Unit-V

Mining Spatial, Multimedia, Text, and Web Data

Dr. K.RAGHAVA RAO Professor of CSE Dept. of MCA KL University <u>krraocse@gmail.com</u> http://datamining.blog.com

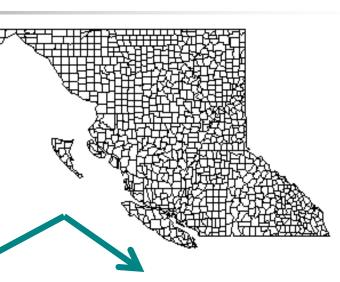
Mining Object, Spatial, Multimedia, Text, and Web Data

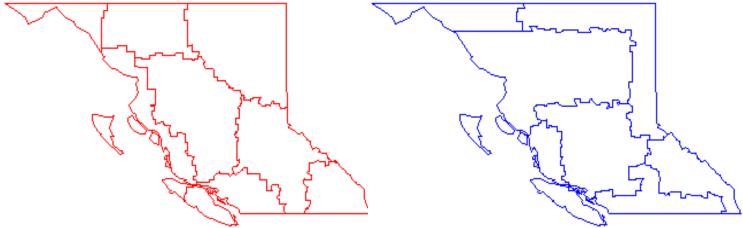
Data Mining

Mining Complex Types of Data

- Mining spatial data
- Mining image data
- Mining text data
- Mining the Web

Mining Spatial Databases


- Spatial database
 - Space related data: maps, VLSI layouts, ...
 - Topological, distance information organized by spatial indexing structures
- Spatial data warehousing
 - Issue: different representations & structures
 - Dimensions
 - Nonspatial: 25-30 degree \rightarrow hot
 - Spatial-to-nonspatial: "New York" → "western provinces"
 - Spatial-to-spatial: equi. temp region \rightarrow 0-5 degree region
 - Measures
 - numerical
 - Spatial: collection of spatial pointers (0-5 degree region)


Example: BC Weather Pattern Analysis

- Input
 - A map with about 3,000 weather probes scattered in B.C.
 - Daily data for temperature, wind velocity, etc.
 - Concept hierarchies for all attributes
- Output
 - A map that reveals patterns: merged (similar) regions
- Goals
 - Interactive analysis (drill-down, slice, dice, pivot, roll-up)
 - Fast response time, Minimizing storage space used
- Challenge
 - A merged region may contain hundreds of "primitive" regions (polygons)

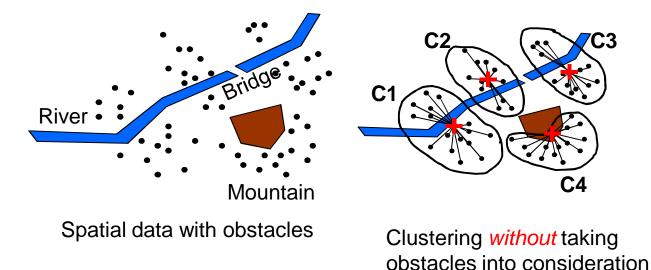
Spatial Merge

- Precomputing: too much storage space
- On-line merge: very expensive

Spatial Association Analysis

- Spatial association rule: $A \Rightarrow B[s\%, c\%]$
 - A and B are sets of spatial or nonspatial predicates
 - Topological relations: *intersects, overlaps, disjoint,* etc.
 - Spatial orientations: *left_of, west_of, under, etc.*
 - Distance information: *close_to, within_distance,* etc.

Example


- is_a(x, "school") ^ close_to(x, "sports_center") ⇒ close_to(x, "park") [7%, 85%]
- Progressive Refinement
 - First search for rough relationship (e.g. <u>g_close_to</u> for <u>close_to</u>, <u>touch</u>, <u>intersect</u>) using rough evaluation (e.g. MBR)
 - Then apply only to those objects which have passed the rough test

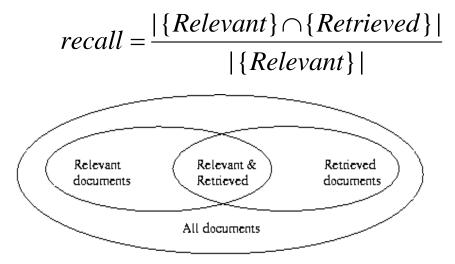
Spatial Classification

- Spatial classification
 - Analyze spatial objects to derive classification schemes, such as decision trees in relevance to spatial properties
 - Example
 - Classify regions into rich vs. poor
 - Properties: containing university, containing highway, near ocean, etc.

Spatial Cluster Analysis

- Constraints-based clustering
 - Selection of relevant objects before clustering
 - Parameters as constraints
 - K-means, density-based: radius, min points
 - Clustering with obstructed distance

Mining Text Databases


- Text databases (document databases)
 - Large collections of documents from various sources
 - News articles, research papers, books, e-mail messages, and Web pages
 - Data stored is usually semi-structured
 - Traditional information retrieval techniques become inadequate for the increasingly vast amounts of text data
- Information retrieval
 - Information is organized into documents
 - Information retrieval problem
 - Locating <u>relevant documents</u> based on user input, such as keywords or example documents

Basic Measures for IR

Precision: the percentage of retrieved documents that are in fact relevant to the query (i.e., "correct" responses)

 $precision = \frac{|\{Relevant\} \cap \{Retrieved\}|}{|\{Retrieved\}|}$

 Recall: the percentage of documents that are relevant to the query and were, in fact, retrieved

Keyword-Based Retrieval

- A document is represented by a set of keywords
 - Retrieval by keyword matching
- Queries may use expressions of keywords
 - (Car and accessory), (C++ or Java)
- Major difficulties
 - Synonymy: same meaning but different word
 - Ex> Q: "software" → Doc: about programming, do not have the keyword
 - Polysemy: same word but different meaning
 - Ex> Q: "mining" → Doc: about gold mining, have the keyword

Similarity-Based Retrieval

- A document is represented as a keyword vector
 - Retrieval by similarity computing
- Basic techniques
 - Stop list set of words that are frequent but irrelevant
 - Ex> *a, the, of, for, with,* ...
 - Stemming use a common word stem
 - Ex> drug, drugs, drugged → drug
 - Weighting count frequency
 - Term frequency, inverse document frequency, ...
- Similarity metrics
 - Measure the closeness of a document to a query

• **Cosine similarity**:
$$sim(v_1, v_2) = \frac{v_1 \cdot v_2}{|v_1| |v_2|}$$

Latent Semantic Indexing

- Reduce the dimension of keyword matrix
 - To resolve the synonym problem and the size problem
 - Use a singular value decomposition (SVD) techniques
- Example

	universe	rocket	moon	car	truck
<i>D</i> 1	[1	0	1	1	0
D2	0	1	1	0	0
<i>D</i> 3	1	0	0	0	0
<i>D</i> 4	0	0	0	1	1
D5	0	0	0	1	0
<i>D</i> 6	0	0	0	0	1

SVD

- Singular Value Decomposition
 - Decompose the matrix A_{mn} $A_{mn} = U_{mm} S_{mn} (V_{nn})^T$
- Reduce dimension
 - Select largest k singular values

$$A'_{mn} = U_{mk} S_{kk} (V_{nk})^T$$

Projection of A into k dimension

$$A'_{mn} V_{nk} = U_{mk} S_{kk}$$

Computing similarity

$$AA^{T} = USV^{T}(USV^{T})^{T}$$
$$= USV^{T}VS^{T}U^{T}$$
$$= (US)(US)^{T}$$

SVD	
$U = \begin{bmatrix} -0.75 & -0.29 & 0.28 & 0.00 & -0.53 \\ -0.28 & -0.53 & -0.75 & 0.00 & 0.29 \\ -0.20 & -0.19 & 0.45 & 0.58 & 0.63 \\ -0.45 & 0.63 & -0.20 & 0.00 & 0.19 \\ -0.33 & 0.22 & 0.12 & -0.58 & 0.41 \\ -0.12 & 0.41 & -0.33 & 0.58 & -0.22 \end{bmatrix} S = \begin{bmatrix} 2.16 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.59 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.28 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.39 \end{bmatrix} V^{T} = .$	
$A'V = US_2 = \begin{vmatrix} -0.60 & -0.84 \\ -0.04 & -0.30 \\ -0.97 & 1.00 \end{vmatrix} (US)(US)^T = \begin{vmatrix} 1.00 & 0.88 & -0.18 & 0.16 \\ 1.00 & -0.62 & -0.32 \\ 1.00 & 0.94 \end{vmatrix}$	0.10 -0.54 -0.87 0.93 0.74 1.00

Automatic Document Classification

- Motivation
 - Automatic classification for the tremendous number of on-line text documents (Web pages, e-mails, etc.)
- A classification problem
 - Training set: Human experts generate a training data set
 - Classification(learning): The system discovers the classification rules
- Methods
 - Extract keywords and weights from documents
 - Documents are represented as (keyword, weight) pairs
 - Classify training documents into classes
 - Apply classification algorithm
 - Decision tree, Bayesian, neural network, etc.

Mining the World-Wide Web

- WWW provides rich sources for data mining
 - Contents information
 - Hyperlink information
 - Usage information
- Challenges
 - Too huge for effective data warehousing and data mining
 - Too complex and heterogeneous
 - Growing and changing very rapidly

Web Search Engines

- Index-based
 - Search the Web, collect Web pages, index Web pages, and build and store huge keyword-based indices
 - Locate sets of Web pages containing certain keywords
- Deficiencies
 - A topic of any breadth may easily contain hundreds of thousands of documents
 - Many documents that are highly relevant to a topic may not contain keywords defining them (synonymy, polysemy)

Web Contents Mining -Classification

- Web page/site classification
 - Assign a *class label to each web page* from a set of predefined topic categories
 - Based on a set of examples of preclassified documents
- Example
 - Use Yahoo!'s taxonomy and its associated documents as training and test sets
 - Derive a Web document classification model
 - Use the model to classify new Web documents by assigning categories from the same taxonomy
- Methods
 - Keyword-based classification, use of hyperlink information, statistical models, ...

Web Structure Mining

- Finding authoritative Web pages
 - Retrieving pages that are not only relevant, but also of high quality, or *authoritative* on the topic
- Hyperlinks can infer the notion of authority
 - A hyperlink pointing to another Web page, this can be considered as the author's endorsement of the other page
- Problems
 - Not every hyperlink represents an endorsement
 - One authority will seldom point to its rival authority
 - Authoritative pages are seldom particularly descriptive
- Hub
 - Set of Web pages that provides collections of links to authorities

HITS (Hyperlink-Induced Topic Search)

- Method
 - 1. Use an index-based search engine to form the *root set*
 - 2. Expand the root set into a **base set**
 - Include all of the pages that the root-set pages link to, and all of the pages that link to a page in the root set
 - 3. Apply weight-propagation
 - Determines numerical estimates of *hub and authority* weights
 - 4. Output a list of the pages
 - Large hub weights, large authority weights for the given search topic
- Systems based on the HITS algorithm
 - Clever, Google
 - Achieve better quality search results than AltaVista, Yahoo!

Web Usage Mining

- Mining Web log records
 - Discover user access patterns
 - Typical Web log entry URL requested, the IP address from which the request originated, timestamp, etc.
- OLAP on the Weblog database
 - Find the top N users, top N accessed Web pages, most frequently accessed time periods, etc.
- Data mining on Weblog records
 - Find association patterns, sequential patterns, and trends of Web accessing

Web Usage Mining

- Applications
 - Target potential customers for electronic commerce
 - Identify potential prime advertisement locations
 - Enhance the quality and delivery of Internet information services to the end user
 - Improve Web server system performance
 - Web caching, Web page prefetching, and Web page swapping