
…then click the placeholders to add your own pictures and captions.

Dr. K.RAGHAVA RAO

Professor of CSE

Dept. of MCA

KL University
krraocse@gmail.com

http://datamining.blog.com

Unit-V
Mining Data Streams

2

Characteristics of Data Streams

 Data Streams
 Data streams—continuous, ordered, changing, fast, huge amount

 Traditional DBMS—data stored in finite, persistent data setsdata sets

 Characteristics
 Huge volumes of continuous data, possibly infinite

 Fast changing and requires fast, real-time response

 Data stream captures nicely our data processing needs of today

 Random access is expensive—single scan algorithm (can only have
one look)

 Store only the summary of the data seen thus far

 Most stream data are at pretty low-level or multi-dimensional in
nature, needs multi-level and multi-dimensional processing

3

Stream Data Applications

 Telecommunication calling records

 Business: credit card transaction flows

 Network monitoring and traffic engineering

 Financial market: stock exchange

 Engineering & industrial processes: power supply &
manufacturing

 Sensor, monitoring & surveillance: video streams, RFIDs

 Security monitoring

 Web logs and Web page click streams

 Massive data sets (even saved but random access is too
expensive)

4

Methodologies for Stream Data Processing

 Major challenges
 Keep track of a large universe, e.g., pairs of IP address, not ages

 Methodology
 Synopses (trade-off between accuracy and storage)
 Use synopsis data structure, much smaller (O(logk N) space) than

their base data set (O(N) space)
 Compute an approximate answer within a small error range

(factor ε of the actual answer)
 Major methods

 Random sampling
 Histograms
 Sliding windows
 Multi-resolution model
 Sketches
 Radomized algorithms

5

Stream Data Processing Methods

 Random sampling (but without knowing the total length in advance)

 Reservoir sampling: maintain a set of s candidates in the reservoir,
which form a true random sample of the element seen so far in the
stream. As the data stream flow, every new element has a certain
probability (s/N) of replacing an old element in the reservoir.

 Sliding windows

 Make decisions based only on recent data of sliding window size w

 An element arriving at time t expires at time t + w

 Histograms

 Approximate the frequency distribution of element values in a stream

 Partition data into a set of contiguous buckets

 Equal-width (equal value range for buckets) vs. V-optimal (minimizing
frequency variance within each bucket)

 Multi-resolution models

 Popular models: balanced binary trees, micro-clusters, and wavelets

6

Stream Data Mining vs. Stream Querying

 Stream mining—A more challenging task in many cases
 It shares most of the difficulties with stream querying

 But often requires less “precision”, e.g., no join,
grouping, sorting

 Patterns are hidden and more general than querying
 It may require exploratory analysis

 Not necessarily continuous queries
 Stream data mining tasks

 Multi-dimensional on-line analysis of streams
 Mining outliers and unusual patterns in stream data
 Clustering data streams
 Classification of stream data

7

Challenges for Mining Dynamics in Data
Streams

 Most stream data are at pretty low-level or multi-

dimensional in nature: needs ML/MD processing

 Analysis requirements

 Multi-dimensional trends and unusual patterns

 Capturing important changes at multi-dimensions/levels

 Fast, real-time detection and response

 Comparing with data cube: Similarity and differences

 Stream (data) cube or stream OLAP: Is this feasible?

 Can we implement it efficiently?

8

Multi-Dimensional Stream Analysis:
Examples

 Analysis of Web click streams
 Raw data at low levels: seconds, web page addresses, user IP

addresses, …

 Analysts want: changes, trends, unusual patterns, at reasonable
levels of details

 E.g., Average clicking traffic in North America on sports in the last
15 minutes is 40% higher than that in the last 24 hours.”

 Analysis of power consumption streams
 Raw data: power consumption flow for every household, every

minute

 Patterns one may find: average hourly power consumption surges
up 30% for manufacturing companies in Chicago in the last 2
hours today than that of the same day a week ago

9

A Stream Cube Architecture

 A tilted time frame
 Different time granularities

 second, minute, quarter, hour, day, week, …

 Critical layers
 Minimum interest layer (m-layer)

 Observation layer (o-layer)

 User: watches at o-layer and occasionally needs to drill-down down
to m-layer

 Partial materialization of stream cubes
 Full materialization: too space and time consuming

 No materialization: slow response at query time

 Partial materialization: what do we mean “partial”?

10

A Titled Time Model

 Natural tilted time frame:
 Example: Minimal: quarter, then 4 quarters 1 hour, 24 hours

day, …

 Logarithmic tilted time frame:
 Example: Minimal: 1 minute, then 1, 2, 4, 8, 16, 32, …

Time
t8t 4t 2t t16t32t64t

4 qtrs24 hours31 days12 months
time

11

A Titled Time Model (2)

 Pyramidal tilted time frame:
 Example: Suppose there are 5 frames and each takes

maximal 3 snapshots
 Given a snapshot number N, if N mod 2d = 0, insert

into the frame number d. If there are more than 3
snapshots, “kick out” the oldest one.

Frame no. Snapshots (by clock time)

0 69 67 65

1 70 66 62

2 68 60 52

3 56 40 24

4 48 16

5 64 32

12

Two Critical Layers in the Stream Cube

(*, theme, quarter)

(user-group, URL-group, minute)

m-layer (minimal interest)

(individual-user, URL, second)
(primitive) stream data layer

o-layer (observation)

Fig. Two critical layers in “power supply station” stream data cube.

13

On-Line Partial Materialization vs.
OLAP Processing

 On-line materialization

 Materialization takes precious space and time

 Only incremental materialization (with tilted time frame)

 Only materialize “cuboids” of the critical layers?

 Online computation may take too much time

 Preferred solution:

 popular-path approach: Materializing those along the popular
drilling paths

 H-tree structure: Such cuboids can be computed and stored
efficiently using the H-tree structure

 Online aggregation vs. query-based computation

 Online computing while streaming: aggregating stream cubes

 Query-based computation: using computed cuboids

14

Frequent Patterns for Stream Data

 Frequent pattern mining is valuable in stream applications

 e.g., network intrusion mining (Dokas, et al’02)

 Mining precise freq. patterns in stream data: unrealistic

 Even store them in a compressed form, such as FPtree

 How to mine frequent patterns with good approximation?

 Approximate frequent patterns (Manku & Motwani VLDB’02)

 Keep only current frequent patterns? No changes can be detected

 Mining evolution freq. patterns (C. Giannella, J. Han, X. Yan, P.S. Yu, 2003)

 Use tilted time window frame

 Mining evolution and dramatic changes of frequent patterns

 Space-saving computation of frequent and top-k elements (Metwally, Agrawal,

and El Abbadi, ICDT'05)

15

Mining Approximate Frequent Patterns

 Mining precise freq. patterns in stream data: unrealistic

 Even store them in a compressed form, such as FPtree

 Approximate answers are often sufficient (e.g., trend/pattern analysis)

 Example: a router is interested in all flows:

 whose frequency is at least 1% (σ) of the entire traffic stream
seen so far

 and feels that 1/10 of σ (ε = 0.1%) error is comfortable

 How to mine frequent patterns with good approximation?

 Lossy Counting Algorithm (Manku & Motwani, VLDB’02)

 Major ideas: not tracing items until it becomes frequent

 Adv: guaranteed error bound

 Disadv: keep a large set of traces

16

Lossy Counting for Frequent Items

Bucket 1 Bucket 2 Bucket 3

Divide Stream into ‘Buckets’ (bucket size is 1/ ε = 1000)

17

First Bucket of Stream

Empty
(summary) +

At bucket boundary, decrease all counters by 1

18

Next Bucket of Stream

+

At bucket boundary, decrease all counters by 1

19

Approximation Guarantee

 Given: (1) support threshold: σ, (2) error threshold: ε, and
(3) stream length N

 Output: items with frequency counts exceeding (σ – ε) N

 How much do we undercount?

If stream length seen so far = N

and bucket-size = 1/ε

then frequency count error #buckets = εN

 Approximation guarantee

 No false negatives

 False positives have true frequency count at least (σ–ε)N

 Frequency count underestimated by at most εN

20

Lossy Counting For Frequent Itemsets

Divide Stream into ‘Buckets’ as for frequent items
But fill as many buckets as possible in main memory one time

Bucket 1 Bucket 2 Bucket 3

If we put 3 buckets of data into main memory one time,
Then decrease each frequency count by 3

21

Update of Summary Data Structure

2

2

1

2

1
1

1

summary data 3 bucket data
in memory

4

4

10

2
2

0

+

3

3

9

summary data

Itemset () is deleted.
That’s why we choose a large number of buckets
– delete more

22

Pruning Itemsets – Apriori Rule

If we find itemset () is not frequent itemset,
Then we needn’t consider its superset

3 bucket data
in memory

1

+

summary data

2
2

1

1

23

Summary of Lossy Counting

 Strength
 A simple idea
 Can be extended to frequent itemsets

 Weakness:
 Space Bound is not good
 For frequent itemsets, they do scan each record many

times
 The output is based on all previous data. But

sometimes, we are only interested in recent data
 A space-saving method for stream frequent item mining

 Metwally, Agrawal and El Abbadi, ICDT'05

24

Classification for Dynamic Data Streams

 Decision tree induction for stream data classification

 VFDT (Very Fast Decision Tree)/CVFDT (Domingos, Hulten,
Spencer, KDD00/KDD01)

 Is decision-tree good for modeling fast changing data, e.g., stock
market analysis?

 Other stream classification methods

 Instead of decision-trees, consider other models

 Naïve Bayesian

 Ensemble (Wang, Fan, Yu, Han. KDD’03)

 K-nearest neighbors (Aggarwal, Han, Wang, Yu. KDD’04)

 Tilted time framework, incremental updating, dynamic
maintenance, and model construction

 Comparing of models to find changes

25

Hoeffding Tree

 With high probability, classifies tuples the same
 Only uses small sample

 Based on Hoeffding Bound principle
 Hoeffding Bound (Additive Chernoff Bound)

r: random variable
R: range of r
n: # independent observations
Mean of r is at least ravg – ε, with probability 1 – d

n
R

2
)/1ln(2

26

Hoeffding Tree Algorithm

 Hoeffding Tree Input
S: sequence of examples
X: attributes
G(): evaluation function
d: desired accuracy

 Hoeffding Tree Algorithm
for each example in S

retrieve G(Xa) and G(Xb) //two highest G(Xi)
if (G(Xa) – G(Xb) > ε)

split on Xa

recurse to next node
break

27

Hoeffding Tree: Strengths and Weaknesses

 Strengths
 Scales better than traditional methods

 Sublinear with sampling
 Very small memory utilization

 Incremental
 Make class predictions in parallel
 New examples are added as they come

 Weakness
 Could spend a lot of time with ties
 Memory used with tree expansion
 Number of candidate attributes

28

VFDT (Very Fast Decision Tree)

 Modifications to Hoeffding Tree
 Near-ties broken more aggressively
 G computed every nmin

 Deactivates certain leaves to save memory
 Poor attributes dropped
 Initialize with traditional learner (helps learning curve)

 Compare to Hoeffding Tree: Better time and memory
 Compare to traditional decision tree

 Similar accuracy
 Better runtime with 1.61 million examples

 21 minutes for VFDT
 24 hours for C4.5

 Still does not handle concept drift

29

CVFDT (Concept-adapting VFDT)

 Concept Drift
 Time-changing data streams
 Incorporate new and eliminate old

 CVFDT
 Increments count with new example
 Decrement old example

 Sliding window
 Grows alternate subtrees
 When alternate more accurate => replace old

30

Ensemble of Classifiers Algorithm

 H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-
Drifting Data Streams using Ensemble Classifiers”,
KDD'03.

 Method (derived from the ensemble idea in classification)

 train K classifiers from K chunks

 for each subsequent chunk

train a new classifier

test other classifiers against the chunk

assign weight to each classifier

select top K classifiers

31

Clustering Data Streams [GMMO01]

 Base on the k-median method
 Data stream points from metric space
 Find k clusters in the stream s.t. the sum of distances

from data points to their closest center is minimized
 Constant factor approximation algorithm

 In small space, a simple two step algorithm:
1. For each set of M records, Si, find O(k) centers in

S1, …, Sl
 Local clustering: Assign each point in Si to its

closest center
2. Let S’ be centers for S1, …, Sl with each center

weighted by number of points assigned to it
 Cluster S’ to find k centers

32

Clustering for Mining Stream Dynamics

 Network intrusion detection: one example

 Detect bursts of activities or abrupt changes in real time—by on-

line clustering

 Our methodology (C. Agarwal, J. Han, J. Wang, P.S. Yu, VLDB’03)

 Tilted time frame work: o.w. dynamic changes cannot be found

 Micro-clustering: better quality than k-means/k-median

 incremental, online processing and maintenance)

 Two stages: micro-clustering and macro-clustering

 With limited “overhead” to achieve high efficiency, scalability,

quality of results and power of evolution/change detection

33

CluStream: A Framework for Clustering
Evolving Data Streams

 Design goal

 High quality for clustering evolving data streams with greater
functionality

 While keep the stream mining requirement in mind

 One-pass over the original stream data

 Limited space usage and high efficiency

 CluStream: A framework for clustering evolving data streams

 Divide the clustering process into online and offline components

 Online component: periodically stores summary statistics about
the stream data

 Offline component: answers various user questions based on
the stored summary statistics

34

The CluStream Framework

......1 kXX1 kTT

 d
iii xxX ...1

 nCFCFCFCF ttxx ,1,2,1,2

 Micro-cluster

 Statistical information about data locality

 Temporal extension of the cluster-feature vector

 Multi-dimensional points with time stamps

 Each point contains d dimensions, i.e.,

 A micro-cluster for n points is defined as a (2.d + 3)
tuple

 Pyramidal time frame

 Decide at what moments the snapshots of the
statistical information are stored away on disk

35

CluStream: Clustering On-line Streams

 Online micro-cluster maintenance
 Initial creation of q micro-clusters

 q is usually significantly larger than the number of natural
clusters

 Online incremental update of micro-clusters

 If new point is within max-boundary, insert into the micro-
cluster

 O.w., create a new cluster

 May delete obsolete micro-cluster or merge two closest ones

 Query-based macro-clustering
 Based on a user-specified time-horizon h and the number of

macro-clusters K, compute macroclusters using the k-means
algorithm

October 31, 2011 Data Mining: Concepts and Techniques 36

End of unit-V part-1

