Unit-V Mining sequence patterns

Dr. K.RAGHAVA RAO
Professor of CSE Dept. of MCA
KL University
krraocse@gmail.com
http://datamining.blog.com

Sequence Databases \& Sequential Patterns

- Transaction databases, time-series databases vs. sequence databases
- Frequent patterns vs. (frequent) sequential patterns
- Applications of sequential pattern mining
- Customer shopping sequences:
- First buy computer, then CD-ROM, and then digital camera, within 3 months.
- Medical treatments, natural disasters (e.g., earthquakes), science \& eng. processes, stocks and markets, etc.
- Telephone calling patterns, Weblog click streams
- Program execution sequence data sets
- DNA sequences and gene structures

What Is Sequential Pattern Mining?

- Given a set of sequences, find the complete set of frequent subsequences

A sequence database

SID	sequence
10	$<\mathrm{a}(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e \mathrm{~g}(\mathrm{af}) \mathrm{cbc}>$

$$
\text { A sequence : <(ef) (ab) (df) cb }>
$$

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

$$
\begin{aligned}
& <a(\mathrm{bc}) \mathrm{dc}>\text { is a subsequence } \\
& \text { of }<\underline{a}(\mathrm{abc})(\mathrm{ac}) \underline{d}(\mathrm{cf})>
\end{aligned}
$$

Given support threshold min_sup $=2,<(a b) \mathrm{c}>$ is a sequential pattern

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
- find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
- be highly efficient, scalable, involving only a small number of database scans
- be able to incorporate various kinds of user-specific constraints

Sequential Pattern Mining Algorithms

- Concept introduction and an initial Apriori-like algorithm
- Agrawal \& Srikant. Mining sequential patterns, ICDE'95
- Apriori-based method: GSP (Generalized Sequential Patterns: Srikant \& Agrawal @ EDBT'96)
- Pattern-growth methods: FreeSpan \& PrefixSpan (Han et al.@KDD’00; Pei, et al.@ICDE’01)
- Vertical format-based mining: SPADE (Zaki@Machine Leanining'00)
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim@VLDB'99; Pei, Han, Wang @ CIKM'02)
- Mining closed sequential patterns: CloSpan (Yan, Han \& Afshar @SDM'03)

The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal \& Sirkant'94)
- If a sequence S is not frequent
- Then none of the super-sequences of S is frequent
- E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<(\mathrm{ah})(\mathrm{bf}) \mathrm{abf}>$
40	$<$ (be)(ce)d>
50	$<\mathrm{a}(\mathrm{bd}) \mathrm{bcb}(\mathrm{ade})>$

Given support threshold min_sup $=2$

GSP-Generalized Sequential Pattern Mining

- GSP (Generalized Sequential Pattern) mining algorithm
- proposed by Agrawal and Srikant, EDBT'96
- Outline of the method
- Initially, every item in DB is a candidate of length-1
- for each level (i.e., sequences of length-k) do
- scan database to collect support count for each candidate sequence
- generate candidate length- $(k+1)$ sequences from length-k frequent sequences using Apriori
- repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

Finding Length-1 Sequential Patterns

- Examine GSP using an example
- Initial candidates: all singleton sequences
- <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates
min_sup $=2$

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<(\mathrm{ah})(\mathrm{bf}) \mathrm{abf}>$
40	$<(\mathrm{be})(\mathrm{ce}) \mathrm{d}>$
50	$<\mathrm{a}(\mathrm{bd}) \mathrm{bcb}(\mathrm{ade})>$

Cand	Sup
$\langle\mathrm{a}\rangle$	3
$<\mathrm{b}\rangle$	5
$\langle\mathrm{c}\rangle$	4
$\langle\mathrm{~d}\rangle$	3
$<\mathrm{e}\rangle$	3
$<\mathrm{f}\rangle$	2
$\langle\mathrm{~g}\rangle$	1
$\langle\mathrm{~h}\rangle$	1

GSP: Generating Length-2 Candidates

51 length-2
 Candidates

	<a>		<c>	<d>	<e>	<f>
<a>	<aa>	<ab>	<ac>	<ad>	<ae>	<af>
	<ba>	<bb>	<bc>	<bd>	<be>	<bf>
<c>	<ca>	<cb>	<cc>	<cd>	<ce>	<cf>
<d>	<da>	<db>	<dc>	<dd>	<de>	<df>
<e>	<ea>	<eb>	<ec>	<ed>	<ee>	<ef>
<f>	<fa>	<fb>	<fc>	<fd>	<fe>	<ff>

	$<\mathrm{a}>$	$<\mathrm{b}>$	$<\mathrm{c}>$	$<\mathrm{d}>$	$<\mathrm{e}>$	$<\mathrm{f}>$
$<\mathrm{a}>$		$<(\mathrm{ab})>$	$<(\mathrm{ac})>$	$<(\mathrm{ad})>$	$<(\mathrm{ae})>$	$<(\mathrm{af})>$
$<\mathrm{b}>$			$<(\mathrm{bc})>$	$<(\mathrm{bd})>$	$<(\mathrm{be})>$	$<(\mathrm{bf})>$
$<\mathrm{c}>$				$<(\mathrm{cd})>$	$<(\mathrm{ce})>$	$<(\mathrm{cf})>$
<d>					$<(\mathrm{de})>$	$<(\mathrm{df})>$
<e>						$<(\mathrm{ef})>$
$<\mathrm{f}>$						

Without Apriori property,
 $8 * 8+8 * 7 / 2=92$
 candidates

Apriori prunes
44.57% candidates

The GSP Mining Process

$5^{\text {th }}$ scan: 1 cand. 1 length-5 seq. $<($ bd) cba> pat.
$4^{\text {th }}$ scan: 8 cand. 6 length -4 seq. pat.
$3^{\text {rd }}$ scan: 46 cand. 19 length- 3 seq. pat. 20 cand. not in DB at all $2^{\text {nd }}$ scan: 51 cand. 19 length- 2 seq. pat. 10 cand. not in DB at all $1^{\text {st }}$ scan: 8 cand. 6 length- 1 seq. pat.

Cand. cannot pass
sup. threshold

min_sup $=2$	Seq. ID	Sequence
	10	<(bd)cb(ac)>
	20	<(bf)(ce)b(fg)>
	30	<(ah)(bf)abf>
	40	<(be)(ce)d>
	50	<a(bd) bcb(ade)>

Candidate Generate-and-test: Drawbacks

- A huge set of candidate sequences generated
- Especially 2-item candidate sequence
- Multiple Scans of database needed
- The length of each candidate grows by one at each database scan
- Inefficient for mining long sequential patterns
- A long pattern grow up from short patterns
- The number of short patterns is exponential to the length of mined patterns

The SPADE Algorithm

- SPADE (Sequential PAttern Discovery using Equivalent Class) developed by Zaki 2001
- A vertical format sequential pattern mining method
- A sequence database is mapped to a large set of
- Item: <SID, EID> sequence id and eventid
- Sequential pattern mining is performed by
- growing the subsequences (patterns) one item at a time by Apriori candidate generation

The SPADE Algorithm

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	c
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	c
3	5	b
4	1	e
4	2	g
4	3	af
4	4	c
4	5	b
4	6	c

a		b		\cdots
SID	EID	SID	EID	\cdots
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

ab				ba				\cdots
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	\cdots		
1	1	2	1	2	3			
2	1	3	2	3	4			
3	2	5						
4	3	5						

aba				\cdots
SID	EID (a)	EID(b)	EID(a)	\cdots
1	1	2	3	
2	1	3	4	

Bottlenecks of GSP and SPADE

- A huge set of candidates could be generated
- 1,000 frequent length-1 sequences generate s huge number of length- 2 candidates! $1000 \times 1000+\frac{1000 \times 999}{2}=1,499,500$
- Multiple scans of database in mining
- Breadth-first search
- Mining long sequential patterns
- Needs an exponential number of short candidates
- A length-100 sequential pattern needs 10^{30} candidate sequences!

$$
\sum_{i=1}^{100}\binom{100}{i}=2^{100}-1 \approx 10^{30}
$$

Prefix and Suffix (Projection)

- <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of sequence <a(abc)(ac)d(cf)>
- Given sequence <a(abc)(ac)d(cf)>

Prefix	Suffix (Prefix-Based Projection)
$<\mathrm{a}>$	$<(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
$<\mathrm{aa}>$	$<\left(_\mathrm{bc}\right)(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
$<\mathrm{ab}>$	$<\left(_c\right)(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$

Mining Sequential Patterns by Prefix Projections

- Step 1: find length-1 sequential patterns
- <a>, , <c>, <d>, <e>, <f>
- Step 2: divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
- The ones having prefix <a>;
- The ones having prefix ;
- The ones having prefix <f>

SID	sequence
10	$<a(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
- <a>-projected database:
- <(abc)(ac)d(cf)>
- <(_d)c(bc)(ae)>
- <(_b)(df)cb>
- <(_f)cbc>

SID	sequence
10	$<a(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

- Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
- Further partition into 6 subsets
- Having prefix <aa>;
- ...
- Having prefix <af>

Completeness of PrefixSpan

SDB

SID	sequence
10	$<a(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Length-1 sequential patterns $<a>,,<c>,<d>,<e>,<f>$

Having prefix <a>
Having prefix <c>, .., <f>

Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: Constructing projected databases
- Can be improved by pseudo-projections

Speed-up by Pseudo-projection

- Major cost of PrefixSpan: projection
- Postfixes of sequences often appear repeatedly in recursive projected databases
- When (projected) database can be held in main memory, use pointers to form projections
- Pointer to the sequence
- Offset of the postfix

Pseudo-Projection vs. Physical Projection

- Pseudo-projection avoids physically copying postfixes
- Efficient in running time and space when database can be held in main memory
- However, it is not efficient when database cannot fit in main memory
- Disk-based random accessing is very costly
- Suggested Approach:
- Integration of physical and pseudo-projection
- Swapping to pseudo-projection when the data set fits in memory

CloSpan: Mining Closed Sequential Patterns

- A closed sequential pattern s: there exists no superpattern s' such that s' \supset s , and s^{\prime} and s have the same support
- Which one is closed? <abc>: 20, <abcd>:20, <abcde>: 15
- Why mine close seq. patterns?
- Reduces the number of (redundant)
 patterns but attains the same expressive power
- Property: If s’ $\mathrm{\jmath}$ s, closed iff two project DBs have the same size
- Using Backward Subpattern and Backward Superpattern pruning to prune redundant search space

Constraint-Based Seq.-Pattern Mining

- Constraint-based sequential pattern mining
- Constraints: User-specified, for focused mining of desired patterns
- How to explore efficient mining with constraints? Optimization
- Classification of constraints
- Anti-monotone: E.g., value_sum(S) < 150, $\min (S)>10$
- Monotone: E.g., count (S) >5, S \supseteq \{PC, digital_camera \}
- Succinct: E.g., length(S) $\geq 10, \mathrm{~S} \in\{$ Pentium, MS/Office, MS/Money \}
- Convertible: E.g., value_avg(S) < 25, profit_sum (S) > 160, max(S)/avg(S) < 2, median(S) - $\min (\overline{\mathrm{S}})>5$
- Inconvertible: E.g., $\operatorname{avg}(S)$ - median(S) $=0$

