities or abrupt changes in real time—by on-

line clustering 

 Our methodology (C. Agarwal, J. Han, J. Wang, P.S. Yu, VLDB’03)

 Tilted time frame work: o.w. dynamic changes cannot be found

 Micro-clustering: better quality than k-means/k-median 

 incremental, online processing and maintenance)

 Two stages: micro-clustering and macro-clustering

 With limited “overhead” to achieve high efficiency, scalability, 

quality of results and power of evolution/change detection
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CluStream: A Framework for Clustering 
Evolving Data Streams

 Design goal

 High quality for clustering evolving data streams with greater 
functionality

 While keep the stream mining requirement in mind

 One-pass over the original stream data

 Limited space usage and high efficiency

 CluStream: A framework for clustering evolving data streams

 Divide the clustering process into online and  offline components

 Online component: periodically stores summary statistics about 
the stream data

 Offline component: answers various user questions based on 
the stored summary statistics
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The CluStream Framework

......1 kXX ......1 kTT

 d
iii xxX ...1

 nCFCFCFCF ttxx ,1,2,1,2

 Micro-cluster

 Statistical information about data locality

 Temporal extension of the cluster-feature vector

 Multi-dimensional points             with time stamps 

 Each point contains d dimensions, i.e., 

 A micro-cluster for n points is defined as a (2.d + 3) 
tuple                                 

 Pyramidal time frame

 Decide at what moments the snapshots of the 
statistical information are stored away on disk
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CluStream: Clustering On-line Streams

 Online micro-cluster maintenance
 Initial creation of q micro-clusters 

 q is usually significantly larger than the number of natural 
clusters

 Online incremental update of micro-clusters

 If new point is within max-boundary, insert into the micro-
cluster

 O.w., create a new cluster

 May delete obsolete micro-cluster or merge two closest ones

 Query-based macro-clustering
 Based on a user-specified time-horizon h and the number of 

macro-clusters K, compute macroclusters using the k-means 
algorithm 
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